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A B S T R A C T   

In proteomics, the identification of peptides from mass spectral data can be mathematically described as the 
partitioning of mass spectra into clusters (i.e., groups of spectra derived from the same peptide). The way par-
titions are validated is just as important, having evolved side by side with the clustering algorithms themselves 
and given rise to many partition assessment measures. An assessment measure is said to have a selection bias if, 
and only if, the probability that a randomly chosen partition scoring a high value depends on the number of 
clusters in the partition. In the context of clustering mass spectra, this might mislead the validation process to 
favor clustering algorithms that generate too many (or few) spectral clusters, regardless of the underlying peptide 
sequence. A selection bias toward the number of peptides is desirable for proteomics as it estimates the number of 
peptides in a complex protein mixture. Here, we introduce an assessment measure that is purposely biased to-
ward the number of peptide ion species. We also introduce a partition assessment framework for proteomics, 
called the Partition Assessment Tool, and demonstrate its importance by evaluating the performance of eight 
clustering algorithms on seven proteomics datasets while discussing the trade-offs involved. 
Significance: Clustering algorithms are widely adopted in proteomics for undertaking several tasks such as 
speeding up search engines, generating consensus mass spectra, and to aid in the classification of proteomic 
profiles. Choosing which algorithm is most fit for the task at hand is not simple as each algorithm has advantages 
and disadvantages; furthermore, specifying clustering parameters is also a necessary and fundamental step. For 
example, deciding on whether to generate “pure clusters” or fewer clusters but accepting noise. With this as 
motivation, we verify the performance of several widely adopted algorithms on proteomic datasets and introduce 
a theoretical framework for drawing conclusions on which approach is suitable for the task at hand.   

1. Introduction 

Data clustering techniques are fundamental, widely adopted com-
ponents of machine learning systems. They are used in such disparate 
fields as genomics [1], computer vision [2], social networks [3], hy-
drology [4], geochemistry [5], marketing [6], and psychology [7], to 
name a few. In proteomics, the clustering of tandem mass spectra has 

many applications, such as generating consensus spectra, speeding up 
database searches [8,9], quality control of wrongly annotated spectra 
[10], discovering novel molecules, and classification of proteomic pro-
files [11]. However, a considerable fraction of the mass spectra remains 
unidentified [12]. The lack of annotated spectra, especially in massive 
proteomics applications, hampers further insights into the data. It is 
challenging to reinterrogating large-scale repositories, such as PRIDE, 
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without resorting to spectral clustering algorithms as the same peptide 
are present multiple times. 

The art of clustering requires essential and often difficult choices to 
be made, each involving the critical consideration of several possibilities 
as the approach to be used is set up. First, a feature selection function 
must be chosen so that the elements to be clustered can be mapped as 
multidimensional vectors (whose components are the features in ques-
tion) in some appropriate space. Then a similarity function becomes 
necessary to compare vectors, such as the normalized dot product that is 
typically used in proteomics [9]. Next, the choice of a clustering algo-
rithm, along with its parameters, must be undertaken. Last, and no less 
critically important, comes the choice of validation criteria to assess the 
resulting data partition. 

During validation, a reference partition is often used, to which all 
candidate partitions under consideration are compared. By definition, 
all clusters in a reference partition are correct, which makes it a model 
for the assessment of any partitions output by the clustering algorithms 
in use. In proteomics, the reference partition can be created by assigning 
each spectrum to the cluster matching its peptide identification. Parti-
tion validation criteria relying on a reference partition are called 
external criteria. They can be useful when some domain-related expec-
tation exists regarding the assignment of certain elements of the dataset 
to certain clusters. Partition assessment measures that do not use a 
reference partition are called internal criteria. 

The need for correction for chance in validation criteria comes from 
the observation that even random algorithms can artificially score high 
values in assessment measures. Such was the case of the Rand Index [13] 
(RI), studied by Fowlkes and Mallows [14] and the subject of a critical 
comment by Wallace [15], which eventually led to Hubert and Arabie's 
[16] Adjusted Rand Index (ARI), a correction for chance inspired by 
Cohen's kappa [17,18]. In general, the κ-correction of an assessment 
measure f is given by 

κ0(f ) =
f − E0[f ]

max[f ] − E0[f ]
,

where max[f] is the maximum possible value of f and E0[f] is the ex-
pected value of f assuming that the possible partitions of the data in hand 
follow a certain distribution H0. (Notably, ARI = κ0(RI)). Thus, if the 
partition output by some random clustering algorithm follows distri-
bution H0, then the expected value of κ0(f) is zero for that algorithm. 

This correction for chance is usually calculated assuming H0 to be the 
so-called Permutation Model, which assigns nonzero uniform probabil-
ity to all partitions having as many clusters as the reference partition and 
with the same sizes. However, the question of its plausibility was raised 
by Wallace [15] and discussed in depth by Gates and Ahn [19], who 
studied two additional possibilities: Fixed Number of Clusters and All 
Partitions (see Table 1). 

However, correction for chance alone may not be enough. In fact, it 
can be shown that ARI has a selection bias. An assessment measure is 
said to have a selection bias if, and only if, the probability that a 
randomly chosen partition scoring a high value depends on the number 
of clusters in the partition. Controlling the selection bias is therefore 
fundamental in some assessment measures. In this regard, Romano et al. 
[20] showed statistical evidence that standardizing scores under the 
Hperm distribution may reduce the selection bias of assessment measures. 
For assessment measure f, standardization is achieved via 

S0(f ) =
f − E0[f ]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var0[f ]

√ ,

where Var0[f] is the variance of f under H0. 
On the other hand, it has been argued that some selection bias to-

ward the number of clusters in the reference partition may be desirable 
in some applications [21]. This applies, for example, to the discovery of 
novel molecules. In this case, an ideal algorithm would output a parti-
tion with as many spectral clusters as there are peptides in the data, each 
cluster comprising spectra from the same peptide only. 

In this work, we build on Rieder et al.'s [10] validation framework 
for the clustering of tandem mass spectra and discuss the problem of 
selection bias in assessment measures. We introduce an assessment 
measure that is purposely biased toward the number of peptide ion 
species and correspondingly a cluster assessment framework for prote-
omics, the Partition Assessment Tool. We demonstrate the framework's 
usefulness by evaluating the performance of eight widely-adopted 
clustering algorithms on seven proteomics datasets and discussing the 
trade-offs involved. Notably, in principle the validation criteria we 
present can be applied well beyond the clustering of mass spectra. 

Before we proceed, we remark that our focus in this work is part of 
the broader area of quality control (QC) for spectral clustering, which 
has been reviewed in-depth by Perez-Riverol and collaborators [22] and 
gone through important landmarks that are worth noting. For example, 
after PRIDE Cluster had its efficiency verified against all identified 
spectra in PRIDE (some 21 million at the time), in 2016 its authors went 
on to cluster 256 million spectra and, thanks to robust QC, obtained 
clusters of unidentified peptides with unexpected PTMs. Spectral li-
braries also serve as the foundation for successful Data Independent 
Analysis (DIA), with more advanced approaches even generating a 
spectral library together with the DIA data [23]. QC of spectral clus-
tering algorithms and search engines has also been achieved through 
synthetic peptides [24]; for example, proteometools.org has the ambi-
tious goal of providing spectral libraries of tryptic synthetic peptides 
covering all canonical human proteins in UniProtKB/Swiss-Prot [25]. 
While on the one hand datasets are critical for the objective evaluation 
of proteomic algorithms [26], on the other hand advances in theoretical 
measures for assessing clustering effectiveness are also necessary. In the 
present work, our contribution to QC comes in the form of both a well- 
founded validation framework and its use in verifying a broad spectrum 
of algorithms on several datasets. 

2. Materials and methods 

2.1. Selection probability and selection bias 

Given a reference partition V and an i-cluster partition U0
i sampled 

according to distribution H0, the selection probability of i relative to 
assessment measure f applied to the pair (U0

i ,V) is the probability that f 
(U0

i ,V) ≥ f(U0
j ,V) for any other partition size j in a given interval. A 

selection bias exists for f if, and only if, the selection probability is not 
the same for all i in the interval of possible partition sizes. 

In this work, we used H0 = Hnum exclusively. The selection proba-
bility of assessment measures was estimated with Partition Assessment 
Tool's Selection Bias Simulator, created by us for this work. Simulations 
were run assuming a set of 100 elements and one fixed, random refer-
ence partition with 35 clusters. In each simulation a random candidate 
partition was generated with i clusters for i ranging within one of two 
possible intervals, 2 through 99 or 15 through 55 (this one centered at 
35). The candidate partitions' scores on the assessment measure in use 
were then computed relative to the reference partition, and the highest- 
scoring partition (i.e., its number i of clusters) was selected. After 5,000 
of these simulations, the selection probability was estimated for every 
partition size in the range in use. We proceeded in this way to look for 
assessment measures that are biased toward the number of peptide ion 

Table 1 
Possibilities for H0 (Gates and Ahn [19]).  

H0 Name Definition 

Hperm Permutation Model Uniform on all partitions having a given number of 
clusters and given cluster sizes. 

Hnum Fixed Number of 
Clusters 

Uniform on all partitions having a given number of 
clusters. 

Hall All Partitions Uniform on all possible partitions.  
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species of the reference partition. 

2.2. Primary and secondary assessment measures 

Partition assessment measures can be divided into two classes, 
depending on the stage of clustering-algorithm evaluation they are used 
in. Primary assessment measures are used to select the highest-scoring 
partitions out of those produced by a group of algorithms. Secondary 
assessment measures are used to evaluate different aspects of the par-
titions selected. In this work, we propose Gaussian Biased True Similar 
Pairs as the primary assessment measure (see definitions below). For 
secondary assessment measures, we propose Jaccard Index, Variation in 
Partition Size, and Purity as external criteria, and Mean Pairwise Simi-
larity and Dunn Index as internal criteria. We also show that the widely 
adopted ARI to be inappropriate as either a primary or a secondary 
assessment measure. 

2.3. Partition assessment measures 

2.3.1. External assessment measures 
Let X = {x1,x2,…,xN} be a set of N spectra, V (with C clusters) the 

reference partition of X obtained by the identification of peptide spec-
trum matchings, and U (with R clusters) the candidate partition to be 
evaluated with respect to V. A pair of spectra {xi,xj} can be classified as 
one of four types regarding partitions U and V:  

• True similar pair: xi and xj belong to the same cluster in U and to the 
same cluster in V;  

• False similar pair: xi and xj belong to the same cluster in U but not to 
the same cluster in V;  

• False dissimilar pair: xi and xj belong to the same cluster in V but not to 
the same cluster in U;  

• True dissimilar pair: xi and xj belong to the same cluster neither in U 
nor in V. 

We henceforth let a be the number of true similar pairs, b the number 
of false similar pairs, c the number of false dissimilar pairs, and d the 
number of true dissimilar pairs. A pair-counting index is simply a 
function of a, b, c, and d. 

The Gaussian Biased True Similar Pairs, denoted by GBTSP, is the 
pair-counting index defined as 

GBTSP = e
− 1

2

(

R− C
σ

)2

Snum(a),

where Snum(a) is the standardized value of a under the Hnum distribution. 
In the formula for Snum(a), obtained from the formula for S0(f) given 
above with a substituting for f and Hnum for H0, the expected value 
Enum[a] and the variance Varnum[a] are as given in Supporting Section 
S1. GBTSP, therefore, is to be regarded as a version of Snum(a) that is 
modulated by a Gaussian centered at Z = C with width parameter σ, 
where Z is an integer spanning all possible partition sizes. The parameter 
σ is simply the RMSE relative to C of the partition sizes Z that lie within a 
10% difference of C, 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑1.1C

Z=0.9C

(Z − C)2

0.2C

√
√
√
√ .

As we discuss below, Snum(a) has a reduced selection bias when 
compared to other assessment measures (therefore a selection proba-
bility that varies relatively little with partition size), whereas the 
Gaussian amplifies this bias ever more strongly as the partition size 
approaches the number of clusters in the reference partition. 

Another pair-counting index that is useful is the Jaccard Index (JI), 
given by 

JI =
a

a + b + c
.

That is, JI is the proportion of true similar pairs (counted by a) in 
relation to the larger set of similar pairs, be these true similar (a), false 
similar (b), or false dissimilar (c), between candidate partition U and the 
reference partition V. 

Variation in Partition Size (VPS) is a straightforward assessment 
measure of how much the difference in partition size from V to U (i.e., R 
− C) represents in relation to C, the number of clusters of the reference 
partition V. That is, 

VPS =
R − C

C
.

Algorithms that are good estimators of C will score a VPS close to 
zero. 

Purity is defined as the proportion of spectra identified as the most 
frequent peptide in the cluster to which it was assigned by the clustering 
algorithm being considered. In relation to other assessment measures in 
Rieder et al. [10] we have the following. Assuming that the most 
frequent annotation in each cluster is correct, the Proportion of Incor-
rectly Clustered Spectra is in fact the complement of Purity to 1 and 
could also be called Impurity. The Proportion of Spectra Remaining is 
the number of clusters R of U divided by the number of spectra, N. The 
Retainment of Identified Peptides is the number of most frequent pep-
tides in proportion to the total number of identified peptides. And the 
Proportion of Clustered Spectra is the proportion of spectra that do not 
belong to a singleton cluster. 

2.3.2. Internal assessment measures 
To assess partitions of the full datasets (see below) with unidentified 

spectra, we employed two internal assessment measures on partition U: 
the Mean Pairwise Similarity (MPS), defined as the mean cosine simi-
larity of all pairs of spectra in the same cluster, and the Dunn index 
[27,28] (DI), defined as 

DI =
min

1≤i<j≤R
δ
(
ui, uj

)

max
1≤k≤R

Δk
,

where ui and uj are clusters in U, δ(ui,uj) is the dissimilarity (measured as 
the sine) between the representative spectra of clusters ui and uj, and Δk 
is the maximum dissimilarity between two spectra in cluster uk. A good 
partition maximizes both MPS and DI. 

2.3.3. RMSE 
In the following analysis, a clustering algorithm is run multiple times 

on a dataset, each time with different parameters – such as similarity 
threshold, precursor tolerance, etc. We define JI+ as the JI score of the 
top-scoring partition in terms of GBTSP, the primary assessment mea-
sure. We define VPS+, Purity+, MPS+, and DI+ in a similar way. 

In general, we want to evaluate the overall performance of K algo-
rithms on L datasets. Let f + ij be one of JI+, VPS+, Purity+, MPS+, or DI+
for the ith algorithm on the jth dataset, 1 ≤ i ≤ K and 1 ≤ j ≤ L. If f is an 
external assessment measure, let ̂f be its best possible value (that is, ̂f is 
obtained by letting U = V). If f is an internal assessment measure, let ̂f be 
the best score obtained by all K algorithms on all L datasets. Thus, in 
regard to f, the performance of the ith algorithm on all L datasets can be 
summarized as 

RMSEi(f ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
L
∑L

j=1

(
f ij
+ − f̂

)2
.

√
√
√
√

Likewise, computing 
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RMSEj(f ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

i=1

(
f ij
+ − f̂

)2

√
√
√
√

can help evaluate how challenging the jth dataset is to the K algorithms. 

2.4. Proteomics datasets 

We demonstrated the importance of our approach by reanalyzing 
datasets from Rieder et al. [10], deposited in the PRIDE repository with 
identifier PXD004824. Here, our goal was to produce a set of reference 
spectra with highly confident identifications so we could properly assess 
the clustering quality of the algorithms. As such, we extracted only 
spectra that were confidently identified for downstream analysis. The 
datasets contain spectra from roundworm (Caenorhabditis elegans), fruit 
fly (Drosophila melanogaster), human (Homo sapiens, HeLa cell line), 
mouse (Mus musculus, C2C12 cell line), and yeast (Saccharomyces cer-
evisiae). We also evaluated our strategy on a snake (Bothrops jararaca) 
venom subproteome (> 10 kDa) dataset (PRIDE PXD022124) generated 
by our group (motivated by the fact that this type of proteomic data is 
particularly challenging to be analyzed by the standard PSM procedure, 
as typically there are many splice variants and PTMs), and on an 
Escherichia coli K12 dataset (PRIDE PXD015367). 

2.5. Generation of reference datasets with PatternLab for proteomics 

A reference dataset for evaluating the clustering algorithms can be 
generated by using a PSM tool and filtering the identification results 
with high confidence. To achieve proteomic identifications, we followed 
the steps provided in the bioinformatic protocol [29] of PatternLab for 
proteomics 4 (PL4); this software is freely available at patternlabforp 
roteomics.org. 

For most mass spectral datasets, sequences were downloaded from 
Swiss-Prot and then a target-decoy database was generated to include a 
reversed version of each sequence plus those from 123 common mass 
spectrometry contaminants; the exception was the snake venom dataset, 
which was run against the reverse-decoy database of UniProt Serpents 
(taxonomy id 8570–156,122 entries - May 12, 2019) plus the afore-
mentioned contaminants. PL4 relies on the embedded Comet 2016.01 
rev. 3 search engine to assign scores for comparisons between experi-
mental mass spectra and those theoretically generated from the 
sequence databases in question [30]. The search parameters considered 
were: fully and semi-tryptic peptide candidates with masses between 
550 and 5500 Da, up to two missed cleavages, 40 ppm for precursor 
mass, and bins of 0.02 m/z for MS/MS. The modifications were carba-
midomethylation of cysteine and oxidation of methionine as fixed and 
variable, respectively. 

2.5.1. Validation of PSMs 
In what follows, PL4's module known as Search Engine Processor 

[31] was used to assess the validity of the PSMs. To achieve this, PL 
groups the identifications by charge state (2+ and ≥ 3+) and then by 
tryptic status, resulting in four distinct subgroups. For each group, the 
XCorr, DeltaCN, DeltaPPM, and Peak Matches values were used to 
generate a Bayesian discriminator. The identifications were sorted in 
nondecreasing order according to the discriminator score. A cutoff score 
was accepted with a false-discovery rate (FDR) of 2% at the peptide level 
based on the number of decoys [32]. This procedure was independently 
performed on each subgroup, resulting in an FDR independent of charge 
state or tryptic status. Additionally, a minimum sequence length of five 
amino-acid residues and a protein score greater than 3 were imposed. 
Finally, identifications deviating by more than 10 ppm from the theo-
retical mass were discarded. This last filter led FDRs, now at the protein 
level, to be lower than 1% for all search results [26]. For this particular 
study, we performed an additional stringency step by post-processing 
our results to eliminate any identification with XCorr bellow 3.0 and 

one-hit-wonders (Spectral Count = 1). These steps were followed in 
order to obtain a gold-standard set of identifications and create a 
reference partition for each proteomics dataset. 

2.5.2. Reference and full datasets 
The subset of each proteomic dataset containing only spectra iden-

tified according to the aforementioned procedure (and thus considered 
as being of high-quality PSMs) is henceforth referred to as the reference 
dataset. Reference datasets were used to benchmark and optimize 
clustering algorithms. After that, clustering algorithms were run on each 
dataset's full set of spectra, including unidentified and noisy spectra, 
henceforth referred to as the full dataset. Table 2 summarizes the 
number of spectra in each reference and full dataset. The precursor ion 
of every spectrum accounted for in Table 2 has charge 2+, 3+, or 4 + . 

2.6. Clustering algorithms 

We tested eight clustering algorithms: DiagnoProt's clustering algo-
rithm, which we henceforth refer to as Online Clustering algorithm (O- 
Cluster) [11], complete linkage hierarchical clustering (hclust) [33], 
CAST [34], N-Cluster [10,35], igraph [36], DBSCAN [37] (run with 
minPts = 3), PRIDE Cluster [38], and MS-Cluster [9]. With the exception 
of O-Cluster, all algorithms can be run with the R scripts provided by 
Rieder et al. [10]. 

O-Cluster works as follows. A cluster's representative spectrum is 
defined as the spectrum with the highest Xrea [39], a score that assesses 
spectral quality based on cumulative intensity normalization. The al-
gorithm starts with every spectrum constituting a singleton cluster. Then 
for each pair of clusters, it performs a similarity test. If the normalized 
dot product between the two clusters' representative spectra is greater 
than the similarity threshold, then the two clusters are merged. The 
procedure continues until no two clusters can be merged. 

2.7. Processing spectra 

We have very limited control of the pre-processing, quality control, 
and vectorization subroutines of PRIDE Cluster and MS-Cluster, so we 
provided the spectra as they came from the RAW files. For the other 
algorithms, on the other hand, it was possible to establish a common 
procedure, as follows. All MS2 peaks below 250 m/z or above 1750 m/z 
were discarded. All MS2 peaks with intensity below the seven most 
intense isotopes in each bin of size 100 m/z were removed. To avoid 
selecting MS2 peaks from the same isotopic envelope, we removed all 
peaks with 3.0 Da from the list of most intense peaks. Spectra were 
binned with Bin Offset = 0.0 and Bin Size = 0.02, as recommended by 
Comet [30] vectorization. Then, all binned spectra were normalized so 
that each of their intensity vectors had norm 1. 

All algorithms were executed with a precursor tolerance of ±0.75 
and a wide range of similarity thresholds, varying from 0.1 to 0.9. The 
similarity threshold parameter is named and used differently by each 
algorithm (see Table 3). Still, all algorithms have in common that they 
employ it as a threshold for clustering spectra based on their vectorial 
similarity. This similarity is the normalized dot product between the 
vectors representing two spectra, or equivalently the cosine of the angle 
between them. 

Table 2 
Number of spectra in reference and full datasets.  

Dataset Reference version Full version 

C. elegans 38,658 119,813 
D. melanogaster 30,213 109,930 
H. sapiens 52,404 112,132 
M. musculus 52,349 109,887 
S. cerevisiae 38,538 108,929 
B. jararaca 6,498 158,860 
E. coli 42,143 199,419  
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2.8. Partition assessment tool 

Statistical analyses were carried out with the Partition Assessment 
Tool and its Selection Bias Simulator, both developed for this study and 
available for download at patternlabforproteomics.org/partitionassess 
menttool. 

3. Results and discussion 

3.1. Selection bias 

Fig. 1 shows that ARI (with H0 = Hnum) and JI are biased toward 

lower numbers of clusters. Purity and Retainment of Identified Peptides 
are biased toward higher numbers of clusters. These assessment mea-
sures are therefore not recommended as primary scores, lest they might 
end up selecting partitions by number of clusters instead of quality. This 
notwithstanding, most of them may turn out to be useful as secondary 
assessment measures, provided the one used as primary has an accept-
able selection bias. 

The exception here is ARI, which remains not recommended even as 
a secondary assessment measure. This follows from a further flaw that is 
inherent to it, namely, that it assigns the same weight to both true 
similar and true dissimilar pairs. Wallace [15] already suspected that 
true dissimilar pairs are not a sure indicator of partition agreement, and 
in fact it can be shown that, for a sufficiently large number of clusters, 

Enum[d] ≈ max [d] and Enum[d] ≈
(

N
2

)

(see Supporting Section S1). 

Therefore, for any practical proteomics clustering application, true 
dissimilar pairs are useless and point to JI (which does not depend on d) 
as a better pair-counting secondary assessment measure. 

Fig. 1 also shows that Snum(a) has a reduced selection bias in a 
practical range for the number R of clusters (15 ≤ R ≤ 55, close therefore 
to the number of clusters of the reference partition, C = 35), and that 
GBTSP is biased toward C in the full range of all possible partition sizes 
(2 ≤ R ≤ 99). This makes GBTSP a good primary assessment measure. 

3.2. Reference datasets 

All clustering algorithms were run on each reference dataset. After 
undergoing screening by GBTSP, the primary assessment measure, their 
performances with the resulting optimized similarity thresholds (given 
in Supporting Table S1) were compared against those with a default 
similarity threshold (0.5, chosen to reflect the maximum possible un-
certainty should a primary assessment measure be unavailable). 

While Fig. 2(A) and Table 4 both indicate that no algorithm got 
ideally close to the reference partition on all assessment measures, and 
also that none was outstanding regarding JI, they also highlight some 
very positive outcomes. GBTSP optimization led to a better JI for O- 
Cluster, hclust, CAST, and N-Cluster, but to a worse JI for the other al-
gorithms (worst of all for DBSCAN). All algorithms performed very well 
regarding VPS, which is the natural effect of the strong selection bias 
imposed by GBTSP. PRIDE Cluster was the best estimator of the real 
number of clusters. Regarding Purity, worse values were obtained in 
comparison with the default runs, but overall Purity values are still 
relatively high across all algorithms. As for the internal assessment 
measures, hclust obtanined the best MPS and O-Cluster the best DI. This 
is essentially as expected, since hclust is a natural optimizer of MPS and 
O-Cluster is a natural optimizer of DI. However, for most optimized runs 
MPS and DI are worse than for the default runs. 

Fig. 2(B) and Table 5 show that the dataset RMSEs of JI, MPS, and DI 
turned out to be correlated (in the sense of Pearson correlation) with C/ 
N, the ratio of the number of clusters in the reference partition to the size 
of the dataset. This suggests that each dataset presents a challenge to the 
clustering algorithms (regarding these assessment measures) that de-
pends on C/N. Intuitively, if for a given dataset the number of clusters 
(C) is larger in comparison to the number of elements to be clustered (N) 
than it is for another dataset, then the former dataset is more challenging 
than the latter in the sense that classification erros become more likely. 

Detailed assessment measures for each algorithm and each reference 
dataset, as well as the corresponding RMSEs, are available in Supporting 
Tables S2 and S3. 

3.3. Full datasets 

We also tested all algorithms on the full datasets, using the param-
eters provided by GBTSP optimization for the corresponding reference 
datasets. Performance was now evaluated only via JI, MPS, and DI, since 
the other secondary assessment measures are undefined for the full 

Table 3 
Similarity threshold parameters for the clustering algorithms.  

Algorithm Similarity Threshold 

O-Cluster similarity_threshold 
hclust h 
CAST t 
N-Cluster c 
igraph cdis 
DBSCAN ε 
PRIDE Cluster threshold_end 
MS-Cluster similarity  

Fig. 1. Estimated selection probability (SP) as a function of the number of 
clusters of the candidate partition (R) in full range (2 ≤ R ≤ 99) and in practical 
range (15 ≤ R ≤ 55), plotted in upper and lower subplots, respectively. 
Adjusted Rand Index (ARI) and Jaccard Index (JI) are biased toward partitions 
having a lower number of clusters. Purity and Retainment of Identified Peptides 
are biased toward partitions having a higher number of clusters. Standardized 
True Similar Pairs (Snum(a)) is nearly unbiased in a practical range. Gaussian 
Biased True Similar Pairs (GBTSP) is biased toward the number of clusters of 
the reference partition. 
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datasets. A similar observation is in some sense applicable also to JI, 
since it is an external assessment measure. However, JI can consistently 
be computed on full datasets by considering only pairs of identified 
spectra, which of course are to be found also in the full datasets. 

Fig. 2(C) and Table 6 show that all algorithms performed worse on 
the full datasets than they did on the reference datasets. While this is 
only to be expected, given that the full datasets contain a lot of noisy 
spectra, examining the table entries individually indicates substantial 

Fig. 2. RMSEs of secondary assessment measures on reference and full datasets. A) Algorithm RMSEs for reference datasets. B) Dataset RMSEs for reference datasets. 
C) Algorithm RMSEs for full datasets. D) Dataset RMSEs for full datasets. 

Table 4 
Algorithm RMSEs on referfence datasets for parameters optimized by GBTSP. Percentages in parentheses indicate growth relative to the default parameter.  

Algorithm (A) RMSEA(JI) RMSEA(VPS) RMSEA(Purity) RMSEA(MPS) RMSEA(DI) 

O-Cluster 0.412(− 3.96%) 0.019(− 79.3%) 0.051(+27.5%) 0.094(+5.62%) 0.024(+2300%) 
hclust 0.440(− 11.3%) 0.021(− 89.9%) 0.052(+100%) 0.081(+179%) 0.669(+16.5%) 
CAST 0.412(− 5.94%) 0.016(− 89.0%) 0.055(+66.7%) 0.111(+70.8%) 0.725(+12.6%) 
N-Cluster 0.426(− 0.93%) 0.010(− 90.8%) 0.066(+65.0%) 0.153(+57.7%) 0.843(+12.1%) 
igraph 0.432(+2.37%) 0.017(− 81.3%) 0.066(+29.4%) 0.186(+25.7%) 0.678(+13.0%) 
DBSCAN 0.603(+35.8%) 0.058(− 80.7%) 0.167(+209%) 0.433(+166%) 0.918(+10.1%) 
PRIDE Cluster 0.478(+0.63%) 0.008(− 86.0%) 0.047(+20.5%) 0.113(− 11.7%) 0.824(+10.2%) 
MS-Cluster 0.389(+1.30%) 0.021(− 46.2%) 0.049(+13.9%) 0.117(− 5.65%) 0.781(+9.23%)  

Table 5 
Dataset RMSEs on reference datasets for parameters optimized by GBTSP.  

Dataset (D) RMSED(JI) RMSED(VPS) RMSED(Purity) RMSED(MPS) RMSED(DI) C/N 

C. elegans 0.401 0.012 0.059 0.165 0.645 0.286 
D. melanogaster 0.425 0.010 0.057 0.138 0.718 0.265 
H. sapiens 0.385 0.031 0.045 0.101 0.742 0.328 
M. musculus 0.437 0.030 0.078 0.198 0.719 0.316 
S. cerevisiae 0.379 0.032 0.046 0.095 0.712 0.304 
B. jararaca 0.476 0.029 0.118 0.186 0.727 0.174 
E. coli 0.624 0.024 0.112 0.351 0.843 0.412 
Correlation with C/N 0.421 0.088 − 0.103 0.477 0.582   

A.R.F. Silva et al.                                                                                                                                                                                                                               



Journal of Proteomics 245 (2021) 104282

7

variation in how worse performance really was. The best JI was obtained 
by MS-Cluster, with almost no change in terms of proportion of true 
similar pairs. Hclust scored the best MPS and is therefore expected to 
have produced purer clusters than the other algorithms. O-Cluster 
managed to maintain an excellent ballance between inter-cluster and 
intra-cluster dissimilarities, as shown by its DI score. Note also that this 
was the only algorithm to hold a less-than-10% RMSE increase for two 
scores. Fig. 2(D) gives the plots for the corresponding dataset RMSEs. 

Detailed assessment measures for each algorithm and each full 
dataset, as well as the corresponding RMSEs, are available in Supporting 
Table S4. 

4. Conclusion 

Clustering algorithms are not perfect, nor are clustering assessment 
measures. There are always trade-offs to be considered when selecting 
the latter and consequently when selecting the former. The usefulness of 
an assessment measure and of the algorithms it leads to depends on the 
intended application. Ultimately, it is the application that determines 
whether a partition is good or not. Here we introduced a new partition 
assessment framework, one in which the user can control the selection 
bias, aiming toward a partition of the data in which the number of 
clusters is close to the number of peptide ion species in the data. This has 
involved the choice of an appropriate hypothesis on the distribution of 
partitions (Hnum), of a relatively bias-free assessment measure when 
randomness is the main force driving the generation of partitions 
(Snum(a)), and finally of a strongly biased primary assessment measure 
(GBTSP). GBTSP, in particular, was tasked with optimizing a clustering 
algorithm's similarity-threshold parameter, which is to be carried out on 
a reference version of the dataset of interest, one in which only identified 
spectra appear. 

While depending on algorithm and dataset we were able to show 
good performance on the reference datasets, given the optimized 
parameter, the more important test was to use the same optimized 
versions of the algorithms on the substantially noisier, full datasets. To 
judge by the assessment measures we had for use in this case, most of 
them internal (and thus inherently self-referential), performance losses 
were observed for all algorithms on all datasets. Such losses were not 
uniform across all cases and even pointed to one of the algorithms, O- 
Cluster, as having incurred only modest RMSE increases in two of the 
three assessment measures used. Something like this occurred also for 
DBSCAN, PRIDE Cluster, and MS-Cluster, now relative to one of the 
three assessment measures. This seems to indicate that our framework 
has shown at least one of the ways in which leveraging the power of the 
selection bias can help achieve high-quality partitions. In principle, this 
can be expected to hold both inside and outside proteomics. 
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