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Abstract
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their 
high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. 
CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of 
development. CYFIP1, similar to CYFIP2, acts in the WAVE regulatory complex (WRC) and plays a role in actin dynam-
ics through the activation of the Arp2/3 complex and in a posttranscriptional regulatory complex with the fragile X mental 
retardation protein (FMRP). Previous reports have shown that CYFIP1 and CYFIP2 may play roles in posttranscriptional 
regulation in different ways. While CYFIP1 is involved in translation initiation via the 5′UTR, CYFIP2 may regulate mRNA 
expression via the 3′UTR. In addition, this CYFIP protein family is involved in neural development and maturation as well 
as in different neural disorders, such as intellectual disabilities, autistic spectrum disorders, and Alzheimer’s disease. In 
this review, we map diverse studies regarding the functions, regulation, and implications of CYFIP proteins in a series of 
molecular pathways. We also highlight mutations and their structural effects both in functional studies and in neural diseases.
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Introduction

Neurological development is highly regulated, and pertur-
bations in this process can cause different types of neural 
disorders. These disorders may appear in childhood, such 
as autistic spectrum disorder (ASD) [1], infantile epilep-
tic encephalopathy (IEE) [2], and attention deficit hyper-
activity disorder (ADHD) [3], or they may appear later in 
life, such as schizophrenia [4] and Alzheimer’s disease [5]. 
In addition to disorders, such as ASD and schizophrenia, 
which share some phenotypes, including the difficulty of 

social communication, they do not necessarily share the 
same genetic background [6]. However, the association 
of CYFIP family members with these disorders has been 
described by other studies [7–10]. For example, the same 
variant in CYFIP1 has been described as a possible associa-
tion in ASD and ADHD [11]. Other studies have pointed out 
the relationship between CYFIP1/CYFIP2 and other neural 
disorders, such as Alzheimer’s disease [12], intellectual dis-
abilities [13, 14], epileptic encephalopathy [15], and even 
compulsive behavior [16, 17]. Furthermore, CYFIP family 
members have important functions after neurodevelopment, 
and they have been implicated in adult synaptic plasticity 
and memory [12, 18].

The human CYFIP family consists of the following 
two homologous proteins: CYFIP1 and CYFIP2. CYFIP1 
(cytoplasmic FMR1 interacting protein 1) is also known 
as Sra1 (specifically Rac1 associated protein 1) [19]. The 
gene (CYFIP1 or KIAA0068; NG_054889.1) is located on 
chromosome 15q11.2 and encodes 7 isoforms (UniProtKB 
Database, Q7L576). The CYFIP1 structure inside the 
WAVE regulatory complex (WRC) has been resolved by 
crystallography (PDB 3P8C). The CYFIP2 (cytoplasmic 
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FMR1 interacting protein 2), also known as PIR121 (p53 
inducible protein), gene (CYFIP2, KIAA1168 or PIR121; 
NC_000005.10) is located on chromosome 5q33.3 and 
encodes 4 isoforms (UniProtKB Database, Q96F07). The 
CYFIP1 and CYFIP2 proteins are approximately 145 kDa, 
and they share 88% identity and 95% similarity. These two 
proteins are highly conserved in several organisms [20], and 
they share 99% identity with their orthologs in mice [21].

Abekhoukh and Bardoni proposed that the function and 
role of these two proteins in neuronal maturation are similar 
[22]. Recently, Schaks and collaborators showed that muta-
tions described for CYFIP2 can be transferred to CYFIP1 
and impact the actin dynamics driven by WRC [23]. This 
result points to a conservative function of the CYFIP family 
concerning the regulatory complex. Moreover, other stud-
ies have suggested that they may perform some different 
biological functions [20]. CYFIP1 is expressed in most 
human tissues, and CYFIP2 is more abundant in the brain, 
kidney, and lymph nodes (Gene ID CYFIP1: 23191; Gene 
ID CYFIP2: 26999). CYFIP1-knockout mouse embryos die 
at approximately 9.5 days, and CYFIP2-knockout embryos 
die at approximately 18.5 days [24]. Zhang and collaborators 
also reported a difference in expression sites between the two 
proteins in the hippocampal cells of adult mice. In the brains 
of mice, CYFIP1 is more highly expressed in nonneuronal 
cells, whereas CYFIP2 is more highly expressed in neu-
ronal cells [24]. Cioni and colleagues also highlighted the 
importance of both CYFIP proteins in neural development. 
Using retinal glial cells (RGCs) from zebrafish embryos and 
in vivo time-lapse imaging of the Xenopus brain, Cioni et al. 
observed how CYFIP1 and CYFIP2 knockdown affects axon 
sorting, and they found nonredundant functions of the pro-
teins with CYFIP1 involved in axon extension and CYFIP2 
involved in proper axon sorting [25]. Due to contradictory 
results, the functions of the CYFIP family at the molecular 
level need to be elucidated to identify the roles of CYFIP1/2 
in neural development and the impact of CYFIP1/2 dysfunc-
tions on neural disorders.

CYFIP1

CYFIP1 was initially described as a protein interacting with 
Rac family small GTPase 1 (RAC1), a member of the Rho 
small GTPases [19]. RAC1 was first described in HL-60 
cells as a substrate for ADP-ribosylation by botulinum toxin 
C3 ADP-ribosyltransferase [26]. Subsequently, other stud-
ies have shown that RAC1 is involved in different cellular 
processes [27–30], including actin filament reorganization 
[31] and CYFIP1 signaling [19]. The WRC is a pentameric 
complex constitutively assembled (see “WAVE regulatory 
complex” section) [32]. The WRC is activated by Rac-GTP 
and recruited to the cell periphery, but it does not dissoci-
ate after activation [33]. This complex acts in the dynamics 

of actin cytoskeleton formation and is responsible for the 
activation of the Arp2/3 complex [34].

CYFIP1 also seems to be involved in the regulation of its 
WRC partners. Abekhoukh and collaborators suggested that 
CYFIP1 absence may affect the mRNA expression of WRC 
partners, including Nap1, Abi1, Wave1, and HSPC300, in 
mouse Cyfip1-depleted neurons and lymphoblastoid cell 
lines from patients with genomic deletion of CYFIP1 [35]. 
Recent data have shown that CYFIP1 may act in proteins 
that traffic and recruit WRC proteins to the cytoskeleton, 
such as APC, SHANK1, SHROOM2, and TMSB10, which 
are downregulated in the amygdala of mice overexpressing 
Cyfip1 [36]. These studies point to an important role for 
CYFIP1 inside the WRC and in its regulation.

CYFIP1 also interacts with fragile X mental retardation 
protein (FMRP) [21], a protein related to fragile X syndrome 
(FXS) [37]. FMRP absence is responsible for FXS, in which 
patients present intellectual disability and autistic spectrum 
behavior [38]. Although CYFIP1 interacts with FMRP, it 
does not interact with the FMRP-related proteins, FXR1P 
and FXR2P [21]. FMRP is also involved in the modulation 
of proteins that regulate cytoskeletal reorganization [39]. 
CYFIP1 has been described as an eIF4E-binding protein 
(4E-BP), forming a posttranscriptional regulatory com-
plex with FMRP in synaptoneurosomes and decreasing the 
expression of FMRP target mRNAs involved in different 
neural processes, such as MAP1B, ARC, and CaMKIIα. Upon 
breve synaptic stimulation, CYFIP1 dissociates from eIF4E, 
releasing the FMRP target mRNAs for translation [40]. De 
Rubeis and colleagues showed that this free CYFIP1 binds 
to WRC, leading to actin cytoskeleton regulation at dendritic 
spines. This change in CYFIP1 between the two complexes 
is regulated by RAC1, promoting a conformational switch 
from a globular to a planar form of CYFIP1, which causes 
CYFIP1 to dissociate from eIF4E and promotes the binding 
of NCKAP1 and the subsequent formation of WRC [41]. 
Through molecular dynamics and docking simulations, Di 
Marino and collaborators corroborated these findings, show-
ing that CYFIP1 has two conformations depending on its 
partner, changing with a butterfly-like motion in a RAC1-
dependent way [42]. This switch between complexes, acting 
concomitantly, is important for proper dendritic spine forma-
tion and maturation [41].

Cyfip1 haploinsufficient mice present presynaptic dys-
function with lower presynaptic terminal size and abnormal 
actin polymerization at these sites, which influences syn-
apse assembly and maturation [43]. Cell lineage SY5Y and 
mouse neurons overexpressing CYFIP1 present an increas-
ing number of neurite branches, and pyramidal neurons 
from the mouse frontal cortex show an increase in abnormal 
dendritic spine formation [44]. Recently, Sahasrabudhe and 
collaborators showed that the absence of CYFIP1 increases 
RAC activation and mGluR levels on dendritic spines with 
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WRC being more activated and higher amounts of F-actin 
on these postsynaptic sites, impacting synaptic plastic-
ity in the mouse hippocampus [45]. Another recent study 
has shown that treadmill exercise in an animal model of 
ischemic stroke increases CYFIP1 expression and that a 
reduction in CYFIP1 impairs proper dendritic spine den-
sity and synaptic plasticity recovery in these animals [46]. 
Kawano and collaborators showed that CYFIP1 is required 
for axon growth, suggesting that the CYFIP1/WAVE1 com-
plex is carried out to the axon-growth cones by CRMP-2 
interacting with kinesin-1, a motor protein responsible for 
intracellular transportation [47]. These studies point to an 
important role of CYFIP1 in the establishment of dendritic 
and axon connections as well as synaptic plasticity.

CYFIP1 has also been described as a target for the Notch 
signaling pathway. Dziunycz and collaborators showed that 
NOTCH1 binds to CSL motifs in the CYFIP1 gene pro-
moter, and overexpression of NOTCH1 in squamous cell 
carcinoma (SCC) in vitro leads to an increase in CYFIP1 
at both the mRNA and protein levels. This interaction may 
decrease the invasive phenotype of SCC [48]. Recently, Hab-
ela and collaborators showed that loss of CYFIP1 increases 
the proliferation of type B1 cells, a type of neural stem cell, 
in the subventricular zone in the brains of conditional and 
inducible knockout mice. These authors hypothesized that 
the absence of CYFIP1 may impair differentiation, leading 
Type B1 cells to symmetrically self-renew [49]. Because 
NOTCH is also an important factor in brain development, it 
may also regulate CYFIP1 expression during neural devel-
opment by participating in the balance of symmetrical and 
asymmetrical division in neural stem cells [50, 51]. Fur-
ther studies are needed to evaluate the impact of NOTCH 
on CYFIP1 in brain growth and its possible role in neural 
disorders.

CYFIP2

CYFIP2 interacts with FMRP, as well as other members of 
its family, namely, FXR1P and FXR2P [19]. The biological 
function of these interactions is still not well established. 
Napoli and collaborators showed a potential eIF4E-binding 
domain conserved at the C-terminus of CYFIP2, indicating 
a possible relationship of CYFIP2 regulating FMRP target 
mRNA as described for CYFIP1 [40]. In rat primary cortical 
neurons, CYFIP2 has been immunoprecipitated with eIF4E, 
suggesting their interaction [52]. At the same time, the levels 
of some FMRP targets, such as APP and CaMKIIα, are nor-
mal in the synaptosomes of Cyfip2 heterozygous mice [14]. 
In contrast, Tiwari and collaborators showed an upregula-
tion of APP and CaMKIIα proteins not accompanied by the 
increase of their mRNAs levels, indicating that this change 
occurred through post-transcriptional regulation, in hip-
pocampal synaptosomes from Cyfip2 +/− mice [12]. These 

differences could be due to the genetic background of the 
animals used in the studies; while the study of Han and col-
laborators used the C56BL/6 J lineage, the Tiwari’s study 
used the C56BL/6 N lineage. This last lineage is known to 
have a point mutation in the Cyfip2 gene, and this mutation 
was already shown to reduce Cyfip2 function and was asso-
ciated with behavior disorders [16] (see “CYFIP family and 
neural disorders” section). Once it is not well established 
how this mutation impacts the association of Cyfip2 with 
its partners, including FMRP, this difference may impact 
the results obtained from different animal lineages. CYFIP2 
mRNA also appears among the FMRP target mRNAs but not 
CYFIP1 [53]. Recently, it has been described that CYFIP2 
interacts with 25 other proteins related to RNA metabolism 
in mouse brains, including proteins involved in mRNA pro-
cessing and the miRNA pathway, such as Pumilio1 (PUM1) 
and Argonaute2 (AGO2) [54]. Moreover, circCYFIP2, a 
sense-overlapping circular RNA spliced from the CYFIP2 
transcript, has been described as a sponge for miR-1205. 
This miRNA regulates the expression of E2F1, a protein 
previously described to be upregulated in tumors. This 
circCYFIP2-miR-1205-E3F1 axis is involved in cell pro-
liferation and migration in gastric cancer, suggesting that 
circCYFIP2 may be a biological marker for this disease [55]. 
CYFIP2 is upregulated in basal cell carcinoma, suggesting 
that it may be a biological marker for this type of tumor, 
but its mechanism is still unclear [56]. Perhaps the CYFIP2 
RNA detected in this previous study was circCYFIP2, which 
can be more stable than CYFIP2 mRNA [55], acting in post-
transcriptional regulation, such as in gastric cancer and basal 
cell carcinoma. These data suggest that while CYFIP1 may 
act in translation initiation, CYFIP2 may regulate translation 
via the 3′UTR. Additionally, CYFIP2 has been described as 
a p53-dependent apoptosis factor (hence, it is also known as 
PIR121). The p53 protein is considered a tumor suppressor, 
acting as an activating factor for apoptosis and inducing tran-
scription of many genes [57]. Jackson and colleagues identi-
fied a p53-responsive element in the CYFIP2 gene promoter, 
which leads to the activation of its transcription by the p53 
factor [58]. Once p53 expression is lost in many types of 
cancer [59], CYFIP2 expression may be affected. Further 
studies are needed to establish the molecular role of CYFIP2 
in posttranscriptional regulation and cancer development.

Additionally, researchers have suggested that CYFIP2 
can be involved in T cell adhesion. Mayne et al. analyzed 
 CD4+ cells in patients with multiple sclerosis, a disease in 
which T cell adhesion plays an important role. In these cells, 
CYFIP2 expression is increased by approximately 4-fold. 
As the protein acts in the regulation of the WRC complex, 
high levels of CYFIP2 may facilitate the adhesion of T cells. 
The analysis of fibronectin‐mediated binding in healthy T 
cells overexpressing CYFIP2 shows a significant increase 
in adhesion compared to the control. In addition, CYFIP2 
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knockdown in  CD4+ cells from multiple sclerosis patients 
decreases adhesion [60]. More studies are necessary to dis-
sect the role of CYFIP2 in T cell adhesion and MS.

Levanon and collaborators reported that CYFIP2 mRNA 
can be edited by adenosine deaminases acting on RNA 
(ADARs), enzymes responsible for the exchange of adeno-
sine (A) for inosine (I) in mRNA posttranscriptional editing. 
This CYFIP2 editing (resulting in a K320E substitution in 
the protein) occurs especially in the brain in different spe-
cies, indicating that it is conserved [61]. Another study has 
shown that CYFIP2 editing is related specifically to ADAR2 
and that this process is more abundant in the cortex and 
cerebellar tissues [62]. Because I can be read as a G by the 
ribosome, A-to-I editing can change the amino acid during 
translation. This posttranscriptional alteration is important 
for the function of some proteins, such as GluR2, which is 
a subunit in the α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) receptor in neurons. Without editing 
by ADARs, the glutamine (Q) residue in the editing site is 
not substituted by the arginine (R) residue, increasing  Ca2+ 
permeability by the AMPA receptor, which may trigger 
neuronal death [63]. A-to-I editing by ADARs also plays 
a role in embryogenesis and aging, especially in the brain, 
highlighting its importance throughout the lifetime. In mice, 
the editing of ADAR targets, including CYFIP2, increases 
through embryo development, and in some cases, it reaches 
almost 100% after 21 days postnatal [64]. Recently, Levitsky 
and collaborators showed that in addition to the high level 
of protein expression in murine brain cells, the levels of 
CYFIP2 RNA editing are increased only in neurons [65]. 
In humans, embryonic stem cells and fetal brains show no 
indications of CYFIP2 RNA editing, while it is present in 
the adult brain [66]. Interestingly, Nicholas and collaborators 
showed a decrease in CYFIP2 editing levels in the human 
adult brain as the individual ages [67]. Additionally, Bonini 
and collaborators showed that rat cortical cells treated with 
glutamate, an important excitatory neurotransmitter, have 
decreased ADAR2 expression and self-editing, which affects 
CYFIP2 RNA editing levels. It remains to be elucidated how 
this impacts neural functioning [68]. These reports show 
that CYFIP2 RNA editing is important to neural function 
and maturation, and further studies are needed to understand 
this relationship.

CYFIP2 is also involved in WRC [69]. Derivery et al. 
showed that CYFIP2 immunoprecipitates with the complex 
and that WRC remained inactivated in the basal state of the 
cell [70]. Furthermore, it is known that Wiskott–Aldrich 
syndrome protein family verprolin-homologous (WAVE) 
proteins may need to interact with other proteins to form 
stable WRC [32]. Another study reported that CYFIP2 
may stabilize WAVE protein in the cortex of mice. Also, 
it shows that Cyfip2 haploinsufficiency allows the pres-
ence of an active WAVE for enough time to promote actin 

polymerization before WAVE’s degradation by low stabil-
ity [14]. Cioni et al. described how CYFIP2 interacts with 
xFXR (a RNP marker) or NCKAP1 (a component of WRC) 
in distinct subcellular compartments in Xenopus laevis RGC 
axons [25], and their data indicated that CYFIP2 is associ-
ated more with RNPs along the axon, thereby changing its 
association with the WRC in the growth cone periphery, 
corroborating De Rubeis’s [41] study on CYFIP1.

WAVE regulatory complex

The WRC is a regulatory complex of approximately 
400 kDa, and it is active in the regulation of actin filament 
polymerization. The WRC is a pentameric complex con-
sisting of the following groups of proteins: (i) WAVE1 or 
WAVE2 or WAVE3; (ii) CYFIP1 or CYFIP2; (iii) NCKAP1 
(Nck-associated protein 1) or NCKAP1L (Nck-associated 
protein 1 like); (iv) ABI1 (abl interactor 1) or ABI2 (abl 
interactor 2) or ABI3 (ABI family member 3); and (v) BRK1 
(BRICK1 subunit of SCAR/WAVE actin nucleating com-
plex) [33, 69, 71].

The WRC basal activity is in the inactive form [70]. The 
VCA domain (Verprolin-homology, Central, Acidic) of the 
WAVE protein is responsible for the activation of the Arp2/3 
complex to initiate actin polymerization. The interaction 
between the complex proteins, mainly between CYFIP and 
the VCA domain, prevents their interaction with Arp2/3 
[72]. The binding of Rac-GTP, the interaction with some 
phospholipid acids, and the phosphorylation state of some 
regions of the WAVE protein allow the exposure of the VCA 
domain of the WAVE protein, which links with Arp2/3 for 
its activation [73].1

To evaluate the interactions inside WRCs, several groups 
have generated CYFIP1/2 point mutations to disrupt its bind-
ing with other components of the complex and evaluated the 
effects of these mutations by assays, such as immunopre-
cipitation and pull-down assays. Furthermore, the effects 
of these mutations have been observed in cell phenotypes 
(Table 1). Figure 1 shows the CYFIP1/2 structure, highlight-
ing important sites inside the protein for its proper binding 
with WAVE, eIF4E, and RAC1.

Actin filaments and microtubules are structures of the 
cytoskeleton that are critical for cellular polarization and are 
particularly important in extremely polarized cells, such as 
neurons. Actin filaments are particularly important in con-
trolling dendrite function and morphology [81]. Dendritic 
spines are small protrusions of dendrite membranes that help 
to pass signals to the neuron’s body, and they are dynamic 

1 For an overview on the WRC and actin dynamics, we suggest the 
following reviews: [32, 34, 74–76].
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structures in which remodeling of the actin cytoskeleton is 
especially important [81, 82].

In dendritic spines, most of the actin cytoskeleton is in 
the form of branched structures because these structures 
have better tensile strength against the plasma membrane 
[83], which is necessary for the maturation and growth of 
dendritic spines. Interestingly, by using proteins coupled 
with GFP to evaluate proteins in structures, Pathania et al. 
observed how both the CYFIP1 and CYFIP2 proteins are 
located predominantly in dendritic spines in mouse brain 
cells. The overexpression of proteins has also resulted in 
increased complexity of dendrites and dendritic spines with 
structural changes [84]. This type of abnormality in the 
dendritic spines is also associated with different types of 
neural disorders [85]. Many studies have shown that altera-
tions in the expression levels of CYFIP1 and CYFIP2 cause 
alterations in dendritic spine formation and maturation. 
For example, overexpression of CYFIP1 increases the pro-
portion of mature spines and spine density [44], while its 

haploinsufficiency leads to an increase in immature spines 
and dysregulates the cytoskeleton in dendritic spines [84]. 
Cyfip2 haploinsufficient mice also present differences in 
dendritic spine maturation in their cortex [14], and abnor-
malities in spines morphology are present in adult CA1 
pyramidal neurons of Cyfip2 heterozygous mice [12]. These 
reports show that the CYFIP family is associated with dif-
ferent neural disorders.

CYFIP family and neural disorders

CYFIP family and its effects on behavior 
and cognitive parameters

CYFIP1 is associated with different types of behavior and 
cognitive abnormalities, including intellectual disabilities 
(ID) [10], autism spectrum disorders (ASD) [7], and schizo-
phrenia [9]. For example, CYFIP1 mRNA is downregulated 

Fig. 1  Model of CYFIP1/2 protein (dark gray/light gray) interacting 
in the WRC complex (wheat). The model of CYFIP2 was constructed 
using Modeller and the CYFIP1 structure as a template (PDB: 
3P8C, CYFIP1 shares 95% similarity with CYFIP2). Other WRC 
chains were obtained from PDB structure 3P8C. Spheres empha-
size the regions where reported mutations in CYFIP proteins lead 
to biological effects. Mutations reported/analyzed in CYFIP1: The 
C179R, R190D, and M632D mutations inhibit RAC1 binding in the 
“A site” (red). The Y967A, P957A/K958D/I959A, R961D/P963A/
R964D, G971W, and E974A/F975A/H978A/Q979A mutations elimi-
nate RAC1 binding in the “D site” (orange). The L697D/Y704D, 
L841A/F844A/W845A, and F686E impair the interaction between 

CYFIP proteins and the VCA domain of WAVE (blue). The R87C, 
I640M, E641K, D700H, and Q701R restored lamellipodia formation 
even with impaired binding of WRC to Rac1 (C179R/R190D muta-
tion) (green). The K725E mutation reduces the interaction between 
CYFIP proteins and eIF4E (yellow). Mutations reported/analyzed 
in CYFIP2: The R87C, R87P, and R87L promote weaker interac-
tion between CYFIP and the VCA domain of WAVE (cyan). The 
S968F mutation is correlated to protein destabilization (purple). The 
T1067A mutation decreased the density of stubby spines in cultured 
hippocampal neurons (pink). More details are described in Table  1. 
Mutations linked by/were experimentally evaluated together. (Color 
figure online)
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in the peripheral blood of patients with schizophrenia and 
upregulated in patients with epilepsy [8]. Additionally, 
CYFIP1 is associated with Neuroligin3 for controlling 
hyperactivity, and its reduction affects motor learning, phe-
notypes associated with ASD, in mutant model animals [86]. 
These neural disorders are associated with deletions or gains 
in chromosome 15q11-13 where the CYFIP1 gene is located 
(Table 2). The 15q11-13 region is associated with intellec-
tual disabilities, behavior disturbances, and communication 
delays, such as Prader-Willi and Angelman syndromes [87], 
and individuals with these disorders usually present dele-
tions or duplications in specific loci, known as breakpoints 
(BP1, BP2, and BP3). These breaks can occur between BP1-
BP2 (Burnside-Butler locus), BP1-BP3 (type I), or BP2-BP3 
(type II). Moreover, studies have suggested that alterations 
including deletions or duplications in the BP1-BP2 region 
present more severe effects in patients. The genes found in 
the BP1-BP2 region are TUBGCP5, CYFIP1, NIPA1, and 
NIPA2 as well as the noncoding RNA, WHAMML1 [22, 
87]. These genes show potential relevance in neurodisorder 
development, but CYFIP1 is considered to be a more sig-
nificant effector [88]. Oguro-Ando et al. showed that ASD 
patients with duplication at 15q11-13 present overexpres-
sion of CYFIP1 in lymphoblastoid cell lines and the tempo-
ral cortex, and they also found an increase in mTOR levels 
and phosphorylation of S6 (p-S6, a downstream effector of 
mTOR) in the brains of these patients, indicating a role for 

CYFIP1 in the regulation of mammalian target of rapamycin 
(mTOR) signaling associated with ASD [44]. Corroborating 
this report, Abekhoukh and collaborators showed that corti-
cal neurons of mice with Cyfip1 knockdown have decreased 
mTOR protein levels and phosphorylation of S6. Interest-
ingly, cortical neurons isolated from Fmr1 knockout mice 
have increased S6 phosphorylation levels [35]. Patients 
with FXS present a decrease in CYFIP1 mRNA levels and 
an increase in the phosphorylation of two mTOR effectors, 
S6K1 and AKT, in lymphocytes and the brain [13]. These 
reports suggest that the effect of CYFIP1 on mTOR signal-
ing may depend on the expression or absence of FMRP.

CYFIP1 is also involved in oligodendrocyte maturation. 
Silva and collaborators showed that Cyfip1 haploinsufficient 
mice have altered brain white matter, decreased myelin 
thickness and decreased expression of oligodendrocyte mat-
uration markers, such as Cc1 and Mbp. These authors also 
reported that the mutant mice show a decrease in behavior 
flexibility, consistent with the effects observed in the brain 
described by other studies [88]. Once the formation of the 
myelin sheath involves actin assembly and disassembly, in 
which Arp2/3 is required for actin assembly and MBP is 
required for disassembly [89], WRC can be involved in this 
process. Because proper myelination is important for behav-
ioral flexibility and learning, CYFIP1 may be important in 
both neuronal and glial processes. Fricano-Kluger et al. 
showed that mice overexpressing CYFIP1 at the amygdala 

Table 2  CYFIP1/CYFIP2 mutations found in clinical/animal models studies

The table summarizes mutations found in clinical studies associated with neurological diseases and mutations found in animal models affecting 
its behavior

Protein Mutation Condition/pathology associated Organism References

CYFIP1 15q11-13 ASD, schizophrenia, intellectual disabilities Human; Mouse [9, 10]
CYFIP2 R87C or R87P or R87L or R87H or R87S Epileptic encephalopathy Human [15, 98]

Y108H Epileptic encephalopathy Human [96]
M311T Profound ID Human [98]
A455P Epileptic encephalopathy Human [96]
M456V Mild ID Human [98]
E468D Epileptic encephalopathy Human [98]
T490M Severe ID, Epilepsy Human [98]
I664M Epileptic encephalopathy Human [96]
E665K Mild to moderate ID, epilepsy Human [96]
Y690C Moderate ID Human [98]
D724H or D724Y or D724G Epileptic encephalopathy Human [96, 98]
Q725A Epileptic encephalopathy Human [96]
F888S Epileptic encephalopathy Human [98]
H1206Y Moderate ID Human [98]
E1174Aspfs*3 Profound ID, epilepsy, microcephaly Human [98]
Premature stop codon after aminoacid 342 Reduced innate startle threshold Zebrafish [80]
S968F Lower acute and sensitized response to cocaine; 

Compulsive-like eating
Mouse [16, 17]
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have upregulated genes associated with myelination, and 
they reported that these animals also present learning deficits 
and increased fear conditioning, comorbidities associated 
with some cases of ASD [36]. Recent studies have reported 
that Cyfip1 haploinsufficient mice also show compulsive-like 
eating behavior, which is associated with sex and genetic 
background [90].

CYFIP2 alterations are also associated with behavior 
and cognitive defects. Although there is some evidence 
that downregulation of Cyfip2 may be not associated with 
abnormal social and repetitive behaviour in C56BL/6N 
Cyfip2 +/− mice [12], Han et al. showed that C56BL/6J mice 
heterozygous for Cyfip2 present some fragile X-like behav-
iors, and they reported that these effects are enhanced in 
mice with FMRP knockout combined with Cyfip2 haplo-
insufficiency. These behavior alterations are not associated 
with abnormal hippocampal synapse plasticity, as occurs in 
Fmr-1 null mice, but instead impact spine elongation where 
mGluR agonist-induced Cyfip2 translation and FMRP-medi-
ated regulation are needed [14]. Patients with FXS show a 
decrease in CYFIP2 protein expression, while the expres-
sion of CYFIP2 mRNA does not change, suggesting that 
the absence of FMRP may allow more CYFIP2 mRNA to 
translate [13]. To evaluate this hypothesis, one alternative 
is to analyze the levels of CYFIP2 mRNA associated with 
ribosomes through the polysome profiling technique [91], 
comparing samples with or without genetic alterations. If 
there is a shift in the amount of CYFIP2 mRNA between 
free RNA and polysomal RNA, this could indicate a change 
in translation.

Kumar et al. showed that a single nucleotide polymor-
phism (SNP) is located in the Cyfip2 gene, which causes 
a missense mutation in CYFIP2 (serine-to-phenylalanine 
at position 968, S968F) and can generate a minor acute 
response and sensitization in mice upon cocaine stimulation. 
These authors also showed a lower dendritic spine density 
in the brain and a decrease in the frequency of mini-excita-
tory postsynaptic signaling currents (mEPSCs), which can 
be associated with drug-induced structural plasticity and, 
consequently, addiction [16]. The CYFIP2 S968F mutation 
is also correlated with binge eating in mice, which is associ-
ated with obesity and other comorbidities related to eating 
disorders. Mice with this mutation also present compulsive-
like eating, which may be associated with the downregula-
tion of myelination genes in these animals, thereby corre-
lating with other studies that show a decrease in the white 
matter of patients with eating disorders [17].

CYFIP2 has also been identified as a potential target 
for the treatment of Alzheimer’s disease. In a recent study, 
Ghosh and collaborators showed that Cyfip2+/− aged mice 
present Aβ accumulation in the brain, gliosis, synapse loss, 
and memory deficits [52]. A reduction in CYFIP2 expres-
sion in neuronal cells initiates a cascade of modifications in 

the disease, such as hyperphosphorylation of the tau protein, 
the formation of amyloid plaques, and memory loss [12]. 
Kim and collaborators showed that neurons from layer 5 of 
the medial prefrontal cortex (mPFC L5) of Cyfip2+/− animals 
present fewer presynaptic boutons and axonal processes con-
taining mitochondria, and they hypothesized that this altera-
tion in mitochondrial amount may be related to trafficking 
disturbances [92]. Tau protein is a microtubule-stabilizing 
protein, and its hyperphosphorylation leads to mislocation 
to dendritic spines [93], which may compromise its role on 
microtubules and trafficking machinery. Perhaps the reduc-
tion in CYFIP2 levels increases tau phosphorylation, dis-
locating tau to dendritic spines and compromising the sta-
bility of microtubules and organelle trafficking, which may 
have caused the decrease in mitochondria in the presynaptic 
region. This has a direct effect on ATP levels needed for 
synapses and  Ca2+ clearance, affecting short-term plasticity 
[92]. Additionally, the interactome of CYFIP2 contains 23 
mitochondrial proteins [54], and Cyfip2 has been reported 
in an enriched mitochondrial fraction of mPFC L5 neurons 
[92]. It is also known that mitochondrial disturbances in the 
neural context may lead to neurodegenerative diseases, such 
as Alzheimer’s disease [94]. Thus, CYFIP2 has an important 
role in mitochondrial pathways and in the development of 
neurodegenerative diseases that needs to be deepened.

CYFIP2 Arg87 variants and epileptic encephalopathy

Nakashima et al. reported, for the first time, an association 
of the CYFIP2 protein with early epileptic encephalopathy. 
These researchers studied 489 individuals with some type of 
epileptic encephalopathy. Four different and unrelated indi-
viduals showed the following variants in the Arg87 residue 
of the protein: Arg87Cys, Arg87Pro, and Arg87Leu (Fig. 1) 
[15].

Others have also reported at least six more patients with 
this syndrome with variants in the same protein residue 
[95–99]. Zweier and collaborators reported that other vari-
ants of the protein are also associated with the syndrome. 
Seven different “missense” variants have been found in the 
analyzed patients with the p. Arg87Cys and p.Ile664Met 
variants being the most recurrent [96]. Begeman and col-
laborators identified more patients diagnosed with epilep-
tic encephalopathy who carry Arg87 variants, confirming 
previously described variants and identifying novel ones 
(p.Arg87His and p.Arg87Ser). Additionally, these authors 
described that patients with Arg87 substitutions present a 
profound developmental delay, intellectual disability, epi-
lepsy, and muscle tonus anomalies [98], establishing this 
position as a hotspot for mutation and subsequently the 
development of a severe form of the neural disorder.

Although the correlation of early epileptic encephalopa-
thy with the protein mutation at this specific site exists, it has 
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not yet been possible to prove the mechanisms with which it 
is associated. One hypothesis based on the structural analy-
sis of the Arg87 site is that changes in that site would pro-
mote the continuous activation of the WRC. More precisely, 
the mutation would be at the interface of interaction with 
WAVE1, a protein that is part of the complex [15]. This 
interaction would cause the VCA domain to disconnect and 
become more exposed, creating a constant and aberrant acti-
vation of Arp2/3. Recently, Schaks and collaborators sup-
ported this hypothesis; once the induced expression of the 
R87C variant recovers lamellipodia formation in CYFIP1-2 
knockout (KO) cells, the same phenotype is observed with 
induced expression of the VCA domain of WAVE. The 
recovery of lamellipodia formation is driven by the R87C 
variant, which occurs even in the absence of Rac activation, 
suggesting the constant activation of WRC in the presence 
of mutated CYFIP2 [21]. This would change the structures 
of the dendritic spines and affect the balance between excita-
tion/inhibition of synapses [99].

Furthermore, Lee and collaborators showed that the R87 
variants of CYFIP2 impact the formation of stress granules 
(SG). These authors showed that cells with R87 variants 
spontaneously form clusters containing CYFIP2 and that 
these clusters do not colocalize with G3BP, a SG marker. 
From 140 proteins reported as the CYFIP2 interactome, 
these authors identified 23 proteins as components of 
SG, and they hypothesized that R87 variants of CYFIP2 
may impair the assembly of SG by clustering with the SG 
members, such as AGO2. In fact, under stress conditions, 
Ago2 remains in the CYFIP2 cluster and does not migrate 
to SG. Therefore, the R87 variants may maintain CYFIP2 
clustering and impair its function as in WRC formation and 
actin polymerization [54]. Further studies are needed to 
understand the real impact of R87 variants on cell metabo-
lism and perhaps establish a future treatment for epileptic 
encephalopathy.

Conclusions and future directions

Due to their similarity, many researchers have proposed a 
redundant function between CYFIP1 and CYFIP2, focusing 
on CYFIP1 function, regulation, and its role in neural dis-
eases. Although CYFIP1 and CYFIP2 share some functions, 
studies have suggested that they also act in unique ways, 
considering that both proteins are essential during neuronal 
development. However, it is not yet precisely understood 
if this is because they have unique functions (besides their 
known shared functions) or if it is only related to their differ-
ent regulatory mechanisms, developmental expression pat-
terns, and cellular and subcellular locations. Thus, future 
studies are important for a better understanding of both pro-
teins acting in diseases and their differences.

The role of CYFIP family variants in several neural dis-
eases makes them major targets for drug development. Using 
a Cyfip2 haploinsufficient mouse model, a recent study has 
shown that treatment with lithium decreases seizure scores 
and recovers hyperexcitability in layer 5 neurons of the 
prefrontal cortex [100]. The molecular mechanism of this 
process is still unclear, but understanding the structure, 
molecular dynamics, and the effect of mutations on the com-
plex interactions between CYFIP proteins and their partners 
may be essential in the design of treatments for neural syn-
dromes. There are future perspectives for treatments using 
mRNAs or gene therapy in the case of pathologies involving 
low expression or absence of CYFIPs genes. Even, there are 
expectations regarding the development of therapy for dis-
eases that result in pathogenic variants, for example (1) use 
of genetic editing tools; (2) drugs that involve gene silenc-
ing by siRNA specific for the mRNA containing the genetic 
alteration, and (3) molecular docking for identification of 
drugs with blocking action only of CYFIPs containing the 
pathogenic variant. The translational knowledge about the 
structure of proteins, their genetic variants, their location, 
partners, expression site, affected tissues, and the clinical 
characteristics of patients affected with pathogenic variants 
of CYFIPs will allow in the future establishing the eligibility 
of each patient to different treatments strategies.
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