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Influenza is one of the most relevant respiratory viruses to human health causing annual
epidemics, and recurrent pandemics. Influenza disease is principally associated with
inappropriate activation of the immune response. Chemokine receptor 5 (CCR5) and its
cognate chemokines CCL3, CCL4 and CCL5 are rapidly induced upon influenza infection,
contributing to leukocyte recruitment into the airways and a consequent effective antiviral
response. Here we discuss the existing evidence for CCR5 role in the host immune
responses to influenza virus. Complete absence of CCR5 in mice revealed the receptor’s
role in coping with influenza via the recruitment of early memory CD8+ T cells, B cell
activation and later recruitment of activated CD4+ T cells. Moreover, CCR5 contributes to
inflammatory resolution by enhancing alveolar macrophages survival and reprogramming
macrophages to pro-resolving phenotypes. In contrast, CCR5 activation is associated
with excessive recruitment of neutrophils, inflammatory monocytes, and NK cells in
models of severe influenza pneumonia. The available data suggests that, while CCL5
can play a protective role in influenza infection, CCL3 may contribute to an overwhelming
inflammatory process that can harm the lung tissue. In humans, the gene encoding CCR5
might contain a 32-base pair deletion, resulting in a truncated protein. While discordant
data in literature regarding this CCR5 mutation and influenza severity, the association of
CCR5delta32 and HIV resistance fostered the development of different CCR5 inhibitors,
now being tested in lung inflammation therapy. The potential use of CCR5 inhibitors to
modulate the inflammatory response in severe human influenza infections is to
be addressed.
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INTRODUCTION

Aside from the onset of Corona Virus Disease 19 (COVID-19)
pandemics in 2020, influenza virus is the most relevant
respiratory virus for the healthcare system, causing millions of
infections worldwide annually with estimates of up to 650
thousand deaths (1, 2). Although it is unpredictable when and
to which extent the circulation of influenza among humans will
return to pre-COVID-19 levels, the threat is perpetual due to the
high genetic variability of the virus and the existence of multiple
reservoirs (3). Influenza virus belongs to the Orthomixoviridae
family of segmented, negative sense, single stranded RNA viruses
(4). The infection of host respiratory epithelial cells occurs
through the recognition of glycoconjugates with terminal N-
acetylneuraminic acid (sialic acid) in the cell membrane by the
viral protein hemagglutinin (HA). The multivalent attachment to
sialic acid structures triggers the endocytosis of the virus (5).
Influenza A and B are the most medically relevant types among
the family causing annual epidemics, whereas only Influenza A
might also give rise to pandemics such as the 1918 Spanish Flu
and 2009 Swine Flu, both caused by H1N1 strains subtype, that
occasioned more than 50 million and 363 thousand deaths
respectively (6, 7). Some influenza A avian subtypes, including
H5N1 and H7N9, are highly pathogenic to humans and,
although human-to-human transmission is still limited, they
have been closely monitored as potential new pandemic strains
(8). Despite antivirals and vaccine availability, the emergence of
pandemic strains is an imminent threat due to the high genetic
variability of the virus, the ability to infect birds and swine that
act as reservoirs, and a decreased population immunity to new
strains (9–12). Therefore, comprehending the disease
mechanisms involved in respiratory virus infections and
continuous viral surveillance are badly needed as they set the
basis for new therapeutics.

Dysfunctional inflammation triggered by influenza infection is
related to the clinical manifestations and is orchestrated by different
mediators (e.g: leukotrienes, cytokines and chemokines) and cell
types (e.g: leukocytes, epithelial and endothelial cells) (13). However,
a regulated well-controlled response ensures a proper viral clearance
with restoration to tissue homeostasis. Therefore, inflammation has
a dual role during influenza infection and disease. Although the
chemokine receptor CCR5 does not actively participate in
the infection process of influenza, after its activation by the
chemokines CCL3/MIP-1a, CCL4/MIP-1b, and CCL5/RANTES,
it becomes a key player in the inflammatory milieu that contributes
to infection restraint. However, it might also be associated with
inflammatory bystander lung damage. Here we discuss this duality
of CCR5 activation during influenza infection.
Abbreviations: CCR5, Chemokine receptor 5; CCL3, C-C Motif Chemokine
Ligand 3; CCL4, C-C Motif Chemokine Ligand 4; CCL5, C-C Motif Chemokine
Ligand 5; COVID-19, Corona Virus Disease 19; BALF, the bronchoalveolar lavage
fluid; hAECII, human alveolar epithelial cells; SARS-CoV-2, Severe Acute
Respiratory Syndrome Virus-2; NK, Natural Killer; ACKR2, Atypical
Chemokine Receptor 2; HIV, Human immunodeficiency virus; SAMHD1, SAM
domain and HD domain-containing protein 1; COPD, chronic obstructive
pulmonary disease, AF, allele frequency, CXCR4, C-X-C Motif Chemokine
Receptor 4; AIDS, Acquired Immune Deficiency Syndrome.
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EXPRESSION OF CCR5 AND CCR5
LIGANDS UPON INFLUENZA INFECTION

One of the first reactions of the host after influenza infection is
the production of CCR5 ligands by lung resident cells, especially
alveolar macrophages and epithelial cells (14–16). CCL5 can be
detected in human bronchoalveolar lavage fluid (BALF) samples
after 7 days of symptoms onset (17). In vitro infection of type 2
human alveolar epithelial cells (hAECII) with either H1N1 or
H5N1 virus leads to a significant production of CCL5 by those
cells, showing that they may be a principal source of CCL5
during influenza pneumonia. In addition, human alveolar
macrophages exposed to both H1N1 and H5N1 viruses
produced CCL5. Interestingly, the infection with the H5N1
virus, a more pathogenic subtype, led to stronger CCL5
production in both cell types (15, 18). CCL3 and CCL4, the
other CCR5 ligands, are also expressed in response to
experimental influenza infection in human volunteers (19). A
study of over 15 critically ill patients showed that CCL3 is
augmented in lung aspirates of patients, and notably, at the
serum level, there was an increment of CCL3 and CCL4 in
comparison with mild cases of influenza infection (20). In
addition, there is recent evidence showing, at the mRNA level,
that peripheral blood monocytes derived from hospitalized
patients diagnosed with influenza A or Severe Acute
Respiratory Syndrome Virus-2(SARS-CoV-2) infection
overexpress CCL3 (21).

In murine models, all CCR5 ligands are produced in lung
tissue in response to influenza infection (22, 23). This contributes
to the acute recruitment of leukocytes from the innate immunity
to the lungs, mainly inflammatory monocytes and neutrophils,
but also NK cells, which can induce CCR5 expression in response
to the infection (24, 25). The latter recruitment of cells from
adaptive immunity is also mediated by CCR5. Indeed, effector
cytotoxic Th1 lymphocytes, memory CD8 T cells, and also B
lymphocytes express CCR5. Moreover, there is evidence pointing
that CCL5:CCR5 interaction contributes to the formation of
inducible bronchus-associated lymphoid tissue iBALT in mice
(14, 23, 26).
THE ROLE FOR CCR5 IN INFLAMMATION
AND IMMUNITY TO INFLUENZA VIRUS

The immune responses that follow influenza infection are crucial
to control virus proliferation and for the development of
memory responses; however, uncontrolled, or exaggerated
activation of the many components of the immune system is
associated with severe pulmonary damage and contributes to flu
mortality (13). Thus, the immune responses must be finely
regulated and coordinated to ensure viral clearance and
restoration of lung homeostasis, with minimum bystander
damage. As part of the host immune circuits for resistance to
infection, CCR5 mediates the recruitment and activation of
leukocytes during influenza. Interestingly, CCR5 plays
contrasting roles in different inflammatory and infectious
January 2022 | Volume 12 | Article 826621
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diseases leading to protection against certain pathogens or
immunopathology triggered by exacerbated inflammation (27,
28). In this regard, CCR5 activation during different phases of
influenza infection might also lead to different outcomes. Indeed,
CCR5 activation during the initial stages of influenza infection
ensure the proper recruitment of leukocytes and activation of
antiviral pathways in the epithelial cells (Figure 1 left panel) (14,
23, 29, 30). However, sustained or exaggerated CCR5 activation
during severe/exacerbated influenza infection might fuel the
inflammatory responses leading to increase pulmonary damage
and dysfunction (Figure 1 right panel). The cellular expression
of CCR5 dictates what cell type can be recruited by mediators
such as CCL3, CCL4 and CCL5, the classical CCR5-
associated chemokines.

CCR5 and its cognate chemokines are rapidly induced post-
influenza infection in both humand and mice and ensure the
prompt recruitment of leukocytes to the airways for an effective
response (31). Indeed, the development and use of CCR5
knockout mice shed light on the mechanistic role for CCR5
mediating host protection to influenza. CCR5 deficient mice are
highly susceptible to influenza infections and present increased
neutrophilic inflammation and lung dysfunction in comparison
to wild type mice (23). During influenza infection in mice,
neutrophil expression of CCR5 is significantly increased and
promotes different ex vivo cell functions (25). Whether CCR5
Frontiers in Immunology | www.frontiersin.org 3
signaling in vivo directly regulates neutrophil activation or
recruitment during influenza is yet to be explored;
never the le s s , CCL5 :CCR5 was shown to promote
reprogramming of murine macrophages to pro-resolving
phenotypes contributing to resolution of inflammation (32). In
addition, CCR5:CCL5 was shown to prevent virus-induced
apoptosis of human and mouse macrophages during influenza
infection (33). Alveolar macrophages are crucial cells for viral
and apoptotic cell clearance during infections preventing further
unnecessary inflammatory responses in the lungs and tissue
damage (34). Therefore, CCR5 signaling aids to the regulation
of macrophage regulatory responses to guarantee restoration of
tissue homeostasis during influenza infections.

NK cells are also recruited by CCR5 (24) and play a role in
immunity to influenza infections in humans and mice (35, 36).
NK cells can interact with influenza-infected cells and with the
virus itself leading to secretion of cytokines and cytotoxic
granules that restrain viral replication within the early stages of
infection (36, 37). On the other hand, influenza virus can directly
impair NK function to evade this innate layer of host immunity
(38) and exaggerated NK cell activation, rather than being
protective, might contribute to lung damage during severe
influenza infections (39). Whether CCR5 activation transduces
a protective or pathological NK cell response during influenza is
yet to be determined. In parallel, the recruitment and activation
FIGURE 1 | The dual role of CCR5 during influenza infection. Triggered by influenza infection, one of the first reactions of epithelial cells and resident alveolar
macrophages is the production of CCR5 ligands. CCL5:CCR5 interaction is necessary for the development of a proper immune response (left side) to restrain viral
expansion since it favors resident macrophages survival, promotes reprogramming of macrophages to pro-resolving phenotypes, mediates the recruitment of T
lymphocytes and the establishment of iBALT contributing to immunological memory. However, uncontrolled activation of many components of the immune system
after influenza infection is associated with severe pulmonary damage (right side). In this scenario, increased recruitment of neutrophils, inflammatory monocytes and
natural killer cells can be mediated by CCR5 expression on those cells, and the actual evidence shows that CCL3 may be related to this exacerbated response. In
this situation CCR5 inhibition by Maraviroc or Leronlimab, might represent an interesting therapeutic alternative.
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of gd T cells, mainly by CCR5, are important components of the
potent antiviral responses to influenza infection in humans
(40, 41).

In addition to the above mentioned role in innate immunity
to influenza, CCR5 signaling is also necessary for the recruitment
and effective response of the components of the adaptive
immune system (42). Indeed, the increased pathology and lung
dysfunction of CCR5 deficient mice are associated with
decreased recruitment of CD8+ T cells during infection (23).
Moreover, CCR5 was shown to be important for the
development of early CD8+ T cell memory leading to control
of virus replication during a secondary infectious challenge in
mice (14). Furthermore, CCR5 might also impact B cell
activation and recruitment during influenza. Secretion of CCL3
and CCL4 by B cells can lead to the recruitment of activated
follicular CCR5+ CD4+ T cells, which enhances interaction
between these two cell types and improves humoral immunity
(43). Akin with that, mice lacking the CCL5 scavenger Atypical
Chemokine Receptor 2 (ACKR2) present increased CCL5 levels,
CCR5+CD4+ lymphocyte recruitment to the airways and
augmented levels of IgA in the BALF during influenza. The
specific phenotype of the T CD4+ recruited via CCR5 during
influenza is yet to be defined (23). Noteworthy, the antagonism
of CCR5 using maraviroc has not impaired the humoral response
of HIV patients to the 2009 pandemic influenza A-H1N1
adjuvanted vaccine (44).

Pulmonary epithelial cells, in addition to the leukocytes, are
important players driving antiviral responses to influenza (29).
More recently, the direct role of CCL5:CCR5 in epithelial
antiviral responses was uncovered. CCL5:CCR5 was shown to
reduce influenza A replication in human epithelial cells by
inducting the antiviral restriction factor SAM domain and HD
domain-containing protein 1 (SAMHD1) (30). Keeping with
that, the CCR5 agonist gp120 was shown to reduce A(H1N1)
pdm09 replication in vitro in an IFITM3-dependent manner in
Frontiers in Immunology | www.frontiersin.org 4
human macrophages and human epithelial cervical cancer
(HeLa) cells (45). Therefore, CCR5 signaling can impact the
antiviral responses mediated by both epithelial and immune cells
and, this should be taken into consideration when developing
therapeutic strategies targeting this receptor for other
inflammatory diseases. Interestingly, a recent study provided
strong evidence for the protective role of CCR5 antagonism
during Chronic Obstructive Pulmonary Disease (COPD)
exacerbations caused by influenza in which CCL3 levels but no
CCL5, correlated with an exacerbated inflammatory process (46).
Maraviroc treatment during COPD viral exacerbations protected
mice from the lethal pulmonary inflammation without affecting
viral replication (46). In this regard, understanding the response
to the virus and distinguishing between harmful and protective
inflammation is crucial. The most relevant findings regarding
CCR5 role during influenza infection are summarized
on Table 1.
CCR5DELTA32 AND DISEASE SEVERITY

The gene encoding CCR5 might contain a 32 base pair deletion
within the exon 3 resulting in a truncated protein that cannot be
expressed on cell surface and therefore is non-functional (47).
This deletion is present at different frequencies on populations
around the world, which is related to ancestry. Whereas the allele
frequency (AF) of the deletion is more than 15% in some
European countries like Norway, Estonia and Latvia, some
Asian and African countries present CCR5delta32 AF lower
than 1% (48). Delta32 deletion was discovered in individuals
multiply-exposed to HIV that were resistant to the infection and
carried two alleles of CCR5-delta32 (49). This resistance was
observed in CCR5-tropic HIV strains which depend on CCR5 as
a co-receptor for cell entry. This process is avoided when a non-
functional CCR5 is present in every cell on CCR5-delta32
TABLE 1 | Evidence over CCR5 role on the immune response to influenza virus.

Strategy Influenza strain Model Findings

CCR5
Knockout

A/WS/SS H1N1 Mouse CCR5 KO and CCL5 KO have higher mortality and increased apoptosis of macrophages
at day 9 post-infection (33).

Anti-CCR5
specific
antibody

A/WS/SS H1N1 Human macrophages CCR5 blockage increases the proportion of apoptotic macrophages post-influenza
infection in vitro (33).

CCR5
knockout

A/HK-x31 H3N2 and A/
Puerto Rico/8/1934 H1N1

Mouse CCR5 knockout mice have impaired induction of T CD8+ memory cells post-influenza
infection and increased viral titers in a secondary viral challenge (14).

Maraviroc 2009 pandemic influenza
AH1N1v

HIV patients Pharmacological blockage of CCR5 does not impact antibody responses triggered by
vaccination (44).

CCR5
knockout

A/Puerto Rico/8/1934
H1N1

Mouse CCR5 knockout mice have diminished numbers of NK cells in the bone marrow, post-
infection (35).

HIV
glycoprotein
gp120

A(H1N1)pdm09 Human epithelial cervical
cancer (HeLa) cells

Gp120 acts as an agonist for CCR5 and inhibits influenza replication in HeLa cells (45).

CCR5
Knockout

A/WSN/33 H1N1 Mouse CCR5 KO mice present increased pulmonary neutrophilic inflammation and damage,
and reduced T CD8+ lymphocyte recruitment during influenza infection. (23)

CCR5 agonism
(CCL5)

A/Switzerland/9715293/
2013 H3N2

Human epithelial cell line
(A549)

CCL5 binding to CCR5 increases SAMHD1 and prevents viral replication and epithelial
cell death in vitro (30).

Maraviroc A/Puerto Rico/8/1934
H1N1

Mouse model of influenza-
induced COPD exacerbation

Pharmacological blockage of CCR5 reduced lethality, neutrophilic inflammation,
pulmonary damage without affecting viral titers (46).
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homozygousity and act as a dominant-negative on the expression
of wild type CCR5 and also C-X-C Motif Chemokine Receptor 4
(CXCR4), the other co-receptor of HIV (50).

While CCR5-delta32 homozygosis confers protection to HIV,
meta-analysis have shown that HIV susceptibility or perinatal
infection are not affected by CCR5-delta32 heterozygosity (51–
53). Upon this findings on HIV resistance, CCR5 blockers or
antagonists started to be tested against Acquired Immune
Deficiency Syndrome (AIDS) and currently the CCR5
antagonist Maraviroc is clinically used (54). Moreover, a
patient with acute myeloid leukemia and HIV had the
infection controlled by the transplant of stem cells from a
homozygous delta32 donor (55).

Besides HIV, CCR5delta32 has been associated with
susceptibility (56, 57) or protection to different diseases,
including COVID-19 (58–60). Regarding influenza, discordant
data are present in literature. After the 2009 H1N1 pandemics,
studies on distinct populations evaluated the CCR5delta32 allele
frequencies on influenza patients with different outcomes. The
first published study, assessing only 20 cases in Canada, found that
the CCR5delta32 was a risk factor for the severity of H1N1
infection in white patients (61). In 2013 one Spanish study
comparing a mild and a fatal case of the pandemic H1N1
infection found that the fatal case was homozygous for the
CCR5D32 allele (62). Another Spanish study from 2015,
assessing a larger population of 171 influenza patients found a
correlation of CCR5D32 and mortality (63). On the other hand,
three studies, one with 29 European (mostly Italian), other with
330 Brazilians and another with 432 Brazilian influenza patients
with different clinical manifestations found no association between
CCR5D32 and H1N1 severity (64–66). The conflict data might be
explained by the global distribution of CCR5D32 allele.
CCR5delta32 AF in countries where associations with influenza
outcomes were found – Canada and Spain – are higher (8.1% and
7%, respectively) than in countries where no association was found
– Italy (6.27%) and Brazil (4-5.44%) (48, 67).
CCR5 AS POTENTIAL TARGET TO
MODULATE INFLAMMATION IN LUNG

Severe pneumonia following viral infection is principally
associated with an overwhelmed production of inflammatory
mediators and leukocyte recruitment to lung tissue. For that
reason, chemokine receptors are interesting therapeutic
candidates for lung inflammation. As aforementioned, CCR5
contribution during influenza infection appears to be crucial for
the development of an antiviral response and the proper induction
of immunologic memory. On the other hand, CCR5 activation is
associated with excessive recruitment of neutrophils,
inflammatory monocytes and NK cells in models of severe
influenza pneumonia (24, 46, 68). This dual role of a chemokine
receptor in the context of lung diseases is not an exclusive
characteristic of CCR5 (69). Currently, the information obtained
by the use of animal models suggests that while some CCR5
ligands, like CCL5, can play a protective role in influenza infection
Frontiers in Immunology | www.frontiersin.org 5
(23, 33) others, like CCL3, may contribute to an overwhelming
inflammatory process which can harm the lung tissue (46, 70).
Many pharmacological strategies that aim to impair CCR5 activity
and endocytosis have been developed to fight HIV infection and
were already tested in humans showing good safety profiles and
effective antagonism properties. Nowadays, repositioning
strategies based on the well-established CCR5-inhibitory
capacities of drugs like Maraviroc, the only CCR5 inhibitor
approved for clinical use, and Leronlimab, a CCR5-specific
human IgG4 monoclonal antibody, succeed at presenting a
good anti-inflammatory performance in the context of lung
inflammatory conditions. Indeed, it was recently published that
Leronlimab treatment reduced plasma IL-6 and viral load in
critical COVID-19 patients (71). Besides, new CCR5 antagonists
like cenicriviroc, which also present CCR2 inhibition, and GRL-
117C, arise opportunities for the discovery of novel anti-
inflammatory treatments focusing on CCR5 in the near future
(72, 73). Currently, there is no disclosed clinical trial attempting to
assess whether CCR5 antagonism can improve patient outcome
during severe influenza pneumonia. However, as the current
COVID-19 pandemics brought up challenging times while also
emphazised a pre-existing demand for novel treatments to control
the inflammatory response in the lungs, at least five clinical trials
are being conducted to study CCR5 as potential drug target to
treat lung inflammation during SARS-CoV-2 infection
(NCT04441385, NCT04475991, NCT04710199, NCT04901676
NCT04901689). Either by CCR5 antagonism with Maraviroc or
by its blockage with Leronlimab, these trials attempt to control the
excessive inflammatory response by decreasing leukocyte
accumulation in the lungs and inflammatory mediators in
plasma of COVID-19 patients which is expected to improve
patients outcome. By the moment, four of these clinical trials
are on recruiting phase and the only completed study has no
posted results yet (NCT04710199).
CONCLUSIONS

CCR5 plays important roles during influenza infection
(Figure 1) by contributing to a suitable immune response via
CCL5 to cope with the viral infection, but also subsidizing
excessive inflammation and tissue damage by mechanisms
associated with increased CCL3 production. This ambivalent
character of CCR5 on influenza infection is not unique to this
chemokine receptor but observed for many others in the dispute
between pathological lung inflammation and restoration of
physiological state. Thus, the correct use of CCR5 inhibitors as
potential anti-inflammatory drugs in severe influenza infections
requires a profound knowledge of the different phases in the
inflammatory processes to be modulated.
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