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1 Department of Virology and Experimental Therapy, Aggeu Magalhães Research Center-CPqAM/FIOCRUZ, Recife, Brazil, 2 Department of Biochemistry, Yong Loo Lin

School of Medicine, National University of Singapore, Singapore, Singapore, 3 Center for Vaccine Research, Department of Infectious Diseases and Microbiology, University

of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 4 Department of Cellular and Molecular Immunology, Rene Rachou Research Center - CPqRR/FIOCRUZ,

Belo Horizonte-MG, Brazil

Abstract

Background: Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic
fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that
host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes
involved in this response could be used as early prognostic markers for disease severity.

Methodology/Principal Findings: mRNA expression levels of genes involved in DENV innate immune responses were
measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines
(SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue
patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these
genes and achieved the highest accuracy of ,85% with leave-one-out cross-validation. Through selective removal of gene
expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-a and CLEC5A)
that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important.
Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant
combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the
five genes, increasing the overall accuracy to ,96%.

Conclusions/Significance: Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to
elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and
DHF patients: TLR3, MDA5, IRF3, IFN-a, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary
results are promising, further experimental investigation is necessary to validate their specific roles in dengue disease.
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Introduction

Dengue virus (DENV) is an emerging mosquito-borne pathogen

that infects approximately 50–100 million people every year. The

virus has an RNA genome and exists as four major serotypes

(DENV1-4) that are phylogenetically distinct [1]. According to the

World Health Organization (WHO) reports during the past 50

years, the incidence of dengue has increased 30-fold and it is

estimated that 2.5 billion people live in endemic areas spread over

100 countries [2]. Symptomatic infection by DENV can range

from a mild disease, dengue fever (DF), to a severe dengue

haemorrhagic fever (DHF), which can culminate with dengue

shock syndrome (DSS) and death. Although sequential dengue

infection by distinct serotypes and antibody-mediated enhance-

ment (ADE) are the two most studied risk factors for the

development of the severe diseases, the key determinants of DF

or DHF progression remain elusive [2–6].

During infection, the innate immune response plays an

important role as the first line of defence and also in the shaping

of the adaptive responses. One of the first steps of the innate

responses is the recognition of pathogen-associated molecular

patterns (PAMPs) [7]. The innate immune system identifies these

patterns through pattern recognition receptors (PRRs) [8], such as

the Toll-like receptors (TLRs) 3, 7, and 9 located at the cellular

membranes, and also by cytoplasmic proteins, like the retinoic

acid-inducible gene-I (RIGI) and melanoma differentiation-

associated gene 5 (MDA5). Binding of viral molecules to these

PRRs results in a downstream activation of a gene cascade,
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including MYD88 (an adapter protein that serves as an intermediate

molecule), transcriptions factors (IRF3 and IRF7), and the

expression of interferon (IFN) type I and II genes [7]. IFNs are

produced by many types of cells and induce an antiviral state by up-

regulating genes with direct and indirect antiviral functions [7–15].

While it is known that IFNs are the first line in the host defence

against DENV infections [7], and that DENV inhibits the IFN

signalling pathway [16], the actual relationship between the ability

to block IFN signal and pathogenicity is not known. We previously

postulated that the expression levels of the TLRs and the signal

transduction molecules of IFN type I and II pathway would have a

significant role in modulating the host IFN response to DENV and

hence the disease outcome. The possible associations of this

interplay with clinical outcomes appear complex, with indications

that differential expression of different immunological pathways

result in disparate clinical outcomes [17]. To investigate the possible

role of the expression level of these genes at mRNA levels during

DENV infection, it is necessary to design rational gene expression

studies followed by careful analyses of gene expression patterns in

well characterized dengue patients [18]. Towards this end, several

groups have been studying disease susceptibility factors, via high

throughput molecular typing or through association studies to

identify disease associated candidate genes [2]. In silico approaches

utilizing clinical data have been developed to improve dengue

diagnosis and prognosis. Recently, our group developed a simple

method to reliably differentiate primary and secondary acute

dengue infections based on serological data (IgG ELISA) [19] and

quickly identify individuals with a secondary dengue infection,

which is considered as a risk factor. Nevertheless, only a small

fraction of secondary infections develop DHF and the early

detection of patients with risk of developing DHF is still not possible.

In this manuscript, we present a computational approach to

classify DF and DHF patients based on mRNA expression data of

11 genes (MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7,

IFN-a, IFN-b, IFN-c, and RIGI) involved in the innate immune

response pathway using the support vector machines (SVM)

algorithm. The significance of these genes in determining DF or

DHF progression was also explored using this approach.

Additionally, CLEC5A, a cell surface receptor, which is also

involved in innate response, was included in the analysis as a

reference marker because it has been proposed to be involved in

the development of DHF [20]. A schematic map depicting the

interactions of the 12 proteins/genes in the viral innate immune

response pathway is provided in Figure 1. We selected these genes

because i) they have been previously shown to have a significant

fold-change in our cDNA microarray analysis [18] of genes

expressed in patients with DF versus DHF, compared to non-

dengue (ND) patients, or ii) they have been described to be

relevant for hemorrhagic symptoms of dengue by others in the

literature [7–10,12,17,20]. The aim of this study was to help

identify important genes or pathways of the innate immune

responses involved in DF or DHF, which can then be used as

markers.

SVM, introduced by Cortes and Vapnik [21], is a relatively new

sub-branch of supervised learning methods, and has been shown

to be highly effective for diverse computational biology applica-

tions [22]. Some example applications include prediction of

secondary structure, quaternary structure, homology, domains,

cleavage sites, protein-protein interaction, T-cell epitopes, classi-

fication and validation of cancer tissue samples and also

microarray expression data. Our gene expression data from

dengue disease patients provides an opportunity to better

Figure 1. A schematic map depicting the interactions of the 12 proteins/genes studied herein, known or indicated to be relevant to
the viral innate immune response pathway, including for dengue.
doi:10.1371/journal.pone.0011267.g001
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understand the relevance of the individual genes in the DENV

infection pathway involving the innate immune response. Though

the application of SVM as a classification tool for expression data

is not new, its utility to analyse the role of genes of the innate

immune response pathway in DENV has not been explored.

Materials and Methods

Ethics statement
All participants signed an informed consent. This study, related

to gene expression of dengue patients and application of the SVM

algorithm to the data is part of a bigger functional immunomics

study in our lab and was reviewed and approved by ethics

committee of Brazilian Ministry of Health CONEP: 4909; Process

nu 25000.119007/2002-03; CEP: 32/09. In addition, the Johns

Hopkins IRB also reviewed this study as protocol JHM-IRB-3: 03-

08-27-01.

Patient data
A total of 33 patients (5 ND, 15 DF and 13 DHF) were studied

from the Recife metropolitan area, Brazil [23] and were classified

following the WHO criteria [4]. Blood samples from patients

enrolled in this study were collected in heparin vacutainer tubes

(BD Vacutainer) and within 2 hours after the collection, peripheral

blood mononuclear cell (PBMC) samples were separated by

gradient density using Ficoll-Paque (Amersham Biosciences) and

cryopreserved in 10% (v/v) Dimethyl sulfoxide (DMSO; Sigma-

Aldrich) in inactivated fetal bovine sera (FBS; Hyclone). All

samples were collected from patients between 3rd and the 5th day

of onset of fever.

Gene expression
RNA extraction was performed according to the manufacturer’s

manual for the Spin cell RNA mini kit (Invisorb). Total RNA was

reverse transcribed to cDNA using SuperScript III First-strand

Synthesis System for qPCR (Invitrogen) using random hexamer

primers, according to the manufacturer’s instructions. The

expression of 12 genes related to viral innate immune response

were quantified using qPCR based on 2‘-DDCt method [24].

Expression values for each gene were normalized by use of beta-

actin housekeeping gene, which were then quantified and related

to ND cycle threshold (Ct) values (i.e. DF/ND ratio).

For each of the 12 genes tested, the DF/ND and DHF/ND

ratio of qPCR experimental values were used to define the up-

regulated and down-regulated states of the genes (Figure 2). DF/

ND and DHF/ND ratio values of . = 1 were defined as up-

regulated, while DF/ND and DHF/ND values of ,1 were

defined as down-regulated.

Statistical analysis
Statistical analyses were performed on qPCR data using

unpaired two-tailed Student’s T test with Welch’s correction due

to the small sample size and because we assumed unequal

variances in the data. All tests were done using the Prism software

version 4.0a (www.graphpad.com).

SVM implementation
The SVM algorithm is a machine learning technique developed

based on the structural risk minimization principle of statistical

learning theory (see [25] for details on the algorithm and [22] for

details on its implementation, optimization, training and testing).

Figure 2. Heatmap for gene expression data of the 12 genes (columns) studied from the 28 patients (rows). The first 15 are DF patients,
while the rest are DHF patients. The DF/ND and DHF/ND gene expression values from qPCR were used to create the heatmap. The colour shades are
associated with the values in the cells: green for ratio of DF/ND and DHF/ND of ,1 (down-regulated) and red for DF/ND and DHF/ND ratio of . = 1
(up-regulated). The gene expression data for IFN-b of one of the patients (23) was not available and therefore the vector attributes of this gene for
the patient were represented as blank.
doi:10.1371/journal.pone.0011267.g002

SVM Model for Dengue Patients

PLoS ONE | www.plosone.org 3 June 2010 | Volume 5 | Issue 6 | e11267



Briefly, both positive and negative examples in a dataset were

represented by feature vectors xi (i = 1, 2,…, N) with corresponding

binary labels yi [ z1, {1gf . The SVM algorithm classifies the

positive and negative examples by training a classifier which maps

the input samples, using a kernel function in most cases, onto a

high-dimensional space, and then seeks for a separating hyper-

plane that best differentiates the two classes with a maximal

margin and a minimal error. The decision function for

classification of unseen examples is given as:

f (x)~sgn(
Xm

i~1

aiyi
:k(x,xi)zb)

where K xi : xj

� �
is the kernel function, and the parameters are

determined by maximizing the following:

XN

i~1

ai{
1

2

XN

i~1

XN

j~1

ai aj yiyjK xi : xj

� �

under the conditions,

XN

i~1

aiyi~0 and 0ƒaiƒC

The variable C serves as the cost parameter that controls the trade-

off between margin and classification error. As the efficacy of the

SVM-based classification is dependent on the type of kernel used,

we explored the use of various commonly used kernels (linear,

sigmoid, polynomial and the radial basis function) on our datasets.

We chose the radial basis function (RBF) kernel as it was found to

be most effective (data not shown):

K(xi,xj)~ exp
{ xi{xj

�� ��2

2c2

 !

Two parameters are required to optimize the RBF kernel of the

SVM classifier; c, which determines the capacity of the RBF

kernel and C, the regularization parameter.

Vector encoding schemes
To encapsulate gene expression data in a format suitable for SVM

training and testing, vectors based on the orthonormal encoding

scheme were created. Each gene was designated as either ‘‘10’’ (for

observation of up-regulation) or ‘‘01’’ (for observation of down-

regulation). Therefore, the collective gene expressions observed in

each patient was represented by a 24-dimension vector (12 genes62

gene states: up- or down-regulated). Each of the 24-dimension vectors

was labeled as either ‘‘1’’ for DF patients or ‘‘21’’ for DHF patients,

corresponding to positive and negative examples for SVM training,

respectively. The first 15 rows in the input matrix corresponded to the

gene expression data of the 15 DF patients analyzed herein, while the

last 13 rows were of the DHF patients. The vector labels ‘‘1’’ and

‘‘21’’ are in the first column of the matrix and the subsequent 12

columns of each row correspond to the gene expression states, in

orthonormal encoding scheme, for the 12 genes studied. For

example, the vector encoding ‘‘1 1:1 4:1…’’ represents data of a

DF patient (1, first column) and the first two genes, TLR3 and TLR7,

which are up-regulated and down-regulated, respectively.

It is noted that the gene expression data for IFN-b of one of the

patients (23) was not available and therefore the vector attributes

of this gene for the patient were represented as blank, and this

notation was acceptable as our simulation studies of setting the

gene as up- or down-regulated did not change the accuracy of the

model.

SVM model development
The SVM model was implemented using the freely download-

able LIBSVM package by Chang and Lin [26]. Here, the SVM

model was used to classify the DF and DHF patients using gene

expression data from the patients. We conducted leave-one-out

cross-validation (LOOCV) on the patient gene expression dataset

using various combinations of c and C. In LOOCV, the patient

vectors dataset was split into 28 training examples where one of

the training examples was used as the test example while the others

were used for training the SVM classifier. The trained classifier

was tested on the test example. The process was repeated 28 times

using different test and training examples each time, hence

ensuring that all examples were included for both training and

testing. SVM parameters c and C were stepped through

combinations of 0.01, 0.1, 1, 10, and 100 for C, and 0.1, 1, 10,

100, and 1000 for c in a grid-based manner. To provide an

indication of the overall performance of the model, the accuracy

(AC), as given in the following equation, was calculated on the

output of the LOOCV:

AC %ð Þ~ TPzTN

TPzFNzTNzFP
|100

The values of C and c that returned the optimal accuracy were

noted. The corresponding accuracy value obtained was assigned as

baseline.

The cross-validation procedure was repeated fifteen times under

different conditions to analyse the individual and collective

contributions of each gene expression data to DF/DHF classifi-

cation. Specifically, in the first twelve trials, a different gene was

removed from the vector dataset, while multiple genes were

removed from the vector dataset in the last three trials.

Corresponding changes to the baseline accuracy were measured

for all cases (Table 1).

Results

A total of 12 genes (TLR3, TLR7, TLR9, RIGI, IRF3, IRF7,

MYD88, CLEC5A, IFN-a, IFN-c, IFN-b, and MDA5), were

quantified in 28 dengue patients (13 DHF and 15 DF) using

qPCR. The expression data was obtained from PBMCs of patients

with DF and DHF during acute phase (between 3rd and 5th day of

fever) before defervescence and any signs of vascular leakage. The

gene expression data was used to explore associations of individual

expression levels with DF and DHF using the SVM algorithm. We

had selected the RBF kernel because it was shown to perform well

on our datasets and it is also widely used for SVM classification in

other related domains. The parameters (C and c) of RBF were

optimized by performing leave-one-out cross validation. The C

and c values that returned the highest accuracy of ,85.18% were

C of 1, 10 (selected for further work) or 100 and c of 1.0 (Figure 3).

Henceforth, this accuracy of ,85.18% will be referred to as the

baseline accuracy for the SVM model of the 12 genes.

Influence of each gene to the accuracy of the SVM model
To define the contribution of each of the 12 genes on the

determination of DF and DHF, selective removal of vector

attributes corresponding to each specific gene expression data

were carried out and the downstream effect on the baseline

SVM Model for Dengue Patients
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accuracy of the SVM model were measured. Vector attributes of

genes removed from the input vectors that result in a significant

reduction in the model accuracy are likely to be more relevant to

determine the differences between the DF and DHF gene

expression pattern. We postulated that genes with greater impact

on the model accuracy would have a relatively greater importance

defining the different innate immune response in DF and DHF

patients.

The genes MYD88, TLR7, TLR3, MDA5, IRF3, IFN-a and

CLEC5A were observed to be relevant in defining the distinction

between DF from DHF expression patterns, and among these

MYD88 and TLR7 were the two most important (Figure 4 and

Table 1). Removal of MYD88 or TLR7 decreased the baseline

accuracy to ,66.66% and ,81.48%, respectively. The individual

removal of the genes TLR3, MDA5, IRF3, IFN-a, and CLEC5A

from the input matrix dataset did not change the accuracy value

obtained with all the 12 genes (,85.18%). However, when these

five genes were trained collectively with MYD88 and TLR7, the

accuracy increased to ,96.26% (Figure 4 and Table 1), indicating

a subtle individual, but significant combined role of these five

genes. According to our SVM results, the remaining five genes

(TLR9, RIGI, IRF7, IFN-b and IFN-c) showed negative effect to

the classification of the patient types – individual removal of the

five genes increased the accuracy (,88.88 to ,92.59%; Figure 4

and Table 1), suggesting that in the context of the genes selected

and the disease outcome there is a lack of association between the

mRNA levels of these five genes with the levels of the others.

Taken together, the observations that the expression levels of

signal transduction molecules had important effect in the model

and the negative effects of IFN-b and IFN-c suggest that impaired

IFN signalling play important role in DHF.

Discussion

In this study, we describe application of the SVM algorithm to

classify DF and DHF patients based on the expression data of

innate immune response pathway genes, to better understand their

roles in the disease progression. SVM modelling of the expression

patterns of the 12 genes in the dengue patients with different

disease outcomes implicates the association of some of the genes

with the severity of dengue symptoms. Our results suggest that

MYD88 and TLR7 genes are relatively the most important for

defining specific DF and DHF expression patterns. This finding is

supported by experimental data that showed the utilization of the

TLR7 receptor by DENV [5] and the direct influence of the virus

on the expression of MYD88 [14]. In addition, it is clear from the

gene expression data that the expression levels of TLR7 and

MYD88 are significantly higher in DHF patients than in DF

Table 1. Performance of SVM model for various combinations of genes tested. RBF kernel function (c value = 1.0 and C value = 10)
was utilized for model building.

Matrix
conditions Genes tested Gene(s) removed Accuracy (%)

1 MYD88, MDA5, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI TLR3 85.19

2 MYD88, MDA5, TLR3, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI TLR7 81.48

3 MYD88, MDA5, TLR3, TLR7, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI TLR9 92.59

4 MYD88, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI MDA5 85.19

5 MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI MYD88 66.66

6 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, and IFN-c RIGI 92.59

7 MYD88, MDA5, TLR3, TLR7, TLR9, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI IRF3 85.18

8 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI IRF7 88.88

9 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-b, IFN-c, and RIGI IFN-a 85.18

10 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-c, and RIGI IFN-b 92.59

11 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, and RIGI IFN-c 88.88

12 MYD88, MDA5, TLR3, TLR7, TLR9, IRF3, IRF7, IFN-a, IFN-b, IFN-c, and RIGI CLEC5A 85.18

13 MYD88, MDA5, TLR3, TLR7, IRF3, CLEC5A, and IFN-a TLR9, RIGI, IRF7, IFN-b, and IFN-c 96.26

14 MDA5, TLR3, TLR9, IRF3, IRF7, CLEC5A, IFN-a, IFN-b, IFN-c, and RIGI TLR7 and MYD88 62.96

15 MYD88 and TLR7 TLR3, TLR9, MDA5, RIGI, IRF3, IRF7,
IFN-a, IFN-b, IFN-c, and CLEC5A

88.88

doi:10.1371/journal.pone.0011267.t001

Figure 3. SVM optimization. Optimization of the parameters C and c
of the SVM kernel RBF: only C values of 0.01, 0.10, 1.0, 10.0 and 100.0,
and c value of 1.0 are shown.
doi:10.1371/journal.pone.0011267.g003

SVM Model for Dengue Patients

PLoS ONE | www.plosone.org 5 June 2010 | Volume 5 | Issue 6 | e11267



(Table 2). Based on these analyses, we posit that these two genes

and possibly others in the TLR7 pathway are likely to be good

candidates for further studies.

Apart from MYD88 and TLR7, five other genes (TLR3,

MDA5, IRF3, IFN-a, and CLEC5A) were observed to exhibit

subtle individual, but significant collective role (Table 1). The

significant involvement of the genes TLR3, IRF3 and MDA5 on

the diagnostic specific expression pattern suggests that DENV

likely interacts with more than one IFN activation pathway [7,14].

CLEC5A, a cell surface receptor, has been reported to be

differentially expressed between DF and DHF patients, suggesting

involvement in the development of DHF [20]. However, in our

study, the differences in mRNA expression levels of CLEC5A

between DF and DHF patients were relatively less relevant than

TLR7 and MYD88 (Table 2). This difference could be because of

the different experimental approaches utilized, whereby our data

was from clinical patients and theirs was an in vitro study. IFN-a,

the other member of the five genes, is a well-established antivirus

response factor and we observed over-expression for both DF and

DHF patients. The five genes (TLR9, RIGI, IRF7, IFN-b and

IFN-c) that showed negative effect on the accuracy confounded

the classification of DF and DHF patients. However, further

investigation is necessary before we can eliminate their specific role

in this regard. It is possible that the IFN-a is being produced but its

signal is not being efficiently transduced.

Two important limitations of the present study include the small

sample size of the patient data and the sampling bias. This may

impact the interpretation of our results, which were based only on

28 patients from Brazil. Nevertheless, despite these limitations, we

have shown the utility of the SVM method in deciphering the

complex interplay of numerous genes involved in a biological

pathway through gene expression data of patient samples.

Moreover, the method is scalable as new patient sample data can

be easily appended to the preliminary SVM model and reassessed.

In addition, several novel machine learning algorithms have been

reported by various groups to accurately select gene markers in

expression studies [27–29]. As they are particularly effective for

handling large datasets and feature dimensionality, it would be

useful to explore these methods for DF and DHF classification as

larger and more complex expression datasets become available.

Notably, the SVM model built on a large number of expression

data can potentially be used to accurately classify the prognosis of

patients with the benign form (DF) from those with the life-

threatening (DHF) DENV disease. The lack of reliable classifica-

tion tools to differentiate DF and DHF patients has often resulted

in a large number of unnecessary and costly hospitalizations

[6,19]. Further, early diagnosis of DHF patients will represent

better prognosis.

In summary, this is the first report of application of the SVM

method to gene expression data from DF and DHF patients to

better understand the role of the genes in DENV infection

pathway. The results suggest important role of seven genes in

classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-a,

CLEC5A, and the two most important MYD88 and TLR7.
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Figure 4. Influence of each gene to the accuracy of the baseline SVM model. The first bar represents the baseline accuracy of all the 12
genes (TLR3, TLR7, TLR9, MDA5, MYD88, RIGI, IRF3, IRF7, IFN-a, IFN-b, IFN-c, and CLEC5A). The subsequent bars represent accuracy of datasets with
only 11 genes, whereby vector attributes of one gene were removed at a time (the name of the gene removed is indicated). The last bar, SVM model
refers to the seven genes (MYD88, TLR3, TLR7, MDA5, IRF3, IFN-a and CLEC5A) that returned optimum accuracy. The RBF kernel function of SVM with
optimum parameter settings (C = 10 and c= 1.0) were used for model building of each situation. * represents p,0.05 value compared with the 12
baseline gene set (the bar labelled ‘‘All 12 genes’’).
doi:10.1371/journal.pone.0011267.g004

Table 2. Average gene expression ratios (DF/ND and DHF/
ND) for the seven genes found to be important for the
classification of DF and DHF patients.

Dengue
clinical form Genes

TLR7 MYD88 TLR3 MDA5 IRF3 IFN-a CLEC5A

DF/ND 01 01 01 10 01 10 01

DHF/ND 10 10 01 01 01 10 01

The binary ‘‘01’’ means ratio of DF/ND and DHF/ND of ,1 (down-regulated) and
‘‘10’’ means DF/ND and DHF/ND ratio of . = 1 (up-regulated).
doi:10.1371/journal.pone.0011267.t002

SVM Model for Dengue Patients

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11267



Author Contributions

Conceived and designed the experiments: ALVG LJW AMK LHVGG

CECS. Performed the experiments: ALVG. Analyzed the data: ALVG

LJW AMK LHVGG ETMJ CECS TWT. Contributed reagents/

materials/analysis tools: LHVGG ETMJ. Wrote the paper: ALVG LJW

AMK LHVGG ETMJ CECS TWT.

References

1. Holmes EC, Burch SS (2000) The causes and consequences of genetic variation

in dengue virus. Trends Microbiol 8: 74–77.

2. Coffey LL, Mertens E, Brehin AC, Fernandez-Garcia MD, Amara A, et al.

(2009) Human genetic determinants of dengue virus susceptibility. Microbes

Infect 11: 143–156.

3. Halstead SB (2007) Dengue. Lancet 370: 1644–1652.

4. WHO (1997) Haemorrhagic Fever: Diagnosis, Treatment, Prevention and

Control, second ed.

5. Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T,

et al. (2008) Differences in global gene expression in peripheral blood

mononuclear cells indicate a significant role of the innate responses in

progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis

197: 1459–1467.

6. Tanner L, Schreiber M, Low JGH, Ong A, Tolfvenstam T, et al. (2008)

Decision tree algorithms predict the diagnosis and outcome of dengue Fever in

the early phase of illness. PLoS neglected tropical diseases 2: e196.

7. Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling.

Ann N Y Acad Sci 1143: 1–20.

8. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by

RIG-I-like receptors. Immunol Rev 227: 54–65.

9. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, et al. (2005) IRF-7 is the

master regulator of type-I interferon-dependent immune responses. Nature 434:

772–777.

10. Knipe D, P (2007) Fields Virology. pp 250–255.

11. Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, et al. (2005) Dengue

virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol

79: 5414–5420.

12. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated

signalling. Nat Rev Immunol 5: 375–386.

13. Diamond MS, Mehlhop E, Oliphant T, Samuel MA (2009) The host

immunologic response to West Nile encephalitis virus. Front Biosci 14:

3024–3034.

14. Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, et al. (2009)

Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic

cells after infection with dengue virus. Virology 383: 207–215.

15. McKenna K, Beignon AS, Bhardwaj N (2005) Plasmacytoid dendritic cells:

linking innate and adaptive immunity. J Virol 79: 17–27.
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(2007) Characterization of a dengue patient cohort in Recife, Brazil. Am J Trop

Med Hyg 77: 1128–1134.
24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:
402–408.

25. Burges C (1998) A tutorial on support vector machines for pattern recognition.

Data Min Knowl Discov 2: 121–167.
26. Chang C, Lin C (2009) LIBSVM: a library for support vector machines.

27. Chen PC, Huang SY, Chen WJ, Hsiao CK (2009) A new regularized least
squares support vector regression for gene selection. BMC Bioinformatics 10: 44.

28. Tang Y, Zhang YQ, Huang Z (2007) Development of two-stage SVM-RFE gene
selection strategy for microarray expression data analysis. IEEE/ACM Trans

Comput Biol Bioinform 4: 365–381.

29. Tang EK, Suganthan PN, Yao X (2006) Gene selection algorithms for
microarray data based on least squares support vector machine. BMC

Bioinformatics 7: 95.

SVM Model for Dengue Patients

PLoS ONE | www.plosone.org 7 June 2010 | Volume 5 | Issue 6 | e11267


