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Abstract
Background: The COVID-19 situation in Brazil is complex due to large differences in the shape and 
size of regional epidemics. Understanding these patterns is crucial to understand future outbreaks of 
SARS-CoV-2 or other respiratory pathogens in the country.
Methods: We tested 97,950 blood donation samples for IgG antibodies from March 2020 to March 
2021 in 8 of Brazil’s most populous cities. Residential postal codes were used to obtain representa-
tive samples. Weekly age- and sex-specific seroprevalence were estimated by correcting the crude 
seroprevalence by test sensitivity, specificity, and antibody waning.
Results: The inferred attack rate of SARS-CoV-2 in December 2020, before the Gamma variant of 
concern (VOC) was dominant, ranged from 19.3% (95% credible interval [CrI] 17.5–21.2%) in Curitiba 
to 75.0% (95% CrI 70.8–80.3%) in Manaus. Seroprevalence was consistently smaller in women and 
donors older than 55 years. The age-specific infection fatality rate (IFR) differed between cities and 
consistently increased with age. The infection hospitalisation rate increased significantly during the 
Gamma-dominated second wave in Manaus, suggesting increased morbidity of the Gamma VOC 
compared to previous variants circulating in Manaus. The higher disease penetrance associated 
with the health system’s collapse increased the overall IFR by a minimum factor of 2.91 (95% CrI 
2.43–3.53).
Conclusions: These results highlight the utility of blood donor serosurveillance to track epidemic 
maturity and demonstrate demographic and spatial heterogeneity in SARS-CoV-2 spread.
Funding: This work was supported by Itaú Unibanco ‘Todos pela Saude’ program; FAPESP 
(grants 18/14389-0, 2019/21585-0); Wellcome Trust and Royal Society Sir Henry Dale Fellow-
ship 204311/Z/16/Z; the Gates Foundation (INV- 034540 and INV-034652); REDS-IV-P (grant 
HHSN268201100007I); the UK Medical Research Council (MR/S0195/1, MR/V038109/1); CAPES; 
CNPq (304714/2018-6); Fundação Faculdade de Medicina; Programa Inova Fiocruz-CE/Funcap - 
Edital 01/2020 Number: FIO-0167-00065.01.00/20 SPU N°06531047/2020; JBS – Fazer o bem faz 
bem.

Editor's evaluation
This article describes a large and compelling COVID-19 sero-survey in Brazil that, when combined 
with death data, provides an estimate of the infection fatality ratio. This valuable study highlights 
both the strengths and challenges of blood donor sero-surveillance in a pandemic environment 
where multiple waves of infection occur and immune responses wane relatively quickly.

Introduction
Brazil has experienced one of the world’s most significant COVID-19 epidemics, with over 22 million 
cases and 621,000 deaths reported as of 14 January 2022. However, this national picture masks 
important sub-national heterogeneity, with extensive variation in SARS-CoV-2 spread between popu-
lation groups (Li et al., 2021) and locations (Castro et al., 2021; Hallal et al., 2020) as well as regional 
differences in the stringency of non-pharmaceutical interventions (de Souza Santos et al., 2021).

Understanding the drivers of these differences is crucial, both retrospectively as a means of evalu-
ating past attempts at controlling spread, and as a guide to the potential impact of future transmission. 
Indeed, a significant fraction of the COVID-19 burden in Brazil was driven by the emergence of the 
Gamma (P.1) variant of concern (VOC) in November 2020, which drove extensive resurgence of trans-
mission following its apparent emergence in the Amazonas State capital city of Manaus. Despite the 
evidence of high levels of population-level immunity that should have hindered further transmission 
(Buss et al., 2021), a phenomenon attributed to the Gamma VOCs likely increased transmissibility 
and ability to partially evade immune responses (Faria et al., 2021). Subsequent spread to the rest 
of Brazil led to similar resurgence, extensive transmission, and disease burden leading to substantial 
pressure on health systems (Brizzi et al., 2021; de Oliveira et al., 2021; Martins et al., 2021). As with 
the first epidemic wave, the degree and extent to which different locations were affected varied mark-
edly. Understanding the drivers of this variation is crucial to shed light on how and why SARS-CoV-2 
spreads across different populations, and how past epidemics shape subsequent transmission of the 
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virus. More generally, because previous natural infection may enhance vaccine response (Crotty, 
2021; Reynolds et al., 2021; Stamatatos et al., 2021), understanding the extent of previous expo-
sure in the country may have important implications for the development of epidemic waves driven by 
new variants in the context of the ongoing large-scale, nationwide vaccination campaign.

Here, we analyse the divergent epidemic SARS-CoV-2 dynamics in eight of the biggest Brazilian 
cities (Belo Horizonte, Curitiba, Fortaleza, Manaus, Recife, Rio de Janeiro, Salvador, and São Paulo). 
We estimate the seroprevalence over time for these cities disaggregated by age and sex using 
repeated cross-sectional convenience samples of routine blood donors collected from March 2020 to 
March 2021. We also provide estimates for the age-specific infection fatality rates (IFR, defined as the 
number of deaths per infection) and infection hospitalisation rates (IHR, the number of hospitalisations 
per infection) for these cities. In Manaus, the Gamma VOC became dominant before March 2021 
(see Appendix 1—figure 1), enabling us to provide estimates of Gamma’s IFR and IHR. Our results 
highlight important differences in the drivers of SARS-CoV-2 epidemic spread across Brazil’s major 
population centres and underscore the utility of blood donors for regular serosurveillance as a tool to 
track progression of epidemics of emerging infectious diseases.

Methods
Selection of blood donors for estimation of seroprevalence
Each of the eight cities had a monthly quota of 1,000 kits for testing selected donation samples in this 
study. In order to select more representative samples, we selected blood samples so that the spatial 
distribution of residential location of selected donors matches the spatial distribution of population 
density in each municipality. More specifically, each city was divided into sub-municipal administra-
tive zones, and the original quota (1,000 kits) was divided into sub-quotas following the popula-
tional distribution of the city administrative zones. Starting from the second week of each month, 
we selected consecutive blood donors based on the geolocation of their residential postcode to fill 
the sub-quotas. In this way, donations with missing or wrong postal code were considered ineligible 
for selection. We chose the sample size (1,000) so an increase in crude seroprevalence of 5% can be 
detected with power ‍1 − β = 80%‍ and confidence level ‍1 − α = 95%‍ assuming a baseline seropreva-
lence of 15%.

In Manaus, however, donor postcodes were not reliably collected, so that the number of missing 
and wrong values makes this strategy unfeasible. So, samples were selected consecutively with no 
postal code restrictions. We also developed a study management system to operationalize this 
sampling strategy, whereby blood donor postcodes and epidemiological data were automatically 
extracted and selected. After that, the selected donation sample IDs were released for the research 
assistant to be separated for testing.

From 453,211 available blood samples collected in all 8 cities except Manaus, 72,783 had a missing 
or invalid residential postal code, and 198,199 were from individuals living in regions not included in 
this study, thus 182,229 samples were eligible for selection. An average of 1010 samples were selected 
monthly for each city from March 2020 to March 2021, except for Recife where tests occurred until 
February 2021. A total of 104,013 samples were selected, but 6063 samples could not be retrieved 
or did not have enough volume to be tested, leading to 97,950 tested samples (951 samples per 
month in average for each city). Appendix 1—figure 2 contains a flowchart describing the selection 
procedure of blood donors.

In Brazil, blood donation samples are usually saved for 6 months, so when serological test kits were 
made available in July 2020, we could retrospectively select and test frozen samples from February to 
July. After this, period samples were selected and tested in real time. Antibody tests results were not 
made available to the blood donors themselves.

Blood donors are a convenience sample, and thus may not be representative of the wider popu-
lation in terms of their risk of SARS-CoV-2 exposure. Appendix 1—figures 3–6 show a comparison 
between recorded blood donor demographics and the last available Brazilian census conducted in 
2010. Donors differ systematically in age, sex, and self-reported skin colour compared to the popu-
lation, but the income per capita is similar. To account for the differences in the age-sex structure 
of blood donors, we divide donors in age-sex groups and estimate the prevalence of each age-sex 
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group separately. Then, we calculate the seroprevalence of the population as a weighted sum of the 
seroprevalences of each age-sex group.

SARS-CoV-2 serology assays
We applied chemiluminescent microparticle immunoassays (CIMA, AdviseDx, Abbott) that detect IgG 
antibodies against the SARS-CoV-2 nucleocapsid (N) because it was the only automated commercially 
available kit in Brazil when the study started (July 2020). We used this kit throughout the study until 
March in all eight cities except Recife, where we used the kit until February 2021. This assay suffers 
from signal waning - resulting in positive-negative transition, or ‘seroreversion’ - during convales-
cence. This amounts to a fall in assay sensitivity through time. The Abbott anti-N IgG CMIA shows 
particularly rapid signal decay when compared with other assays (Di Germanio et al., 2021). These 
antibody dynamics mean that as an epidemic progresses, the crude proportion of individuals with a 
positive test result will increasingly underestimate the true attack rate (Buss et al., 2021; Takahashi 
et al., 2021; Takahashi et al., 2020).

A test is considered positive if the obtained signal to cutoff (S/C) is greater or equal to a predefined 
threshold of 0.49. This is the lower threshold recommended by the manufacturer, which was used 
instead of the upper threshold of 1.4 to partially attenuate the effect of seroreversion. Appendix 1—
figures 7–9 contain the number of tests disaggregated by month, age, sex and the monthly S/C 
distribution. We also decided to validate the results observed in Manaus, as this represents a unique 
sentinel population, by retesting all samples in November 2020 using the CIMA (AdviseDx, Abbott) 
that detects IgG antibodies against the SARS-CoV-2 spike (S) protein (see Appendix 1 for the valida-
tion analyses).

To determine the test sensitivity, we considered a cohort of 208 non-hospitalised symptomatic 
SARS-CoV-2 PCR-positive convalescent plasma donors tested within 60 days after symptom onset 
(Supplementary file 1). These donors had symptomatic COVID-19 with PCR-confirmed SARS-CoV-2 
infection and were recruited to provide convalescent plasma. We found a sensitivity of 90.6% for the 
anti-N assay using a threshold of 0.49 S/C and 94.0% for the anti-S assay. Specificity for the anti-N 
assay was 97.5%, with 801 negative results in 821 pre-pandemic blood donation samples (Buss et al., 
2021). Sensitivity and specificity for other assay thresholds are shown in Supplementary file 1. The 
anti-S assay has a specificity of >99% (Di Germanio et al., 2021; Stone et al., 2021), and we assume 
100% in this study. Although the sensitivity of both assays declines through time due to waning of the 
detected antibodies below the positivity threshold, the anti-S IgG antibodies wane more slowly (Di 
Germanio et al., 2021; Stone et al., 2021). Sensitivity obtained from convalescent plasma donors 
is likely overestimated due to spectrum bias. This is because convalescent donors had moderate-to-
severe SARS-CoV-2 infection, and thus differ from the whole blood donor population (used to esti-
mate seroprevalence), who are more likely to have had asymptomatic or mild disease.

We subsequently estimated the distribution of time to seroreversion, and thus the sensitivity 
decreasing through time, for the anti-N assay. We first calculated this in the convalescent donors, in 
whom the date of symptom onset is known, and whose blood samples were collected longitudinally 
during convalescence. As such, the time-to-seroreversion distribution was computed after accounting 
for right censoring. However, due to spectrum bias, the extrapolation of antibody waning from conva-
lescent donors to whole blood donors is unlikely to be valid. As such, we obtained a second cohort of 
repeat blood donors in Manaus that provided multiple donations during the 2020–2021 period. These 
donors are expected to have the same antibody dynamics as the seroprevalence cohort, as they are 
drawn from the same population and have predominantly mild or asymptomatic infections. However, 
in this group the time of infection is unknown, as infection is inferred by serostatus alone. The proce-
dure to manage this problem is described below.

Methods used to estimate the time-dependent sensitivity
We developed an analytic method to correct raw seroprevalence data for seroreversion, improving on 
the method used in Buss et al., 2021. We first estimate the time-to-seroreversion distribution using 
serial donations from repeat blood donors, which determines how sensitivity for a given individual 
decreases with the time after seroconversion. We then corrected the raw seroprevalence estimates for 
the changing sensitivity within a Bayesian framework. We first calculated attack rates for each age and 
sex group in each city and summed these using the proportion of each group in the Brazilian reference 
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population to obtain standardised estimates. In this section, we describe a procedure to estimate the 
time-dependent sensitivity used to obtain a seroprevalence estimate corrected for antibody waning.

Let ‍se0‍ be the sensitivity measured shortly after symptomatic infection (i.e. the probability of an 
infected individual seroconverting to an S/C above the threshold), and ‍p

+ [
n
]
‍ be the probability of a 

donor remaining positive ‍n‍ weeks after seroconversion (given that the donor seroconverted). Then, 
the sensitivity of the test ‍n‍ weeks after seroconversion is ‍se0 × p+ [

n
]
‍ for a given donor. In this section, 

we describe the procedure used to determine ‍p
+ [

n
]
‍ from repeat blood donors data, for which time of 

infection and time of seroreversion are unknown. The seroreversion correction model described in the 
next section uses the estimate of ‍p

+ [
n
]
‍ to calculate the seroprevalence accounting for seroreversion.

The criteria to select repeat blood donors were: (1) at least one positive test, indicating SARS-
CoV-2 infection, (2) at least one subsequent blood sample, in order to interpolate the date of seror-
eversion, and (3) falling S/C between these two samples, because one of the samples used to define 
the interpolation curve may have occurred before the peak S/C; hence, the half-life and the date of 
seroreversion cannot be estimated. Therefore, all selected donors had at least one positive sample 
and at least one subsequent sample (positive or negative) with smaller S/C.

To calculate ‍p
+ [

n
]
‍, we first estimate the date of seroreversion for each repeat blood donor using an 

exponential interpolation (a linear interpolation in the log scale). We choose an exponential interpola-
tion because an exponential decay is frequently used to model antibody dynamics (Takahashi et al., 
2021). When seroreversion is interval-censored, i.e., a donor that has a positive test subsequently 
becomes negative, we interpolate an exponential curve that passes through the last positive sample 
and the first negative sample. Otherwise, when seroreversion is not interval-censored, then it is right-
censored (a donor remains positive on their last sample), in which case we extrapolate an exponential 
line through the last two positive samples and project this forward. As such, the estimated instant of 
seroreversion for blood donor ‍i‍ (denoted as ‍t

−
i ‍) is the point where the interpolation curve crosses the 

threshold for a positive test. The interpolation procedure is illustrated in Appendix 1—figure 10. The 
proposed method may overestimate ‍t

−
i ‍ if an S/C used to define the interpolation curve was sampled 

shortly after seroconversion before the peak S/C was reached, since in this case the S/C curve does not 
behave as an exponential, leading to an overestimated half-life. To partially overcome this problem, 
we discard donors that do not serorevert within 106 weeks (2 years) after their first positive test.

After estimating ‍t
−
i ‍, for each blood donor ‍i,‍ we compute the probability distribution of the date 

of seroconversion for that donor, ‍pi‍. For this, we identify the earliest and latest possible date of 
seroconversion ‍tmin‍ (the date of the last negative result before seroconversion or 1 March 2020 if the 
donor has no positive results before seroconversion) and ‍tmax‍ (the date of the first positive result). The 
relative probability of seroconversion within this window depends on the incidence of seroconversions 
due to SARS-CoV-2 infection for the cohort of repeat donors, denoted ‍urepeat

[
n
]
‍. To estimate this 

quantity, we calculate the histogram of the date of first positive donation for repeat blood donors and 
then apply a 30-day moving average. As a sensitivity analysis, we also calculate ‍urepeat

[
n
]
‍ by computing 

the histogram of the date of onset of ion (SARI) deaths observed in Manaus, and applying to it a 7-day 
window moving average, yielding similar seroprevalence estimates (Appendix 1—figures 11 and 12).

The distribution of the date of seroconversion is obtained by truncating the incidence curve of 
repeat blood donors ‍urepeat

[
n
]
‍ in the interval ‍

[
tmin, tmax

]
‍ and renormalizing the distribution. We then 

generate 1,000 samples of the instant of seroconversion ‍t
+
i ∼ pi

[
n
]
‍ and compute the 1,000 sample 

delays between seroconversion and seroreversion ‍∆ti = t−i − t+i ‍.
The probability of the delay between seroconversion and seroreversion being ‍n ≥ 1‍ days 

(denoted as ‍p
−
day

[
n
]
‍) is calculated with the empirical histogram of the ‍1000 × Ndonors‍ samples of 

‍∆ti‍ , ‍i = 1, · · · , Ndonors‍. The distribution ‍p
−
day

[
n
]
‍ is then binned into weeks by taking the average of 

‍

(
p−day

[
7n

]
, p−day

[
7n + 1

]
, · · · , p−day

[
7n + 6

])
‍
 for ‍n ≥ 1‍. The resulting distribution, denoted as ‍p

−
week

[
n
]
‍, 

represents the probability of seroreversion exactly ‍n‍ weeks after seroconversion.
Finally, the probability of a donor remaining positive ‍n‍ weeks after seroconversion ‍p

+ [
n
]
‍ (i.e. the 

probability of a donor seroreverting after week ‍n‍) is obtained through,

	﻿‍ p+ [
n
]

= 1 −
∑n

k=1 p−week
[
k
]

.‍�

The presented method is summarised in Appendix 1.
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Estimating the seroreversion probability from convalescent plasma 
donors
Unlike repeat blood donors, convalescent plasma donors have a known date of symptom onset. To 
compute ‍p

+ [
n
]
‍ for plasma donors, we estimate the instant of seroreversion for each plasma donor as 

described above and define the date of seroconversion as 8 days after the reported date of symptom 
onset. This interval of 8 days is the average lag between seroconversion and seroreversion reported in 
Orner et al., 2021 for a threshold of 1.4 S/C, but it can be shorter for a threshold of 0.49 employed 
in this work. The probability mass function of the time to seroreversion ‍p

−
day

[
n
]
‍ is then the empirical 

histogram of ‍∆ti = t−i − t+i ‍, and ‍p
+ [

n
]
‍ is obtained from ‍p

−
day

[
n
]
‍ using the method presented above.

Our proposed seroreversion correction model
Here, we present a Bayesian model that draws posterior samples from the incidence over time 
corrected by sensitivity, specificity, and seroreversion using as input the estimated curve for ‍p

+ [
n
]
‍, 

the number of weekly positive tests, and total number of tests. Even though the main output of the 
model is the incidence at week ‍n‍ for age-sex group ‍a‍ (denoted as ‍u

[
n, a

]
‍), the seroprevalence at week 

‍n‍ for group ‍a‍ can be calculated from ‍u
[
n, a

]
‍ as ‍ρ

[
n, a

]
=
∑n

k=1 u
[
k, a

]
‍. For simplicity, the proposed 

model ignores the delay between infection and seroconversion, as it should have small impact on the 
estimate of ‍u

[
n, a

]
‍. To define the age-sex groups, age was discretized in the intervals 16–24, 25–34, 

35–44, 45–54, and 55–69.
Assuming that the sensitivity ‍se0‍ and specificity ‍sp‍ of the assay are independent of the age-sex 

group, the probability of a random person from age-sex group ‍a‍ being tested positive at week ‍n‍, 
denoted as ‍θ

[
n, a

]
‍, is

	﻿‍ θ
[
n, a

]
= se0

∑n
k=1 p+ [

n − k
]

u
[
k, a

]
+
(
1 − sp

) (
1 −

∑n
k=1 u

[
k, a

])
.‍�

The derivation of the expression above is presented in Appendix 1. The left term 

‍se0
∑n

k=1 p+ [
n − k

]
u
[
k, a

]
‍ represents true positives (previously infected donors that are still seroposi-

tive), while the right term ‍
(
1 − sp

) (
1 −

∑n
k=1 u

[
k, a

])
‍ represents false positives (uninfected donors that 

test positive).
Let us denote as ‍T

+ [
n, a

]
‍ and ‍T

[
n, a

]
‍, respectively, the number of positive tests and the total number 

of tests for week ‍n‍ and age-sex group ‍a‍. Given ‍θ
[
n, a

]
‍, the probability distribution of ‍T

+ [
n, a

]
‍ is

	﻿‍ T+ [
n, a

]
| θ

[
n, a

]
∼ Binomial

(
T
[
n, a

]
, θ

[
n, a

])
.‍�

We use a Bayesian framework to draw posterior samples from ‍u‍ assuming a non-informative prior, 
but limiting the final seroprevalence in the interval ‍

[
0, b

]
‍, where ‍b‍ is a fixed input of the algorithm that 

can be 1 or 2 depending on whether reinfections are allowed, and we use ‍b = 2‍ in this work. Instead 
of defining a prior distribution for ‍u

[
n, a

]
‍ directly, we decompose it into ‍u

[
n, a

]
= ρmax

[
a
]

unorm
[
n, a

]
,‍ 

where ‍ρmax
[
a
]
∼ Uniform

(
0, b

)
‍ sets the upper bound of the final prevalence to ‍b‍ and 

‍unorm
[

: , a
]
∼ Dirichlet

(
1, 1, . . . , 1

)
‍ is the normalised incidence which sums to 1. This decomposition 

is equivalent to assuming a uniformly distributed prior for ‍u
[

: , a
]
‍ in the simplex ‍0 ≤

∑N
n=1 u

[
n, a

]
≤ b‍ 

with ‍u
[
n, a

]
≥ 0 ∀n‍.

After drawing posterior samples from ‍u
[
n, a

]
‍, we calculate the seroprevalence at week ‍n‍ for age-

sex group ‍a‍ as ‍ρ
[
n, a

]
=

∑n
k=1 u

[
k, a

]
‍ and then compute the age-sex weighted seroprevalence ‍ρ

[
n
]
‍, 

given by

	﻿‍
ρ
[
n
]

=
∑M

a=1 w
[
a
]
ρ
[
n, a

]
, w

[
a
]

= pop
[
a
]

∑M
k=1 pop

[
k
] ,

‍�

where ‍pop
[
a
]
‍ is the population for the age-sex group ‍a‍ in the corresponding city 

and ‍M ‍ is the number of age-sex groups. Of note, in this work we also refer to 

‍ρ[n]‍ as the estimated seroprevalence, cumulative seroprevalence or attack rate. 

The presented Bayesian model is summarised in Appendix 1. The posterior samples are drawn 
using a Monte-Carlo Markov Chain algorithm with 100,000 iterations.

The incidence returned by the model was validated through posterior predic-
tive checks by randomly selecting 1,000  samples from ‍u

[
n, a

]
‍ and drawing samples from 

https://doi.org/10.7554/eLife.78233
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‍T
+ [

n, a
]

| θ
[
n, a

]
∼ Binomial

(
T
[
n, a

]
, θ

[
n, a

])
‍ . The resulting crude seroprevalence is then compared 

with the measured crude seroprevalence (Appendix 1—figure 13).
It is worth noting that the age-specific crude seroprevalence can be larger than the seroprevalence 

corrected for seroreversion in some weeks, as the model may remove outlier samples. This is because 
seroprevalence curves that cannot be reconstructed by the model (e.g. due to bias or sampling noise) 
generate a small likelihood, hence, a smaller probability of being included in the set of posterior 
samples generated by the model. Therefore, the model excludes weeks where donors are significantly 
biased towards more seropositive or more seronegative individuals.

The proposed Bayesian seroreversion correction model can be seen as an improvement on that 
presented in Buss et  al., 2021. The model in Buss et al. assumed a parametric form for time to 
seroreversion and derived the parameters by assuming an increasing cumulative seroprevalence in 
the repeated cross-sectional samples of blood donors in Manaus. Here, we derived the distribution 
directly from repeat blood donors without assuming any parametric form. Also, Buss et al. applied the 
seroreversion correction method to the measured seroprevalence corrected for sensitivity, specificity, 
and reweighted by age and sex, while here we estimate the seroprevalence in each age group sepa-
rately, allowing the identification of non-homogeneous incidence in different age groups.

Despite these differences, the results presented here are compatible with the seroprevalence esti-
mates of 28.8 and 76.0%, respectively, for São Paulo and Manaus in Buss et al. The proposed seror-
eversion method also differs from other methods in the literature (Shioda et al., 2021; Takahashi 
et al., 2021) in that we use the incidence curve to estimate the time-dependent sensitivity instead 
of the deaths or confirmed cases curve, producing a seroprevalence that does not depend on case 
reporting and that can be reliably inferred in epidemics where the IFR changes with time, as was the 
case in Manaus.

Estimating the IFR for December 2020
We estimate the IFR using total deaths due to Severe Acute Respiratory Infection (SARI), which includes 
PCR- and clinically confirmed SARS-CoV-2 infection as well as SARI deaths without a final diagnosis, 
and we exclude SARI deaths confirmedly caused by other aetiologies. This approach reduces under-
reporting, particularly in 2020 when testing was not widely available, as discussed in de Souza et al., 
2020. We further justify this approach in Appendix 1.

We retrieved the daily number of SARI deaths from SIVEP-Gripe (Sistema de Informação da 
Vigilância Epidemiológica da Gripe), a public database containing individual-level information of all 
SARI cases reported in Brazil. To estimate the IFR in 2020, we use the seroprevalence estimated by our 
model for 16 December 2020 and select only SARI deaths with symptom onset between 1 March and 
15 December 2020. Selecting deaths based on the date of first symptoms instead of date of death 
was possible because SIVEP-Gripe contains the date of symptom onset for each individual. For the 
first wave of COVID-19 that occurred in the eight cities, we estimate the number of cases as the age-
specific population size (https://demografiaufrn.net/laboratorios/lepp/) multiplied by the estimated 
seroprevalence in the corresponding age group. We propagate the uncertainty in the prevalence 
estimate through the calculation of IFR.

Let ‍ρ
[
a
]
‍ and ‍pop

[
a
]
‍ be the cumulative seroprevalence and the population estimated for age group 

‍a‍. We assume a uniform distribution in the interval [0, 1] as a non-informative prior for ‍IFR
[
a
]
‍, and the 

number of deaths ‍D
[
a
]
‍ observed for each age group ‍a‍ is Binomial-distributed with size ‍

⌊
ρ
[
a
]
× pop

[
a
]⌋

‍ 
(the number of infections) and probability ‍IFR

[
a
]
‍. For each sample of ‍ρ

[
a
]
‍, we draw a sample of the 

posterior distribution of ‍IFR
[
a
]
‍ , given by

	﻿‍ Beta
(
1 + D

[
a
]

, 1 +
⌊
ρ
[
a
]
× pop

[
a
]⌋

− D
[
a
])

‍�

and compute the median, interquartile ranges (IQRs), and 95% confidence intervals of the IFR by 
retrieving the quantiles of the posterior distribution.

To infer the IFR, we considered the age groups 16–24, 25–34, 35–44, 45–54, and 55–64. We 
applied the same method to estimate the overall IFR but using a single age group containing all indi-
viduals aged between 16 and 64. Therefore, IFR of individuals older than 64 or younger than 16 is not 
included in the overall IFR estimates. The method used to infer the IFR was also applied to compute 

https://doi.org/10.7554/eLife.78233
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the infection hospitalisation rate (IHR), but we used the number of hospitalisations with SARI instead 
of the number of deaths.

We note that the proposed seroreversion correction model can be used to estimate the attack rate 
and IFR of epidemics driven by other lineages in other regions. However, the uncertainty of the sero-
prevalence estimate increases over time, as a larger amount of seroreversion needs to be corrected. 
Therefore, estimated attack rates and IFRs suffer from larger uncertainty when longer time periods 
are considered.

To validate the obtained IFRs, we also estimate the IFRs using the measured prevalence corrected 
only by the sensitivity and specificity of the assay, without explicitly accounting for seroreversion. In 
this validation analysis, we use a small threshold of 0.1 S/C to avoid underestimating the prevalence 
due to seroreversion (see Appendix 1).

Estimating the IFR for the Gamma VOC
We estimate the IFR and the attack rate separately for the second, Gamma-dominant, SARS-CoV-2 
wave that occurred in Manaus. The Gamma variant was first detected in Manaus in November 2020, 
and its prevalence among PCR-positive patients grew rapidly to 87.0% on 4 January 2021 (Faria et al., 
2021). For this reason, it is reasonable to assume that all infections in Manaus that occurred after 15 
December, 2020, are due to the Gamma VOC. The Gamma-dominated wave was characterised by 
a non-negligible proportion of reinfections (Coutinho et al., 2021; Faria et al., 2021; Prete et al., 
2022). It is estimated that 13.6–39.3% of the infections in the second wave of COVID-19 epidemic 
in Manaus were reinfections (Prete et al., 2022), which are explained by the higher in-vitro reinfec-
tion potential of Gamma (Lucas et al., 2021) and partial immunity waning 8 months after the first 
surge. Thus, to calculate the attack rate and IFR of the Gamma-dominated wave, reinfections must 
be considered.

However, estimating the incidence of reinfections among positive donors is not straightforward - 
as a positive result may be either primary infection or reinfection, and these cannot be distinguished 
using a single test result. For this reason, it was not possible to obtain a point estimate for the number 
of infections that happened in the second wave in Manaus. To overcome this problem, we calcu-
late upper bounds for the attack rate of the Gamma-dominated wave in Manaus (i.e. the incidence 
between December 2020 and March 2021) and conversely lower bounds for the IFR of the Gamma 
VOC.

We first estimate the attack rate of the second wave using a Bayesian model that does not take 
reinfections into account. This model also neglects seroreversion for individuals infected during the 
second wave due to the small interval of 3 months considered in this analysis (see Appendix 1 for a 
complete description of the model). Denoting as ‍̂AR‍ the attack rate estimated by this model, the true 
attack rate ‍AR‍ is given by ‍AR = ÂR + R + S‍, where ‍R‍ is the proportion of donors that were seropos-
itive in December 2020 and subsequently had a reinfection, and ‍S‍ is the proportion of donors that 
were seropositive in December 2020 and became seronegative in the following months. Since ‍R + S‍ 
cannot be greater than the seroprevalence in December 2020 (denoted as ‍ρDecember‍), the upper bound 
for the attack rate is ‍ARmax = ÂR + ρDecember‍. Therefore, the upper bound is obtained assuming that all 
individuals that were seropositive in December were later reinfected or were seronegative in March 
2021.

To estimate ‍ARmax‍, we compute the monthly number of positive tests ‍T
+ [

n
]
‍ from December 2020 

to March 2021 for each age-sex group, as well as the number of true positives (TP) and false nega-
tives (FN) from convalescent plasma donors and the number of false positives (FP) and true negatives 
(TN) from the pre-pandemic blood donors cohort in Manaus (Supplementary file 1). The Bayesian 
model generates posterior samples of the crude monthly incidence and the crude seroprevalence in 
December ‍ρDecember‍ . We then correct the crude incidence by the sensitivity of the assay to obtain 
posterior samples of ‍̂AR‍, which are then added to the posterior samples of ‍ρDecember‍, resulting in 
samples of ‍ARmax‍. As explained above, the lower bound for the IFR is then calculated using the upper 
bound of the attack rate and the number of deaths with symptom onset between 16 December and 
15 March. This procedure is repeated for each age-sex group independently and is summarised in 
Appendix 1.

Only small estimates of the upper bound for the attack rate are informative, as in scenarios where 

‍ρDecember‍ is small. To limit ‍ρDecember‍, we estimate the incidence using a threshold of 1.4 S/C (the upper 

https://doi.org/10.7554/eLife.78233
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threshold recommended by the manufacturer) instead of 0.49 S/C (the lower threshold recommended 
by the manufacturer) and correct for sensitivity based on 163 true positives and 30 false negatives in 
the plasma donors cohort. Since the specificity of the test using a threshold of 1.4 is 99.9%, and since 
it is not straightforward to take the specificity into account when reinfections are allowed, we do not 
correct for specificity in this analysis.

We additionally computed the IFR obtained using the seroprevalence estimated by the model. It is 
worth noting that our seroreversion correction model only estimates the incidence among seronega-
tive individuals, thus an S/C boosting due to reinfection is not detected by our method. As such, our 
model estimates the seroprevalence assuming there are no reinfections among positive individuals, 
underestimating the size of the second wave in Manaus.

The IHR for the Gamma VOC was estimated using the same procedure but using the number of 
hospitalisations by SARI instead the number of deaths.

This method can be applied to estimate upper bounds for the attack rate of epidemics driven by 
other lineages with high rates of reinfection such as Delta and Omicron VOCs, but as previously high-
lighted the upper bound is only informative if the initial crude seroprevalence is small. This may not 
be the case in regions where vaccines inducing anti-N antibodies were applied, as it is not possible to 
distinguish vaccination from natural infection based only on anti-N serological data.

Definition of the homestay index
The homestay index for the eight cities was extracted from https://bigdata-covid19.icict.fiocruz.br/. 
It was calculated using data from Google Mobility reports using the procedure described in Barreto 
et al., 2021. The homestay index is defined as

	﻿‍ Homestay Index = XH − XG+XP+XT+XR+XW
5 ,‍�

where ‍XH, XG, XP, XT, XR‍, and ‍XW ‍ are, respectively, the variation of mobility (using pre-pandemic 
mobility levels as baseline) in the following place categories: residential areas, grocery and pharmacy, 
parks, transit stations, retail and recreation, and workplaces.

Calculation of age-standardised estimates
In this work, we calculated the age-standardised mortality, the age-standardised overall IFR, and the 
age-standardised overall IHR. The procedure used to perform age standardisation was the same for all 
these quantities. We define an age-standardised variable as the estimate that would be obtained if all 
cities had the same age structure. Denoting ‍η

[
a
]
‍ as an age-specific IFR or IHR for a given city and ‍w

[
a
]
‍ 

as the proportion of the combined population of all eight cities belonging to age group ‍a‍, then the 

age-standardised overall IFR or IHR is 
‍

M∑
a=1

w
[
a
]
η
[
a
]

,
‍
 where ‍M = 5‍ is the number of age groups. Simi-

larly, denoting ‍µ
(
t, a

)
‍ as the mortality for age group ‍a‍ and day ‍t‍ for a given city, the age-standardised 

mortality is 
‍

M∑
a=1

w
[
a
]
µ
(
t, a

)
.
‍

Results
Serology assay validation and antibody waning
Antibody kinetics vary with disease severity (Buss et al., 2021; Lumley et al., 2021; Takahashi et al., 
2021), and whole blood donors represent predominantly asymptomatic or mild SARS-CoV-2 infec-
tions due to donation eligibility criteria (Buss et al., 2021). As such, we sought to estimate a time-to-
seroreversion distribution that accurately reflected the blood donor convenience sample used in this 
study. We identified and tested 7675 repeat whole blood donors in Manaus who had made multiple 
donations throughout for 2020–2021 (Appendix 1—figure 14) and used these data to estimate the 
time-to-seroreversion probability distribution (see Materials and methods).

The results are shown in Figure 1, which compares the half-life, peak S/C values, and time-to-
seroreversion of repeat whole blood donors to the cohort of symptomatic convalescent plasma 
donors used to determine sensitivity. Repeat blood donors had a shorter assay signal half-life than 
plasma donors (median [IQR] 69.3 [53.0–103.8] versus 105.9 [62.7–185.1] days) and a lower observed 
peak S/C ratio (median [IQR] 2.89 [1.49–4.83] versus 5.08 [3.22–6.99]), yielding a shorter median time 
between seroconversion and seroreversion (203 [147–294] days versus 280 [175–441] days). This 

https://doi.org/10.7554/eLife.78233
https://bigdata-covid19.icict.fiocruz.br/
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Figure 1. SARS-CoV-2 anti-nucleocapsid (N) IgG dynamics in mild and moderate disease cohorts. (A) and (B) Trajectories of signal-to-cutoff (S/C) values 
for the Abbott anti-N chemiluminescent microparticle immunoassays in 218 SARS-CoV-2-infected convalescent plasma donors (A) and 7675 repeat 
whole blood donors (B). Time is measured from the first positive test. (C) and (D) Probability distribution of the half-lives following infection in SARS-
CoV-2-infected convalescent plasma donors (C) and repeat whole blood donors (D). Binned (bars) and smoothed kernel (lines) densities are shown. 

Figure 1 continued on next page
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highlights the importance of choosing a time-to-seroreversion distribution that is appropriate for the 
use case - the rate of waning seen in PCR-confirmed symptomatic disease would have resulted in 
underestimation of SARS-CoV-2 attack rates.

COVID-19 mortality across Brazilian capitals
The location of the eight Brazilian state capitals that contributed serology data is shown in Figure 2A. 
They collectively represent approximately 14% of the total Brazilian population. The age distribu-
tions of the eight cities differ widely (Figure 2—figure supplement 1), as such COVID-19 mortality 
is presented as age-standardised rates (see Appendix 1—figure 15 for the crude mortality curves). 
Between 1 March 2020 and 31 March 2021, the age-standardised mortality rate varied from 1.7 
deaths per 1,000 inhabitants in Belo Horizonte to 5.3 deaths per 1,000 in Manaus, which had twice 
the mortality of Fortaleza, the city with the next highest mortality (Figure 2C).

Figure 2B shows the homestay index for the eight cities (see Materials and methods for the defini-
tion). Manaus, the city with the youngest population, returned to pre-pandemic levels of mobility by 
July 2020, having consistently lower homestay index (i.e. higher mobility) than other cities after June 
2020, whereas the other seven cities showed a relatively homogenous mobility pattern. The shape of 
the mortality curves also varied markedly (Figure 2D). Manaus was also an outlier in having the lowest 
income per capita, health insurance coverage, and lowest proportion of the population with comor-
bidities, along with the highest number of residents per household (Figure 2—figure supplement 2).

Blood donor serosurveillance
Using an average of 951 monthly samples of routine whole blood donations (from March 2020 to 
March 2021, a total of 97,950  samples) in each of the eight cities, we measured the crude sero-
prevalence of anti-N IgG antibodies detectable by the Abbott CIMA (Table 1). However, these raw 
estimates of seroprevalence are affected by seroreversion dynamics and provide a poor guide for 
assessing past levels of population exposure.

Using our Bayesian seroreversion correction model, we present in Figure 2D the age-standardised 
SARS-CoV-2 attack rates (i.e. the cumulative rate of the population that was infected or reinfected) 
as of March 2021 after accounting for test sensitivity, test specificity, and IgG seroreversion (coloured 
lines) along with the directly measured seroprevalence (light grey boxplots) and the estimated 
seroprevalence adjusting for test sensitivity and specificity (dark grey boxplots). Our results further 
underscore the significantly different scales of SARS-CoV-2 epidemic impact experienced across 
the eight cities, with the implied attack rates ranging from only 19.3% in Curitiba, to as high as 
75.0% in Manaus by December 2020 (see Table 1). Alternative cumulative seroprevalence estimates 
produced using different time-to-seroreversion distributions are similar to those in Figure 2D and 
shown in Appendix 1—figure 12. We note that even though the seroprevalence estimated by our 
model includes reinfection in seronegative individuals, the model does not capture reinfection in 
already positive individuals. Therefore, the model is likely to underestimate SARS-CoV-2 attack rates 
in scenarios where reinfection is not rare, and the obtained seroprevalence can surpass 100% due to 
reinfections among seronegative individuals.

The slope of the seroprevalence curves (Figure 2D) also differed significantly across cities, showing 
different dynamics of antibody acquisition at the population level according to the shape and dynamics 
of the epidemic experienced. Cities with only minimal epidemic peak as Belo Horizonte and Curitiba 
showed near constant rates of increase in seropositivity after adjustment for antibody waning. By 
contrast, cities with substantial epidemic peak as Fortaleza and Manaus demonstrated significant vari-
ation in the rate at which estimated seropositivity increased in the population, with these rates highest 
during the epidemic peaks. These findings highlight the capacity of blood donor-based serological 
data to recapitulate important temporal trends in the intensity and dynamics of the epidemics across 
these eight cities.

(E), (F), and (G) Comparison of the probability distribution of the highest S/C measured in plasma donors and seropositive repeat blood donors that 
donated before 31 May 2020 and the S/C distribution in Manaus in May 2020. (H) Estimated time between seroconversion and seroreversion (positive-
negative conversion) at a threshold of 0.49 S/C for repeat blood donors and convalescent plasma donors. In all figures, box plots show the median 
(central lines), interquartile range (hinges), and range extending to 1.5 times the interquartile range from each hinge (whiskers).

Figure 1 continued
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The estimated seroprevalence in June and July in Fortaleza was significantly smaller than the 
measured seroprevalence without correction for seroreversion, even though the seroprevalence esti-
mates disaggregated by age and sex (Appendix 1—figure 16) lie within or above the confidence 
intervals of the measured seroprevalence. This effect happened especially in women, which had a 
crude seroprevalence that was significantly larger than in men in June and July 2020, but became 
similar in the following months. It is possible that the seroreversion rate observed in Fortaleza had 
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Figure 2. Overview of study site locations, mortality, and mobility data. (A) Map of the Brazilian states with the location of the eight capital cities. 
(B) Homestay index for the eight cities. Data were obtained from Fiocruz, available at https://bigdata-covid19.icict.fiocruz.br/. (C) Cumulative mortality 
due to severe acute respiratory syndrome (SIVEP-Gripe system) standardised for age and sex by the direct method using the total Brazilian age-sex 
structure as reference. Cumulative over the period from 1 March 2020 to 31 March 2021. (D) Weekly SARS-CoV-2 seroprevalence in blood donors across 
eight Brazilian state capitals. Three seroprevalence estimates are shown: (i) crude seroprevalence (i.e. the proportion of positive tests); (ii) seroprevalence 
adjusted for sensitivity, specificity, and reweighted by age and sex but not corrected for seroreversion; and (iii) adjusted seroprevalence estimated by our 
seroreversion corrected model (continuous curves), which accounts for seroreversion in addition to sensitivity, specificity, and age-sex distribution. Both 
infections and reinfections in seronegative donors are considered to estimate the adjusted seroprevalence, which can surpass 100%. The grey-filled 
curve shows age-standardised mortality per 10,000 residents. Ribbons and whiskers represent 95% Bayesian credible intervals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Population pyramids for the eight cities obtained from the projected population estimates for 2020.

Figure supplement 2. Proportion of population with health insurance, any comorbidity, number of individuals per household, and income per capita for 
each municipality.
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been faster than the rate estimated from repeat blood donors, in which case we undercorrected for 
seroreversion, underestimating the attack rate. However, a more likely explanation is that samples 
between March and July 2020 for Fortaleza are less representative of the population, since only 39.4% 
from 4970 selected samples could have been retrieved and tested, compared to 97.0% for the other 
cities and months. As such, seropositive individuals from Fortaleza may have been more likely to 
donate in these months, leading to an overestimated crude seroprevalence.

Age-sex patterns in blood donor seroprevalence
We next examine the patterns and dynamics of attack rates across different groups by disaggregating 
the seroprevalence data by age and sex. The seroprevalence estimates disaggregated by age and 
sex are shown in Figure 3 (see Appendix 1—figures 17–18 for seroprevalence disaggregated by 
only age or sex). Across the eight cities, our results consistently show differences between sexes - on 
average, men tended to have higher attack rates than women, although the degree and extent of 
this difference varied between cities. In São Paulo, the seroprevalence in December 2020 for men was 
30.6% compared to the 23.0% estimated in women (i.e. 33.5% (95% CrI 17.7–51.9) higher, Figure 3B). 
By contrast, seroprevalence in Curitiba in December 2020 was similar for women and men, being only 
4.65% (95% CrI –11.5 to 18.5) higher in women.

We also observed an extensive variation in the dynamics of population-level seroprevalence 
between age groups, with seroprevalence in December 2020 typically highest in younger age groups. 
The seroprevalence of individuals below the age of 55 increased in all cities except for Recife when 
compared to donors aged between 55 and 69, increasing by 34.1% (95% CrI –2.23–91.2) in Curitiba 
and decreasing by a small factor of 0.5% (95% CrI –24.8–19.1) in Recife. Furthermore, in cities with 
a large increase in seroprevalence during the first epidemic wave (i.e. Manaus, Recife, Fortaleza, 
and Salvador), this was primarily driven by younger men. In these locations, the differences between 
age-sex groups slowly narrowed during the long period of less intense transmission (Figure 3A). This 
highlights important differences between age-groups in the extent to which they were exposed to the 
virus and/or contributed to transmission at different points during the regional epidemics - differences 
that are not evident, or certain, from case or death counts alone.

In addition to the differences in attack rates by age and sex, seroprevalence did not increase 
homogeneously among different age and sex groups. In Manaus, seroprevalence was significantly 
larger in men and younger individuals aged 16–44 in July 2020, but between July and December sero-
prevalence increased faster in women and donors older than 45 years, leading to smaller differences 
in attack rate by age and sex in December 2020 (Figure 3B). Similar patterns are also observed in 
Salvador, Recife, and Fortaleza, although with smaller age and sex inequalities.

Table 1. Attack rate estimates for 16 December 2020 (before the Gamma-dominated wave in Manaus) and 24 February 2021.
This table contains the attack rate estimated by our seroreversion correction model along with the crude seroprevalence and the 
adjusted seroprevalence obtained by correcting the crude seroprevalence by sensitivity, specificity, and reweighted by age and 
sex, but without any correction for seroreversion. Seroprevalence estimates can surpass 100% due to reinfections. Seroprevalence 
estimates are only available for all cities simultaneously until 24 February 2021.

December 2020 February 2021

Crude 
seroprevalence (%)

Adjusted seroprevalence 
with no correction for 
seroreversion (%) Attack rate (%) Crude seroprevalence (%)

Adjusted seroprevalence 
with no correction for 
seroreversion (%) Attack rate (%)

Belo Horizonte 12.8 (10.8–15.1) 13.1 (10.0–16.5) 20.6 (18.6–22.7) 25.2 (22.5–28.1) 27.8 (23.7–32.3) 27.8 (25.2–30.6)

Curitiba 15.2 (13.0–17.5) 14.4 (11.5–17.7) 19.3 (17.5–21.2) 30.8 (28.0–33.7) 31.1 (27.4–35.1) 27.6 (25.2–30.3)

Fortaleza 28.1 (25.4–31.0) 29.8 (25.6–34.2) 48.8 (45.4–52.7) 24.9 (22.2–27.7) 26.6 (22.6–31.0) 57.4 (53.3–62.2)

Manaus 34.6 (31.6–37.7) 36.1 (32.0–40.6) 75.0 (70.8–80.3) 47.7 (44.4–51.0) 52.6 (47.8–57.8) 95.8 (90.6–102.5)

Recife 27 (24.3–29.8) 30.7 (25.9–35.8) 49.4 (46.1–53.1) 27.4 (24.7–30.2) 27.1 (23.2–31.5) 59.9 (55.6–64.6)

Rio de Janeiro 24.4 (21.7–27.2) 24.8 (21.4–28.4) 42.2 (39.4–45.4) 34.5 (31.6–37.5) 36.8 (32.9–41.0) 54.7 (51.1–58.9)

Salvador 18.4 (16.0–21.0) 18.4 (15.3–22.0) 35.3 (32.8–38.1) 20.1 (17.6–22.7) 20.1 (16.8–23.8) 42.4 (39.5–45.8)

São Paulo 18.8 (16.5–21.4) 19.0 (15.9–22.4) 26.6 (24.3–29.1) 21.7 (19.1–24.4) 22.3 (19.0–25.9) 33.3 (30.3–36.5)

https://doi.org/10.7554/eLife.78233
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Figure 3. Age-sex patterns in blood donor seroprevalence in eight Brazilian cities. (A) Estimated cumulative seroprevalence by age-sex group. 
(B) Transversal cuts of figure (A) on 8 July 2020, 16 December 2020, and 24 February 2021 (last week where seroprevalence was estimated for all cities). 
(C) Relative risk of the cumulative seroprevalence estimated in December 2020 with men aged 16–24 as the reference category in each city. Note 
that since cities use different values as reference, only relative risks of age-sex groups from the same city can be compared. Box plots show posterior 
distributions of the relative risks, with the median (central lines), interquartile range (hinges), and 95% confidence intervals (whiskers).
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Variation in the SARS-CoV-2 IFR across age groups and locations
Using estimates of the cumulative number of individuals infected alongside records of COVID-19 
deaths available from Brazil’s SIVEP-Gripe platform, we next calculated the IFR for each city and age 
group. Figure 4A presents the estimated age-specific IFRs for each municipality as of December 2020, 
before the Gamma VOC epidemic in Brazil. Our results show the IFR significantly increases with age, 
ranging from 0.03% in individuals aged 16–24 years to 1.31% in individuals aged 55–64 years. This is 
in-keeping with previous work highlighting a strong age dependency in COVID-19 mortality (Brazeau 
et al., 2020; Buss et al., 2021; O’Driscoll et al., 2021). Cities presented different age-standardised 
overall IFRs, being smaller in Manaus (0.24%) and higher in Curitiba (0.54%).

There was a strong correlation (Pearson’s correlation = 0.92) between the age-standardised mortality 
rate in each city and the attack rate inferred from blood donor serosurveillance data (Figure 4B). Both 
the overall IFR and the overall IFR adjusted for the age structure of the city differed significantly 
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Figure 4. Infection fatality rates (IFRs) in eight Brazilian state capitals as of 15 December 2020. The number of deaths was obtained from the 
SIVEP-Gripe reporting system including all SARI deaths with symptom onset between 1 March 2020 and 15 December 2021. (A) Age-specific IFRs. 
(B) Association between age-standardised mortality rate and cumulative seroprevalence in blood donors for each of the eight cities by December 2020. 
The black line is a linear regression fit to the coloured points, each representing one of the eight cities. (C) Crude and age-adjusted overall IFRs, for the 
age range of 16–64 years, in each of the eight participating cities. (D) Overall IFR of the eight cities for the age range of 16–64 years obtained with our 
age-specific IFR estimates compared with the overall IFR calculated using age-specific IFRs from Brazeau et al., 2020 and O’Driscoll et al., 2021.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Estimated age-specific and overall infection hospitalisation rates (IHRs) for the eight cities in the period between March and 
December 2020.
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between cities (Figure 4C), showing that the IFR differences cannot be explained only by the different 
age structures. Despite the differences between cities, the obtained age-specific IFRs were similar to 
the estimates from Brazeau et al., 2020 but higher than the estimates from O’Driscoll et al., 2021 
(Figure 4D). The age-specific and overall IHR were also estimated (Figure 4—figure supplement 1) 
and showed similar patterns, being larger in Belo Horizonte, Curitiba, and São Paulo.

The obtained IFRs and attack rates for December 2020 were validated using alternative approaches 
that do not correct directly for seroreversion, not depending on the proposed seroreversion correc-
tion model (see Appendix 1).

The dynamics and epidemiological impacts of the Gamma VOC in 
Manaus
As previously highlighted, we could not obtain a point estimate of the attack rate in the Gamma-
dominated period in Manaus because we are unable to identify which of the seropositive blood donors 
are primary infections and which are reinfections. Instead, we calculated upper bounds assuming 
maximum proportions of reinfections. The inferred upper bound of the age-specific attack rate in 
the Gamma-dominated period in Manaus ranged from 30.6% (95% Bayesian CrI 22.8–41.1) to 46.0% 
(95% CrI 32.8–60.6) in individuals aged 45–54 and 55–64 (Figure 5—figure supplement 1), showing 
small variation among age groups. The estimated upper bound for the age-standardised cumulative 
attack rate in the second period dominated by the Gamma variant was 37.5% (95% CrI 35.3–42.6), 
significantly smaller than the cumulative attack rate of 75.0% (Figure 2) estimated for the first period 
dominated by non-Gamma variants.

Comparing to the COVID-19 attributable hospitalisations and deaths reported to the SIVEP data-
base, we next used the estimated upper bounds of the age-specific attack rates in the Gamma period 
in Manaus to calculate lower bounds of the age-specific IHR and IFR for the Gamma period. We then 
compared the IFRs and IHRs obtained with the attack rate estimated for the period during which non-
Gamma variants dominated (from 1 March 2020 to 15 December 2020). The resulting age-specific 
IFRs and IHRs are shown in Figure 5A, B, respectively, and the relative risks obtained using the IFR 
or IHR in December 2020 as baseline in Figure 5C, D. The lower bound for the IHR increased in all 
age groups, from 34.4% (95% CrI 6.5–70.0) in individuals aged 16–24 to 163.4% (95% CrI 90.9–264.3) 
in individuals aged 45–54 when compared to the IHR estimated for the non-Gamma period. The 
increased hospitalisation risk combined with an increased in-hospital fatality rate (HFR, defined as the 
number of deaths per hospitalisation) during the second wave (Appendix 1—figure 19) resulted in 
an increased age-specific IFR, with a lower bound increasing 93.8% (95% CrI 36.4–186.4) in individ-
uals aged 55–64 to 273.5% (95% CrI 167.8–423.4%) in individuals aged 45–54 when compared to the 
first wave (Figure 5C). As such, even though the IFR and IHR increased for all age groups during the 
Gamma-dominated period, this difference was more significant in younger age groups. The obtained 
lower bound for the overall IFR was 0.527% (95% CrI 0.447–0.630), 2.91 (95% CrI 2.43–3.53) times 
higher than the estimated IFR for the first wave in Manaus.

Discussion
Our results highlight the divergent epidemic dynamics across eight of Brazil’s biggest cities as reflected 
by mortality rates, and show that these differences are recapitulated in blood donor-based serial 
cross-sectional serosurveillance. Despite the large IFR differences observed across cities, seropreva-
lence was strongly correlated with cumulative age-standardised mortality (Figure 4B). These results 
reinforce the validity of blood donors as a convenient population for serosurveillance. A previous 
study (Mina et al., 2020) has highlighted the need for a reliable, cost-effective method of immuno-
logical surveillance to provide evidence of past infection and to understand the dynamics of emerging 
disease. Even though serology is less precise for identifying infections on an individual level, it is an 
effective tool for monitoring epidemics at a population level. As blood donation programs are an 
existing component of medical infrastructure globally and in which blood samples are readily available 
in many locations, this approach can be rapidly implemented and carried out in large populations.

We estimated larger attack rates in individuals aged 16–54 years. This is consistent with previous 
work examining age patterns of transmission from mobility data in the United States (Monod et al., 
2021), but we have measured infection directly rather than making inferences indirectly on the basis 
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Figure 5. Comparison of infection-to-hospitalisation and infection-to-fatality rate estimates during the non-Gamma and Gamma period in Manaus. 
(A) Estimated infection fatality rates (IFRs) and (B) infection hospitalisation rates (IHR s) for Manaus in the periods from 1 March 2020 to 15 December 
2020 (non-Gamma dominated) and 16 December 2020 to 31 March 2021 (Gamma dominated). For the Gamma-dominated period, estimates shown are 
lower bounds that were calculated assuming a maximum proportion of reinfections (see Materials and methods). (C) Relative risks of the lower bound 
estimate of the iIFRs in the Gamma-dominated period using the estimated IFRs in the non-Gamma period as reference and (D) similarly for IHRs.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Attack rate in Manaus estimated by our seroreversion correction model for the periods March 2020–December 2020, December 
2020–March 2021 and the estimated upper bound for the attack rate.

https://doi.org/10.7554/eLife.78233


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 18 of 53

of COVID-19 deaths and movement. Possible reasons for the higher attack rate in people aged 
16–54  years include, but are not limited to, different risk perception and shielding practises, and 
disease biology with more frequent asymptomatic infections in younger people, which increase infec-
tion risk in this age group due to greater mixing among working age adults. We also found overall 
higher levels of seroprevalence in men compared to women, and these patterns changed over time. 
For instance, in Manaus, a very high seroprevalence was reached rapidly among young men by July 
2020, after which relatively little increase in overall seroprevalence occurred in men. By contrast, 
among older women, who reached less than half the attack rate seen in men by June, the seropreva-
lence continued to increase. This heterogeneity in transmission in a location with high overall antibody 
prevalence meant that some groups remained relatively susceptible and perpetuated transmission 
at a lower level (Buss and Sabino, 2021; Lalwani et al., 2021). Other works suggest that socioeco-
nomic condition also contributed to heterogeneity of SARS-CoV-2 spread in Manaus (Lalwani et al., 
2021), which is confirmed by the large seroprevalence observed in Black and less-educated donors 
(Appendix 1—figure 20).

We also confirm a strong age dependency of COVID-19 IFRs (Brazeau et al., 2020; O’Driscoll 
et al., 2021). Although age-specific IFRs were roughly similar across the cities (Figure 4A) and similar 
to estimates in the literature (Figure 4D), there were some noticeable differences. For example, the 
more affluent south and southeastern cities of Belo Horizonte, Curitiba, and São Paulo tended to have 
higher age-specific IFRs, whereas in the northern and northeastern cities of Manaus, Salvador, and 
Fortaleza, the age-specific IFRs tended to be lower. This may be due to under-reporting of deaths 
but might also reflect lower prevalence of comorbidities in the latter populations (Figure 2—figure 
supplement 2). Cities with larger IFRs also had larger IHRs, suggesting that the differences in IFR 
reflect the different risks of developing a severe disease. The different lineages circulating in the eight 
cities may have also contributed to the observed IFR and IHR difference (Appendix 1—figure 1). 
While most of the cases in the first wave in Amazonas and Ceará were caused by earlier lineages, the 
lineages B.1.1.28, B.1.1.33, and later P.2 (Zeta) were more prevalent in other states. It is worth noting 
the IHR also depends on the probability of an individual with severe disease being hospitalised. This 
probability depends on access to health facilities and availability of healthcare resources, and there-
fore may vary across cities even if disease severity remains constant.

Our results also clearly demonstrate a higher IHR during the Gamma-dominated observation 
period compared to the non-Gamma observation period in Manaus for all age groups (Figure 5). This 
supports observations (Banho et al., 2021) that the Gamma VOC tends to cause more severe disease 
than the ancestral non-Gamma variants circulating locally, even among young adults in Manaus. The 
larger increase in IHR for younger adults aged 25–54 years is compatible with the younger profile of 
hospitalisations of the Gamma-dominated wave in Brazil (de Souza et al., 2021), observed before 
vaccination coverage reached significant levels in older age groups. In Manaus, the increased levels 
of hospitalisation caused parts of the healthcare system to collapse during the second wave causing 
an increase in HFR as previously described (Brizzi et al., 2021), further increasing the IFR. The higher 
IFR associated with Gamma VOC infection during the second wave is therefore due to a combination 
of two factors – increased disease severity resulting in a greater proportion of infections requiring 
hospital-based care (the IHR, arising primarily from intrinsic viral properties and pathogenicity), and 
the impacts of this increased healthcare pressure on mortality within-hospitals (the HFR, arising 
primarily from healthcare pressure).

There are some relevant limitations to our results that need to be pointed. First, blood donors 
are a convenience sample, and extrapolation to the entire population should be done with caution. 
Due to eligibility criteria in Brazil, blood donors are limited to those aged 16–69 years, with a strong 
skew towards younger adults even within this eligibility range (Figure 2—figure supplement 1) in 
most Brazilian regions. However, our results do suggest that blood donor serosurveillance agrees 
with other metrics of epidemic size as mortality, both cumulatively (Figure  5B) and through time 
(Figure 3). Moreover, both sensitivity and seroreversion could be an age-dependent process as a 
proxy for disease severity, i.e., older individuals are more likely to be symptomatic, seroconvert, and 
have longer time to seroreversion. Indeed, we see this pattern of longer half-lives and larger peak S/
Cs in convalescent plasma donors who had recovered from more severe disease (Appendix 1—figure 
21). Therefore, correction of crude seroprevalence for antibody waning could possibly be confounded 
by demographic differences between the eight cities. However, since individuals that had a severe 
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disease are unlikely to donate blood, seropositive whole blood donors are likely fairly homogenous 
in having had milder or asymptomatic disease, and as such, the rate of waning may not vary signifi-
cantly between locations. An additional important point to note is that the longer an epidemic last, 
the more frequent reinfections become due to the natural waning of immunity in the time period 
following infection. Our data span over a year of transmission in areas with multiple waves with high 
SARS-CoV-2 burden and consequently non-negligible reinfection rates, as such it is difficult to reliably 
infer the attack rates from seroprevalence data towards the end of the time series. For this reason, our 
model produces upper bounds for cumulative prevalence of >100% in Manaus by early 2021.

Despite these limitations, blood donors represent an accessible population to detect trends of 
the epidemic that otherwise could only be obtained through expensive population-based studies, 
which are difficult to establish in Brazil during the course of a rapidly progressing epidemic. Studies to 
understand the main differences between blood donors and the general population would help the 
development of better sampling protocols to mitigate bias and should be part of preparedness for 
future epidemics of infectious diseases.

Acknowledgements
This work was supported by the Itaú Unibanco 'Todos pela Saude' program and by CADDE/FAPESP 
(MR/S0195/1 and FAPESP 18/14389–0) (http://caddecentre.org/); Wellcome Trust and Royal Society 
Sir Henry Dale Fellowship 204311/Z/16/Z (NRF); the Gates Foundation (INV- 034540 and INV-
034652) the National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evalua-
tion Study (REDS, now in its fourth phase, REDS-IV-P) for providing the blood donor demographic 
and zip code data for analysis (grant HHSN268201100007I); and the UK Medical Research Council 
under a concordat with the UK Department for International Development and Community Jameel 
and the NIHR Health Protection Research Unit in Modelling Methodology. CAPJ was supported by 
FAPESP (2019/21858-0) and Fundação Faculdade de Medicina. CAPJ, VHN were supported by Coor-
denação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. 
VHN was supported by CNPq (304714/2018–6). SCF is supported by FAPESP. FM is supported by 
PROGRAMA INOVA FIOCRUZ-CE/Funcap, Edital 01/2020 Number: FIO-0167–00065.01.00/20 SPU 
N° 06531047/2020. MBN is supported by CPNq. RFOF is supported by JBS - Fazer o bem faz bem. 
OR is supported by Medical Research Council MR/V038109/1.

The Blood Center SARS-CoV-2 Prevalence group is also composed by Cláudia M M Abrahim, Martirene 
A Silva, Fabíola S A Hanna, Adriana S N Ramos, Juqueline R Cristal and Samara Alves. We also thank 
Robert Verity for his critical review of the paper and suggestions.

Additional information

Funding

Funder Grant reference number Author

Itau Unibanco Todos pela Saúde Nuno R Faria
Ester C Sabino

FAPESP 18/14389-0 Nuno R Faria
Ester C Sabino

Medical Research Council MR/S0195/1 Nuno R Faria
Ester C Sabino

Wellcome Trust and Royal 
Society

Sir Henry Dale Fellowship 
204311/Z/16/Z

Nuno R Faria

Gates Foundation INV- 034540 and INV-
034652

Nuno R Faria
Ester C Sabino

National Heart, Lung, and 
Blood Institute

Recipient Epidemiology 
and Donor Evaluation 
Study HHSN268201100007I

Nuno R Faria
Ester C Sabino

FAPESP 2019/21858-0 Carlos A Prete Jr

https://doi.org/10.7554/eLife.78233
http://caddecentre.org/


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 20 of 53

Funder Grant reference number Author

Fundacao Faculdade de 
Medicina

Carlos A Prete Jr

CAPES Finance Code 001 Carlos A Prete Jr

CNPq 304714/2018-6 Vítor H Nascimento

FAPESP Suzete C Ferreira

Programa Inova FIOCRUZ-
CE/Funcap

Edital 01/2020 Number: 
FIO-0167-00065.01.00/20 
SPU Nº 06531047/2020

Fabio Miyajima

CNPq Manoel Barral-Netto

JBS - Fazer o bem faz bem Rafael FO Franca

Medical Research Council MR/V038109/1 Oliver Ratmann

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication. For the purpose of Open Access, the 
authors have applied a CC BY public copyright license to any Author Accepted 
Manuscript version arising from this submission.

Author contributions
Carlos A Prete, Conceptualization, Data curation, Software, Formal analysis, Validation, Investiga-
tion, Visualization, Methodology, Writing – original draft, Writing – review and editing; Lewis F Buss, 
Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualization, Method-
ology, Writing – original draft, Writing – review and editing; Charles Whittaker, Conceptualization, 
Supervision, Investigation, Visualization, Methodology, Writing – original draft, Writing – review and 
editing; Tassila Salomon, Conceptualization, Data curation, Validation, Methodology, Project admin-
istration, Writing – review and editing; Marcio K Oikawa, Data curation, Software, Methodology, 
Writing – review and editing; Rafael HM Pereira, Isabel CG Moura, Software, Formal analysis, Inves-
tigation, Visualization; Lucas Delerino, Manoel Barral-Netto, Natalia M Tavares, Rafael FO Franca, 
Viviane S Boaventura, Fabio Miyajima, Alfredo Mendrone-Junior, Cesar de Almeida-Neto, Nanci A 
Salles, Suzete C Ferreira, Karine A Fladzinski, Luana M de Souza, Luciane K Schier, Patricia M Inoue, 
Lilyane A Xabregas, Myuki AE Crispim, Nelson Fraiji, Fernando LV Araujo, Luciana MB Carlos, Verid-
iana Pessoa, Maisa A Ribeiro, Rosenvaldo E de Souza, Sônia MN da Silva, Anna F Cavalcante, Maria IB 
Valença, Maria V da Silva, Esther Lopes, Luiz A Filho, Sheila OG Mateos, Gabrielle T Nunes, Alexander 
L Silva-Junior, Data curation, Investigation; Michael P Busch, Marcia C Castro, Supervision, Method-
ology, Writing – review and editing; Christopher Dye, Oliver Ratmann, Supervision, Writing – review 
and editing; Nuno R Faria, Conceptualization, Resources, Supervision, Funding acquisition, Visualiza-
tion, Methodology, Writing – original draft, Project administration, Writing – review and editing; Vítor 
H Nascimento, Formal analysis, Supervision, Validation, Methodology, Writing – original draft, Writing 
– review and editing; Ester C Sabino, Conceptualization, Resources, Formal analysis, Supervision, 
Funding acquisition, Validation, Investigation, Methodology, Writing – original draft, Project adminis-
tration, Writing – review and editing

Author ORCIDs
Carlos A Prete Jr,  ‍ ‍ http://orcid.org/0000-0002-3907-423X
Manoel Barral-Netto ‍ ‍ http://orcid.org/0000-0002-5823-7903
Cesar de Almeida-Neto ‍ ‍ http://orcid.org/0000-0002-8490-4634
Sheila OG Mateos ‍ ‍ http://orcid.org/0000-0001-5416-2724
Oliver Ratmann ‍ ‍ http://orcid.org/0000-0001-8667-4118
Vítor H Nascimento ‍ ‍ http://orcid.org/0000-0002-0543-4735
Ester C Sabino ‍ ‍ http://orcid.org/0000-0003-2623-5126

Ethics
This project was approved by the Brazilian national research ethics committee, CONEP CAAE - 
30178220.3.1001.0068. The Brazilian national research committee (CONEP) waived for informed 
consent. All methods were performed in accordance with relevant guidelines and regulations.

https://doi.org/10.7554/eLife.78233
http://orcid.org/0000-0002-3907-423X
http://orcid.org/0000-0002-5823-7903
http://orcid.org/0000-0002-8490-4634
http://orcid.org/0000-0001-5416-2724
http://orcid.org/0000-0001-8667-4118
http://orcid.org/0000-0002-0543-4735
http://orcid.org/0000-0003-2623-5126


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 21 of 53

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.78233.sa1
Author response https://doi.org/10.7554/eLife.78233.sa2

Additional files
Supplementary files
•  Supplementary file 1. Number of true positives (TPs), true negatives (TNs), false positives (FPs), 
and false negatives (FN) used to estimate the sensitivity of the anti-nucleocapsid assay for the 
thresholds 1.4, 0.49, and 0.1 signal to cutoff (S/C), and for the anti-spike assay for the threshold 
50.0. Sensitivity and specificity were calculated by computing the quantiles of Beta (1+TP, 1+FN) and 
Beta (1+TN, 1+FP), respectively.

•  Supplementary file 2. Age-specific infection fatality rates (IFRs) and 95% credible intervals 
obtained with the seroprevalence estimated with our seroreversion correction model and with a 
threshold of 0.1 signal to cutoff corrected for sensitivity and specificity.

•  MDAR checklist 

Data availability
All serological data required to reproduce the analyses are available at Data Dryad (doi:https://​
doi.org/10.5061/dryad.dz08kps08) and can be downloaded at https://datadryad.org/stash/​
dataset/doi:10.5061/dryad.dz08kps08. The codes used for the main analyses are avail-
able at https://github.com/CADDE-CENTRE/seroprevalence_eight_cities, (copy archived at 
swh:1:rev:67518ad26368c1f4856fdfd4c08673abeded4901).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Prete CA, Buss L, 
Whittaker C, Salomon 
T, Oikawa M, Pereira 
R, Moura I, Delerino 
L, Barral-Netto M, 
Tavares N, França 
R, Boaventura 
V, Miyajima F, 
Mendrone-Junior A, 
de Almeida Neto C, 
Salles N, Ferreira S, 
Fladzinski K, de Souza 
L, Schier L, Inoue P, 
Xabregas L, Crispim 
M, Fraiji N, Araujo F, 
Carlos L, Pessoa V, 
Ribeiro M, de Souza 
R, Cavalcante A, 
Valença M, da Silva 
M, Lopes E, Amorim 
Filho L, Mateos SO, 
Nunes G, da Silva S, 
Silva-Junior A, Busch 
M, Castro M, Dye 
C, Ratmann O, Faria 
N, Nascimento V, 
Sabino E

2022 Data from: SARS-CoV-2 
antibody dynamics in blood 
donors and COVID-19 
epidemiology in eight 
Brazilian state capitals

https://​doi.​org/​
10.​5061/​dryad.​
dz08kps08

Dryad Digital Repository, 
10.5061/dryad.dz08kps08

References
Banho CA, Sacchetto L, Campos G, Bittar C, Possebon FS, Ullmann LS, Marques B, da Silva GCD, Moraes MM, 

Parra MCP, Negri AF, Boldrin AC, Barcelos MD, dos Santos T, Milhim B, da Rocha LC, Dourado FS, 
dos Santos AL, Ciconi VB, Patuto C, et al. 2021. Effects of SARS-CoV-2 P.1 Introduction and the Impact of 
COVID-19 Vaccination on the Epidemiological Landscape of São José Do Rio Preto, Brazil. medRxiv. DOI: 
https://doi.org/10.1101/2021.07.28.21261228

https://doi.org/10.7554/eLife.78233
https://doi.org/10.7554/eLife.78233.sa1
https://doi.org/10.7554/eLife.78233.sa2
https://doi.org/10.5061/dryad.dz08kps08
https://doi.org/10.5061/dryad.dz08kps08
https://datadryad.org/stash/dataset/doi:10.5061/dryad.dz08kps08
https://datadryad.org/stash/dataset/doi:10.5061/dryad.dz08kps08
https://github.com/CADDE-CENTRE/seroprevalence_eight_cities
https://archive.softwareheritage.org/swh:1:dir:320f6a4e397378568cba44b72a2384fed49da872;origin=https://github.com/CADDE-CENTRE/seroprevalence_eight_cities;visit=swh:1:snp:5ce8335614d0ca3106f93bf90bd075ffc96b6b48;anchor=swh:1:rev:67518ad26368c1f4856fdfd4c08673abeded4901
https://doi.org/10.5061/dryad.dz08kps08
https://doi.org/10.5061/dryad.dz08kps08
https://doi.org/10.5061/dryad.dz08kps08
https://doi.org/10.1101/2021.07.28.21261228


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 22 of 53

Barreto IC, Costa Filho RV, Ramos RF, Oliveira L de, Martins N, Cavalcante FV, Andrade L, Santos LMP. 2021. 
Health collapse in manaus: the burden of not adhering to non-pharmacological measures to reduce the 
transmission of covid-19. Saúde Em Debate 45:1126–1139. DOI: https://doi.org/10.1590/0103-​
1104202113114i

Brazeau N, Verity R, Jenks S, Fu H, Whittaker C. 2020. Report 34: COVID-19 infection fatality ratio: estimates 
from seroprevalence. Report 34.

Brizzi A, Whittaker C, Servo LMS, Hawryluk I, Prete CA, de Souza WM, Aguiar RS, Araujo LJT, Bastos LS, 
Blenkinsop A, Buss LF, Candido D, Castro MC, Costa SF, Croda J, de Souza Santos AA, Dye C, Flaxman S, 
Fonseca PLC, Geddes VEV, et al. 2021. Report 46: Factors Driving Extensive Spatial and Temporal Fluctuations 
in COVID-19 Fatality Rates in Brazilian Hospitals. medRxiv. DOI: https://doi.org/10.1101/2021.11.01.21265731

Buss LF, Prete CA, Abrahim CMM, Mendrone A, Salomon T, de Almeida-Neto C, França RFO, Belotti MC, 
Carvalho M, Costa AG, Crispim MAE, Ferreira SC, Fraiji NA, Gurzenda S, Whittaker C, Kamaura LT, Takecian PL, 
da Silva Peixoto P, Oikawa MK, Nishiya AS, et al. 2021. Three-quarters attack rate of SARS-cov-2 in the Brazilian 
Amazon during a largely unmitigated epidemic. Science 371:288–292. DOI: https://doi.org/10.1126/science.​
abe9728, PMID: 33293339

Buss LF, Sabino EC. 2021. Intense SARS-cov-2 transmission among affluent manaus residents preceded the 
second wave of the epidemic in Brazil. The Lancet. Global Health 9:e1475–e1476. DOI: https://doi.org/10.​
1016/S2214-109X(21)00396-X, PMID: 34678180

Castro MC, Kim S, Barberia L, Ribeiro AF, Gurzenda S, Ribeiro KB, Abbott E, Blossom J, Rache B, Singer BH. 
2021. Spatiotemporal pattern of COVID-19 spread in Brazil. Science 372:821–826. DOI: https://doi.org/10.​
1126/science.abh1558, PMID: 33853971

Coutinho RM, Marquitti FMD, Ferreira LS, Borges ME, da Silva RLP, Canton O, Portella TP, Poloni S, Franco C, 
Plucinski MM, Lessa FC, da Silva AAM, Kraenkel RA, de Sousa Mascena Veras MA, Prado PI. 2021. Model-
Based estimation of transmissibility and reinfection of SARS-cov-2 P.1 variant. Communications Medicine 1:48. 
DOI: https://doi.org/10.1038/s43856-021-00048-6, PMID: 35602219

Crotty S. 2021. Hybrid immunity. Science 372:1392–1393. DOI: https://doi.org/10.1126/science.abj2258
de Oliveira MHS, Lippi G, Henry BM. 2021. Sudden Rise in COVID-19 Case Fatality among Young and Middle-

Aged Adults in the South of Brazil after Identification of the Novel B.1.1.28.1 (P.1) SARS-CoV-2 Strain: Analysis 
of Data from the State of Parana. medRxiv. DOI: https://doi.org/10.1101/2021.03.24.21254046

de Souza WM, Buss LF, Candido D, Carrera JP, Li S, Zarebski AE, Pereira RHM, Prete CA, de Souza-Santos AA, 
Parag KV, Belotti M, Vincenti-Gonzalez MF, Messina J, da Silva Sales FC, Andrade PDS, Nascimento VH, 
Ghilardi F, Abade L, Gutierrez B, Kraemer MUG, et al. 2020. Epidemiological and clinical characteristics of the 
COVID-19 epidemic in Brazil. Nature Human Behaviour 4:856–865. DOI: https://doi.org/10.1038/s41562-020-​
0928-4, PMID: 32737472

de Souza FSH, Hojo-Souza NS, da Silva CM, Guidoni DL. 2021. Second wave of COVID-19 in Brazil: younger at 
higher risk. European Journal of Epidemiology 36:441–443. DOI: https://doi.org/10.1007/s10654-021-00750-8, 
PMID: 33881666

de Souza Santos AA, Candido D, de Souza WM, Buss L, Li SL, Pereira RHM, Wu CH, Sabino EC, Faria NR. 2021. 
Dataset on SARS-cov-2 non-pharmaceutical interventions in Brazilian municipalities. Scientific Data 8:73. DOI: 
https://doi.org/10.1038/s41597-021-00859-1, PMID: 33664243

Di Germanio C, Simmons G, Kelly K, Martinelli R, Darst O, Azimpouran M, Stone M, Hazegh K, Grebe E, 
Zhang S, Ma P, Orzechowski M, Gomez JE, Livny J, Hung DT, Vassallo R, Busch MP, Dumont LJ. 2021. SARS-
cov-2 antibody persistence in COVID-19 convalescent plasma donors: dependency on assay format and 
applicability to serosurveillance. Transfusion 61:2677–2687. DOI: https://doi.org/10.1111/trf.16555, PMID: 
34121205

Faria NR, Mellan TA, Whittaker C, Claro IM, Candido D, Mishra S, Crispim MAE, Sales FCS, Hawryluk I, 
McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, 
Silva CAM, Manuli ER, Pereira RHM, et al. 2021. Genomics and epidemiology of the P.1 SARS-cov-2 lineage in 
manaus, Brazil. Science 372:815–821. DOI: https://doi.org/10.1126/science.abh2644, PMID: 33853970

Hallal PC, Hartwig FP, Horta BL, Silveira MF, Struchiner CJ, Vidaletti LP, Neumann NA, Pellanda LC, 
Dellagostin OA, Burattini MN, Victora GD, Menezes AMB, Barros FC, Barros AJD, Victora CG. 2020. SARS-
cov-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. The 
Lancet. Global Health 8:e1390–e1398. DOI: https://doi.org/10.1016/S2214-109X(20)30387-9, PMID: 32979314

Lalwani P, Araujo-Castillo RV, Ganoza CA, Salgado BB, Jordão MF, Ortiz JV, Barbosa ARC, Sobrinho WBS, 
Cordeiro IB, Souza Neto JN, Assunção EN, Costa CF, Souza PE, Albuquerque BC, Astofi-Filho S. 2021. High 
anti-SARS-cov-2 antibody seroconversion rates before the second wave in manaus, Brazil, and the protective 
effect of social behaviour measures: results from the prospective detectcov-19 cohort. The Lancet. Global 
Health 9:e1508–e1516. DOI: https://doi.org/10.1016/S2214-109X(21)00355-7

Li SL, Pereira RHM, Prete CA, Zarebski AE, Emanuel L, Alves PJH, Peixoto PS, Braga CKV, de Souza Santos AA, 
de Souza WM, Barbosa RJ, Buss LF, Mendrone A, de Almeida-Neto C, Ferreira SC, Salles NA, Marcilio I, 
Wu CH, Gouveia N, Nascimento VH, et al. 2021. Higher risk of death from COVID-19 in low-income and 
non-white populations of São Paulo, Brazil. BMJ Global Health 6:e004959. DOI: https://doi.org/10.1136/​
bmjgh-2021-004959, PMID: 33926892

Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Silva M, Tabachnikova J, Peña-Hernandez A, 
Muenker MA, Breban MC, Fauver MI, Mohanty S, Huang J. 2021. Impact of circulating SARS-cov-2 variants on 
mRNA vaccine-induced immunity. Nature 600:523–529. DOI: https://doi.org/10.1038/s41586-021-04085-y

https://doi.org/10.7554/eLife.78233
https://doi.org/10.1590/0103-1104202113114i
https://doi.org/10.1590/0103-1104202113114i
https://doi.org/10.1101/2021.11.01.21265731
https://doi.org/10.1126/science.abe9728
https://doi.org/10.1126/science.abe9728
http://www.ncbi.nlm.nih.gov/pubmed/33293339
https://doi.org/10.1016/S2214-109X(21)00396-X
https://doi.org/10.1016/S2214-109X(21)00396-X
http://www.ncbi.nlm.nih.gov/pubmed/34678180
https://doi.org/10.1126/science.abh1558
https://doi.org/10.1126/science.abh1558
http://www.ncbi.nlm.nih.gov/pubmed/33853971
https://doi.org/10.1038/s43856-021-00048-6
http://www.ncbi.nlm.nih.gov/pubmed/35602219
https://doi.org/10.1126/science.abj2258
https://doi.org/10.1101/2021.03.24.21254046
https://doi.org/10.1038/s41562-020-0928-4
https://doi.org/10.1038/s41562-020-0928-4
http://www.ncbi.nlm.nih.gov/pubmed/32737472
https://doi.org/10.1007/s10654-021-00750-8
http://www.ncbi.nlm.nih.gov/pubmed/33881666
https://doi.org/10.1038/s41597-021-00859-1
http://www.ncbi.nlm.nih.gov/pubmed/33664243
https://doi.org/10.1111/trf.16555
http://www.ncbi.nlm.nih.gov/pubmed/34121205
https://doi.org/10.1126/science.abh2644
http://www.ncbi.nlm.nih.gov/pubmed/33853970
https://doi.org/10.1016/S2214-109X(20)30387-9
http://www.ncbi.nlm.nih.gov/pubmed/32979314
https://doi.org/10.1016/S2214-109X(21)00355-7
https://doi.org/10.1136/bmjgh-2021-004959
https://doi.org/10.1136/bmjgh-2021-004959
http://www.ncbi.nlm.nih.gov/pubmed/33926892
https://doi.org/10.1038/s41586-021-04085-y


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 23 of 53

Lumley SF, Wei J, O’Donnell D, Stoesser N, Matthews P, Howarth A, Hatch S, Marsden B, Cox S, James T, 
Peck L, Ritter T, Toledo Z, Cornall R, Jones EY, Stuart D, Screaton G, Ebner D, Hoosdally S, Crook D, et al. 
2021. The duration, dynamics and determinants of SARS-cov-2 antibody responses in individual healthcare 
workers. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 
73:e699–e709. DOI: https://doi.org/10.1093/cid/ciab004

Martins AF, Zavascki AP, Wink PL, Volpato FCZ, Monteiro FL, Rosset C, De-Paris F, Ramos ÁK, Barth AL. 2021. 
Detection of SARS-cov-2 lineage P.1 in patients from a region with exponentially increasing hospitalisation rate, 
February 2021, Rio grande do sul, southern Brazil. Euro Surveillance 26:276. DOI: https://doi.org/10.2807/​
1560-7917.ES.2021.26.12.2100276, PMID: 33769251

Mina MJ, Metcalf CJE, McDermott AB, Douek DC, Farrar J, Grenfell BT. 2020. A global lmmunological 
observatory to meet a time of pandemics. eLife 9:e58989. DOI: https://doi.org/10.7554/eLife.58989, PMID: 
32510329

Monod M, Blenkinsop A, Xi X, Hebert D, Bershan S, Tietze S, Baguelin M, Bradley VC, Chen Y, Coupland H, 
Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin HJT, Elsland SL, Vollmer MAC, 
Weber S, et al. 2021. Age groups that sustain resurging COVID-19 epidemics in the United States. Science 
371:eabe8372. DOI: https://doi.org/10.1126/science.abe8372

O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, Fontanet A, Cauchemez S, 
Salje H. 2021. Age-Specific mortality and immunity patterns of SARS-cov-2. Nature 590:140–145. DOI: https://​
doi.org/10.1038/s41586-020-2918-0, PMID: 33137809

Orner EP, Rodgers MA, Hock K, Tang MS, Taylor R, Gardiner M, Olivo A, Fox A, Prostko J, Cloherty G, 
Farnsworth CW. 2021. Comparison of SARS-cov-2 IgM and IgG seroconversion profiles among hospitalized 
patients in two us cities. Diagnostic Microbiology and Infectious Disease 99:115300. DOI: https://doi.org/10.​
1016/j.diagmicrobio.2020.115300, PMID: 33388575

Prete CA, Buss LF, Buccheri R, Abrahim CMM, Salomon T, Crispim MAE, Oikawa MK, Grebe E, da Costa AG, 
Fraiji NA, do P S S Carvalho M, Whittaker C, Alexander N, Faria NR, Dye C, Nascimento VH, Busch MP, 
Sabino EC. 2022. Reinfection by the SARS-cov-2 gamma variant in blood donors in manaus, Brazil. BMC 
Infectious Diseases 22:127. DOI: https://doi.org/10.1186/s12879-022-07094-y, PMID: 35123418

Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, Fontana M, Smit A, Sackville-West JE, 
Cutino-Moguel T, Maini MK, Chain B, Noursadeghi M, Network Uc, Brooks T, Semper A, Manisty C, Treibel TA, 
Moon JC, Investigators Uc, et al. 2021. Prior SARS-cov-2 infection rescues B and T cell responses to variants 
after first vaccine dose. Science 372:eabh1282. DOI: https://doi.org/10.1126/science.abh1282, PMID: 
33931567

Shioda K, Lau MSY, Kraay ANM, Nelson KN, Siegler AJ, Sullivan PS, Collins MH, Weitz JS, Lopman BA. 2021. 
Estimating the cumulative incidence of SARS-cov-2 infection and the infection fatality ratio in light of waning 
antibodies. Epidemiology 32:518–524. DOI: https://doi.org/10.1097/EDE.0000000000001361, PMID: 
33935138

Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, 
MacCamy AJ, Feng J, Mize G, De Rosa SC, Finzi A, Lemos MP, Cohen KW, Moodie Z, McElrath MJ, 
McGuire AT. 2021. Mrna vaccination boosts cross-variant neutralizing antibodies elicited by SARS-cov-2 
infection. Science 372:eabg9175. DOI: https://doi.org/10.1126/science.abg9175, PMID: 33766944

Stone M, Grebe E, Sulaeman H, Di Germanio C, Dave H, Kelly K, Biggerstaff B, Crews BO, Tran N, Jerome KR, 
Denny TN, Hogema B, Destree M, Jones JM, Thornburg N, Simmons G, Krajden M, Kleinman S, Dumont LJ, 
Busch MP. 2021. Evaluation of Commercially Available High-Throughput SARS-CoV-2 Serological Assays for 
Serosurveillance and Related Applications. medRxiv. DOI: https://doi.org/10.1101/2021.09.04.21262414

Takahashi S, Greenhouse B, Rodríguez-Barraquer I. 2020. Are seroprevalence estimates for severe acute 
respiratory syndrome coronavirus 2 biased? The Journal of Infectious Diseases 222:1772–1775. DOI: https://​
doi.org/10.1093/infdis/jiaa523, PMID: 32856712

Takahashi S, Peluso MJ, Hakim J, Turcios K, Janson O, Routledge I, Busch MP, Hoh R, Tai V, Kelly JD, Martin JN, 
Deeks SG, Henrich TJ, Greenhouse B, Rodríguez-Barraquer I. 2021. SARS-CoV-2 Serology across Scales: A 
Framework for Unbiased Seroprevalence Estimation Incorporating Antibody Kinetics and Epidemic Recency. 
medRxiv. DOI: https://doi.org/10.1101/2021.09.09.21263139

https://doi.org/10.7554/eLife.78233
https://doi.org/10.1093/cid/ciab004
https://doi.org/10.2807/1560-7917.ES.2021.26.12.2100276
https://doi.org/10.2807/1560-7917.ES.2021.26.12.2100276
http://www.ncbi.nlm.nih.gov/pubmed/33769251
https://doi.org/10.7554/eLife.58989
http://www.ncbi.nlm.nih.gov/pubmed/32510329
https://doi.org/10.1126/science.abe8372
https://doi.org/10.1038/s41586-020-2918-0
https://doi.org/10.1038/s41586-020-2918-0
http://www.ncbi.nlm.nih.gov/pubmed/33137809
https://doi.org/10.1016/j.diagmicrobio.2020.115300
https://doi.org/10.1016/j.diagmicrobio.2020.115300
http://www.ncbi.nlm.nih.gov/pubmed/33388575
https://doi.org/10.1186/s12879-022-07094-y
http://www.ncbi.nlm.nih.gov/pubmed/35123418
https://doi.org/10.1126/science.abh1282
http://www.ncbi.nlm.nih.gov/pubmed/33931567
https://doi.org/10.1097/EDE.0000000000001361
http://www.ncbi.nlm.nih.gov/pubmed/33935138
https://doi.org/10.1126/science.abg9175
http://www.ncbi.nlm.nih.gov/pubmed/33766944
https://doi.org/10.1101/2021.09.04.21262414
https://doi.org/10.1093/infdis/jiaa523
https://doi.org/10.1093/infdis/jiaa523
http://www.ncbi.nlm.nih.gov/pubmed/32856712
https://doi.org/10.1101/2021.09.09.21263139


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 24 of 53

Appendix 1
Validation of the obtained attack rates and IFRs
The seroprevalence and IFRs obtained in December 2020 estimated with our seroreversion correction 
model were validated using a smaller threshold of 0.1 and correcting only for sensitivity and 
specificity, without explicitly correcting for seroreversion (Appendix 1—figure 22, Supplementary 
file 1). Even though this approach underestimates the seroprevalence (thus overestimates the IFR) 
because a fraction of previously seropositive donors had already seroreverted by December 2020 
(leading to a significant number of false negative test results), the obtained attack rates and IFRs 
were similar to the estimates of our model. The inferred seroprevalence for Manaus and Curitiba in 
December 2020 was, respectively, 61.0% (95% CrI 56.5–65.4%) and 13.4% (95% CrI 10.0–17.2%), 
compatible with the estimates of our seroreversion correction model (Figure 2, Table 1) given that 
these quantities underestimate the seroprevalence due to waning. The IFR pattern across cities was 
also similar in this analysis, being higher in Curitiba and smaller in Manaus for almost all age groups.

An alternative approach to estimating the attack rate in December 2020, in the face of waning 
antibodies and falling assay sensitivity, is to calculate the IFR early in the epidemic, prior to significant 
waning, and extrapolate the number of future cases from the reported death time series. To further 
validate the attack rates, we calculated the age-specific IFRs in June 2020 (when less seroreversion is 
expected) for the age range eligible to donate blood and extrapolated using only the deaths within 
this age bracket. As such, the seroprevalence obtained for the other months is based solely on the 
number of deaths and the IFR inferred for June 2020 (Appendix 1—figure 23). This approach led 
to an estimated seroprevalence of 90.8% (95% CrI 78.1–107.7%) and 10.9% (95% CrI 1.2–28.0%) in 
Manaus and Curitiba, respectively, in December 2020, which are compatible with our estimates if 
confidence intervals are considered. Nevertheless, this approach has the limitation of assuming a 
constant IFR through time and only using a small amount of the total available serologic data.

To validate the inferred cumulative attack rate in November 2020 prior to the Gamma-dominated 
second wave and also in April 2021, following this second wave, we re-tested 996 samples from 
November 2020 in Manaus and tested 769 samples from April 2021 using the Abbott anti-S SARS-
CoV-2 IgG CIMA (Appendix  1—figure 24), which showed less waning than the Abbott anti-N 
assay used in this work (Stone et al., 2021). As such, the usage of the anti-S assay reduced the 
difference between the seroprevalence obtained without explicitly correcting for seroreversion 
and the true seroprevalence. A sensitivity of 94.0% was obtained by testing convalescent plasma 
donors with this assay (Supplementary file 1), and the specificity was assumed as 100%. The crude 
prevalence of anti-S antibodies was 56.7% (95% CrI 53.6–59.8%) in November 2020 and 78.7% 
(95% CrI 75.6–81.4%) in April 2021. After correcting for sensitivity and reweighting by age and sex, 
the seroprevalence estimate was 60.0% (95% CrI 58.4–62.2%) in November 2020 and 83.3% (95% 
CrI 81.1–86.4%) in April 2021, compared to 68.0% (95% CrI 64.2–72.7%) and 99.5% (95% CrI 94.0–
106.6%) estimated using our seroreversion correction model for November 2020 and March 2021. 
Note that the attack rate estimated by our model considers both infections and reinfections among 
seronegative individuals, hence, the confidence intervals higher than 100%. Of note, we measured 
the half-life of this assay using the serial repeat blood donors data available in Prete et al., 2022, 
obtaining a median half-life of 124.5 (interquartile range 74.7–258.0) days. In November, 6 months 
following the first wave in Manaus, some cases of seroreversion are expected to have occurred; as 
such, this remains an underestimate of the true cumulative attack rate by this point. Assuming no 
reinfections before November, the smaller seroprevalence measured with the anti-S assay suggests 
that 8.0% of previously infected donors seroreverted before November 2020.

Derivation of the expression of the probability of a positive test
In this section, we derive the expression of the probability of a positive test ‍θ[n, a]‍ in terms of 
the age-specific weekly incidence ‍u[n, a]‍. Let us denote the negation of an event ‍E‍ as ‍E‍, and the 
probability of an event ‍E‍ as ‍P

{
E
}
‍. To shorten the next equations, we also denote ‍T

+ (
n, a

)
‍ the event 

of a test applied to an individual from age-sex group ‍a‍ at week ‍n‍ being positive, ‍I
(
n, a

)
‍ the event 

of an individual from age-sex group ‍a‍ being infected at week ‍n‍ such that the incidence at week ‍n‍ 
and age-sex group ‍a‍ is ‍P

{
I
(
n, a

)}
‍, ‍I

(
1: n, a

)
=
∪n

k=1 I
(
n, a

)
‍ the event of an individual from group 

‍a‍ having being infected before week ‍n‍ and ‍C
(
a
)
‍ the event of an infected individual from group ‍a‍ 

seroconverting after infection. We consider that the initial sensitivity ‍se0‍ (i.e. the sensitivity right after 
seroconversion) and specificity ‍sp‍ of the assay do not depend on the age-sex group or on time.

https://doi.org/10.7554/eLife.78233


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Prete, Buss, Whittaker et al. eLife 2022;11:e78233. DOI: https://​doi.​org/​10.​7554/​eLife.​78233 � 25 of 53

The probability ‍θ
[
n, a

]
‍ of a test applied to a person from age-sex group ‍a‍ being positive at week 

‍n‍ is

	﻿‍ θ
[
n, a

]
= P

{
T + (

n, a
)}

= P
{
T + (

n, a
)

, I
(
1: n, a

)}
+ P

{
T + (

n, a
)

, I
(
1: n, a

)}
.‍�

The first term can be decomposed as

	﻿‍

P
{
T + (

n, a
)

, I
(
1: n, a

)}
=

∑n
k=1 P

{
T + (

n, a
)

, I
(
1: n, a

)
| I
(
k, a

)}
P
{

I
(
k, a

)}
=

∑n
k=1 P

{
T + (

n, a
)

| I
(
k, a

)}
P
{

I
(
k, a

)}
. ‍�

The term ‍P
{
T + (

n, a
)

| I
(
k, a

)}
‍ can be further decomposed into

	﻿‍

P
{
T + (

n, a
)

| I
(
k, a

)}
= P

{
T + (

n, a
)

| I
(
k, a

)
, C

(
a
)}

P
{
C
(
a
)

| I
(
k, a

)}
+

P
{
T + (

n, a
)

| I
(
k, a

)
, C

(
a
)}

P
{
C
(
a
)

| I
(
k, a

)}
. ‍�

Assuming that an infected individual that did not seroconvert cannot have a positive test at 
any instant, we have ‍P

{
T + (

n, a
)

| I
(
k, a

)
, C

(
a
)}

= 0‍. We approximate ‍P
{
T + (

n, a
)

| I
(
k, a

)}
‍ to 

‍p
+ [

n − k
]
‍ (i.e. the probability of a test being positive ‍n − k‍ weeks after seroconversion), neglecting 

the delay between infection and seroconversion. Since the mean delay between infection and 
seroreversion is smaller than 8 days as explained above, and since crude seroprevalence data are 
discretized using weeks as time unit, this delay has small influence on seroprevalence estimates. 
Because ‍P

{
C
(
a
)

| I
(
k, a

)}
‍ is the sensitivity ‍se0‍ of the assay and ‍P

{
I
(
k, a

)}
‍ is the incidence ‍u

[
k, a

]
‍, 

we have ‍P
{
T + (

n, a
)

, I
(
1: n, a

)}
‍ ‍= se0

∑n
k=1 p+ [

n − k
]

u
[
k, a

]
‍.

The second term of ‍θ
[
n, a

]
‍ is

	﻿‍ P
{
T + (

n, a
)

, I
(
1: n, a

)}
= P

{
T + (

n, a
)

| I
(
1: n, a

)}
P
{

I
(
1: n, a

)}
=
(
1 − sp

) (
1 −

∑n
k=1 u

[
k, a

])
,‍�

where ‍sp = P
{
T + (

n, a
)

| I
(
1: n, a

)}
‍ is the specificity of the assay, which does not change over 

time.
Therefore, a simpler expression for ‍θ

[
n, a

]
‍ is obtained:

	﻿‍ θ
[
n, a

]
= se0

∑n
k=1 p+ [

n − k
]

u
[
k, a

]
+
(
1 − sp

) (
1 −

∑n
k=1 u

[
k, a

])
.‍�

Description of the method used to validate the seroprevalence and IFR 
for 2020
To validate the seroprevalence and IFRs estimated for 2020, we recalculate these quantities by 
measuring the prevalence in December 2020 with a smaller threshold equal to 0.1 to partially 
account for seroreversion and correct for sensitivity and specificity, without explicitly incorporating a 
method to correct for seroreversion (Appendix 1—figure 23).

Let ‍TP, FN, FP‍, and ‍TN‍ be, respectively, the number of true positives, false negatives, false positives 
and true negatives obtained from plasma donors and the pre-pandemic cohort in Manaus using a 
threshold 0.1. We use a uniform distribution in the interval [0, 1] as prior for the seroprevalence 
of age-sex group ‍a‍, and also for the sensitivity ‍se‍ and specificity ‍sp‍. The posterior distribution of 
the sensitivity and specificity is, respectively, ‍Beta

(
1 + TP, 1 + FN

)
‍ and ‍Beta

(
1 + TN, 1 + FP

)
‍. The 

seroprevalence ‍ρ
[
a
]
‍ of age-sex group ‍a‍ is distributed according to a binomial distribution of size ‍T

[
a
]
‍ 

(the number of tests for this age-sex group) and probability ‍se × ρ
[
a
]

+
(
1 − sp

) (
1 − ρ

[
a
])

‍. To draw 
a posterior sample of ‍ρ

[
a
]
‍, we draw a posterior sample of ‍se‍ and ‍sp‍ and from the auxiliary variable 

‍Z
[
a
]
∼ Beta

(
T+ [

a
]

+ 1, T
[
a
]
− T+ [

a
]

+ 1
)
‍, which represents the raw measured prevalence. Then, 

we compute the prevalence adjusted by sensitivity and specificity through 
‍
ρ
[
a
]

=
(

0, Z
[
a
]
+sp−1

se+sp−1

)
.
‍
 

Finally, a sample of the IFR is then drawn from ‍Beta
(
1 + D

[
a
]

, 1 +
⌊
pop

[
a
]
× ρ

[
a
]⌋

− D
[
a
])

‍.

Selection of SARI hospitalisations and deaths to estimate the IFR and 
IHR
In the first months of the SARS-CoV-2 epidemic in Brazil, a small proportion of SARI cases were 
tested for SARS-CoV-2, leading to a large number of non-notified deaths. For this reason, instead 
of using only COVID-19 confirmed hospitalisations or deaths to estimate the IFR and IHR, we also 
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included SARI hospitalisations or deaths with unknown aetiology. This approach was proposed in de 
Souza et al., 2020. In this section, we investigate the validity of this approach by comparing SARI 
hospitalisations and deaths in the eight cities recorded between 2013 and 2021.

Appendix  1—figure 25 shows the monthly number of SARI deaths from 2013 to 2021 
disaggregated by case classification (confirmed SARS-CoV-2 infection, infection confirmedly caused 
by other respiratory viruses, and cases with unknown or missing aetiology). The monthly number of 
SARI deaths increased abruptly in March 2020 due to the SARS-CoV-2 epidemic to 3810, 14.5 times 
larger than the previous peak of SARI cases in April 2016. Despite that only 58.6% of the SARI deaths 
in March 2020 were confirmed as COVID-19 cases, and 39.7% had unknown or missing aetiology, 
suggesting that most SARI deaths with unknown aetiology were non-notified COVID-19 deaths. 
Even if there was an epidemic of another respiratory virus in March 2020 that caused a number of 
cases similar to April 2016, it would only explain 17.4% of the SARI cases with unknown or missing 
aetiology in March 2020.

The proportion of each case classification among monthly SARI deaths is shown in Appendix 1—
figure 4b. The proportion of deaths with unknown or missing aetiology had a peak in September 
2020, decreasing over time in the following months likely due to the increasing availability of tests. 
Therefore, the effect of taking SARI into account is more important in the first year of the epidemic 
in Brazil.

Similar patterns are observed for SARI hospitalisations, as shown in Appendix  1—figure 26. 
However, SARI hospitalisations in March 2020 are only 4.7 times larger than the previous peak of 
monthly SARI hospitalisations in April 2016, suggesting that our approach is more sensitive to SARI 
cases caused by other respiratory viruses when hospitalisations are used. Nevertheless, an epidemic 
of other respiratory viruses similar to the historical peak of SARI cases in April 2016 would only 
explain 42% of the SARI cases with unknown or missing aetiology in March 2020.

Method used to estimate ‍p+ [
n
]
‍ from repeat blood donors

Here we summarise the step-by-step procedure used to estimate ‍p
+ [

n
]
‍, the probability of an 

individual remaining seropositive ‍n‍ weeks after seroconversion, described in Methods. The algorithm 
receives as inputs: The set of serial donations from ‍Ndonors‍ repeats blood donors who have at least 
one positive result and a second result with decaying S/C; the daily incidence over time for the repeat 
blood donors cohort ‍urepeat

[
n
]
‍ (see Methods); the number of samples ‍Nsamples‍ used to estimate the 

probability distribution of the time to seroreversion. The output of the algorithm is an estimate of 

‍p
+ [

n
]
‍.

The algorithm is described below:
•	 For ‍i ∈ 1, 2, · · · , Ndonors :‍

	○ Calculate the date of seroreversion for donor ‍i‍ by computing the instant where the expo-
nential curve that passes through the last positive donation and first negative donation 
after seroconversion (if seroreversion occurred) or the two last positive donations cross the 
threshold, as illustrated in Appendix 1—figure 10. Denote it by ‍t

−
i .‍

	○ Denote ‍tmin‍ as the last negative result of the donor before seroconversion or set ‍tmin‍ as 
1 March 2020, if the donor had no positive results before seroconversion. Denote ‍tmax‍ as 
the date of the first positive result. The unobserved date of seroconversion belongs to the 
interval ‍

[
tmin, tmax

]
‍ and its probability mass function is given by

	﻿‍

pi
[
n
]

=





urepeat
[
n
]

tmax∑
k=tmin

urepeat
[
k
] , tmin ≤ n ≤ tmax

0 , otherwise

.

‍�

	○ Generate ‍Nsamples‍ samples ‍∆t
(

1
)

i ,∆t
(

2
)

i , · · · ,∆t
(

Nsamples
)

i ‍ from ‍∆ti = t−i − t+i ‍, where ‍t
+
i ∼ pi

[
n
]
‍.

•	 Calculate the empirical probability mass function of ‍∆ti‍ by computing the empirical histogram 

of the generated samples ‍∆t
(

1
)

i ,∆t
(

2
)

i , · · · ,∆t
(

Nsamples
)

i ‍ and denote it as ‍p
−
day

[
n
]
‍.

•	 Convert ‍p
−
day

[
n
]
‍ from days to weeks, obtaining ‍p

−
week

[
n
]
‍:
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	﻿‍
p−week

[
n
]

= 1
7

7∑
i=1

7
(

n+1
)

∑
j=7n+1

p−day
[
j − i

]
.
‍�

•	 Calculate the probability of an individual remaining seropositive ‍n‍ weeks after seroconversion 

‍p
+ [

n
]
‍ as

	﻿‍
p+ [

n
]

= 1 −
n∑

i=1
p−week

[
k
]

.
‍�

Description of the Bayesian model used to estimate the seroprevalence
We now present an objective description of the seroreversion correction model introduced in 
Methods. This is a Bayesian model that produces age- and sex-specific seroprevalence estimates 
corrected for seroreversion, sensitivity, and specificity. The model receives as inputs: The probability 
of seropositivity ‍n‍ weeks after seroconversion ‍p

+ [
n
]
‍; the weekly number of tests ‍T

[
n, a

]
‍ and weekly 

number of positive tests ‍T
+ [

n, a
]
‍ at week ‍n‍ for age-sex group ‍a‍; the number of true positives (‍TP‍), 

true negatives (‍TN‍), false positives (‍FP‍) and false negatives (‍FN‍) used to determine the sensitivity 
and specificity of the assay; the maximum seroprevalence allowed ‍b‍. In this work, we use ‍b = 2‍ 
to partially account for reinfections. The model generates as output posterior samples from the 
weekly incidence ‍u

[
n, a

]
‍ for age-sex group ‍a = 1, 2, · · · , M ‍ and week ‍n = 1, 2, · · · , N ‍. For this reason, 

the model generates posterior samples from the sensitivity ‍se0,‍ the specificity ‍sp‍, the normalised 
incidence ‍unorm

[
n, a

]
‍, and the final seroprevalence ‍ρmax

[
a
]
‍, obtaining ‍u

[
n, a

]
‍ from these parameters.

The Bayesian model is described below:
•	 Prior distributions:

	﻿‍ se0 ∼ Beta
(
1 + TP, 1 + FN

)
‍�

	﻿‍ sp ∼ Beta
(
1 + TN, 1 + FP

)
‍�

	﻿‍ unorm
[
1: N, a

]
∼ Dirichlet

(
1, 1, · · · , 1

)
∀a‍�

	﻿‍ ρmax
[
a
]
∼ Uniform

(
0, b

)
∀a‍�

•	 Auxiliary variables:

	﻿‍ u
[
n, a

]
= unorm

[
n, a

]
× ρmax

[
a
]

, ∀n, a‍�

	﻿‍
θ
[
n, a

]
= se0

n∑
k=1

p+ [
n − k

]
u
[
k, a

]
+
(
1 − sp

)(
1 −

n∑
k=1

u
[
k, a

])
∀n, a

‍�

•	 Likelihood:

	﻿‍ T+ [
n, a

]
∼ Binomial

(
T
[
n, a

]
, θ

[
n, a

])
∀n, a‍�

We note the estimated seroprevalence is the cumulative sum of the obtained incidence ‍u
[
n, a

]
‍ and 

can therefore be larger than 1 due to reinfections. Also, since this model assumes all infections occur 
in seronegative donors, ‍u

[
n, a

]
‍ can be interpreted as the incidence in seronegative donors, and 

reinfections among seropositive individuals are not detected.

Summary of the method used to estimate the lower bound for the 
attack rate of the Gamma VOC in Manaus and the upper bound for the 
IFR
We now present a summary of the procedure used to infer bounds for the age-specific attack rate 
and IFR of the Gamma-dominated wave in Manaus explained in Methods. This procedure was also 
used to estimate the IHR, but in this case, the number of hospitalisations was used instead of the 
number of deaths.

The algorithm is executed independently for each age group and receives as inputs: The number 
of deaths ‍D‍ with symptom onset between 16 December 2020 and 15 March 2021; the monthly 
number of positive tests ‍T

+ [
n
]
‍ and the monthly number of tests ‍T

[
n
]
‍ for ‍n ∈

{
12, 13, 14, 15

}
‍ , i.e., 

from December 2020 (‍n = 12‍ to March 2021 (‍n = 15‍); the number of true positives (‍TP‍) and false 
negatives (‍FN‍) from the convalescent plasma donors cohort; population size ‍pop‍.
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The algorithm produces as outputs posterior samples of the maximum attack rate for the Gamma 
wave in Manaus (‍ARmax‍) and the minimum IFR (‍IFRmin‍) but also generates posterior samples from 
the following auxiliary variables: The incidence between months ‍n‍ and ‍n + 1‍ denoted as ‍u

[
n
]
‍, and 

the seroprevalence in December 2020 (month ‍n = 12‍) denoted as ‍ρDecember‍ .
First, we generate posterior samples from ‍ρDecember‍ and ‍u

[
n
]
‍ using the Bayesian model described 

below:
•	 Prior distributions:

	﻿‍ ρDecember ∼ Uniform
(
0, 1

)
‍�

	﻿‍
(
unorm

[
12
]

, unorm
[
13

]
, unorm

[
14

])
∼ Dirichlet

(
1, 1, 1

)
‍�

	﻿‍ umax ∼ Uniform
(
0, 1

)
‍�

•	 Auxiliary variables:

	﻿‍ u
[
n
]

= unorm
[
n
]
× umax

[
a
]

, n ∈
{

12, 13, 14
}
‍�

•	 Likelihood:

	﻿‍
T+ [

n, a
]
∼ Binomial

(
T
[
n
]

, ρDecember +
n−1∑
k=12

u
[
k
])

, n ∈
{

12, 13, 14, 15
}
‍�

Then, for each posterior sample generated by the Bayesian model:
•	 Draw a sample from ‍se ∼ Beta

(
1 + TP, 1 + FN

)
‍.

•	 Compute the incidence corrected by sensitivity ‍u
corr [n] = u

[
n
]

se ‍ .

•	 Compute 
‍
�AR =

14∑
n=12

ucorr [n] .
‍

•	 Compute ‍ARmax = ρDecember + ÂR‍ .
•	 Draw a sample from the lower bound of the IFR as

	﻿‍ IFRmin ∼ Beta
(
1 + D, 1 + ⌊ARmax × pop⌋ − D

)
.‍�
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Appendix 1—figure 1. Monthly frequency of each lineage among cases confirmed by PCR for each state from 
March 2020 to March 2021. Data was extracted from http://www.genomahcov.fiocruz.br/. Lineage data was not 
available for the state of Pernambuco.
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Appendix 1—figure 2. Flowchart describing the procedure used to select blood samples. Samples were selected 
based on the residential postal code of blood donors to generate a representative set of test results. In Manaus, 
samples were selected consecutively without any postal code restriction, as postal codes could not be reliably 
collected in this city.
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Appendix 1—figure 3. Comparison of age structure in blood donors tested for SARS-CoV-2 IgG antibodies 
population size projections for 2020 based on the last available 2010 census.
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Appendix 1—figure 4. Comparison of sex structure in blood donors tested for SARS-CoV-2 IgG antibodies and 
the sex distribution at the last Brazilian census (2010).

https://doi.org/10.7554/eLife.78233
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Appendix 1—figure 5. Comparison of self-declared skin colour among blood donors tested for anti-SARS-CoV-2 
IgG antibody and the distribution of skin colour at the last available Brazilian census (2010).

https://doi.org/10.7554/eLife.78233
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Appendix 1—figure 6. Comparison of income per capita of the census tract of selected blood donors and the 
income per capita distribution at the last available Brazilian census (2010) for each municipality. Information on 
census tracts was not available for Manaus.
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Appendix 1—figure 7. Monthly number of tests disaggregated by age group and sex. Around 1,000 monthly 
tests were applied between March 2020 and March 2021, except for Recife where tests were applied until February 
2021.
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Appendix 1—figure 8. Monthly antibody signal-to-cutoff (S/C) reading in each of the eight cities. Each point 
represents the test result of a blood donor. The dashed lines represent the thresholds 1.4 (the threshold 
recommended by the manufacturer), 0.49 (the lower threshold recommended by the manufacturer and used in the 
main analyses of this paper), and 0.1, which we use in validation analyses.
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Appendix 1—figure 9. Time series of the proportional distributions of raw signal-to-cutoff (S/C) readings in 
monthly blood donor samples. The thresholds were chosen as follows: 1.4 is the manufacturer’s recommended 
upper threshold for assay positivity, which maximises specificity; 0.49 is the manufacturer’s lower recommended 
threshold, which improves sensitivity following antibody waning; and 0.1 S/C is an even lower threshold used 
for this analysis, which still provides specificity of 86% (112 false positives in 821 pre-pandemic blood donation 
samples) but further improves sensitivity in the face of antibody waning.
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Appendix 1—figure 10. Illustration of the procedure used to estimate the time of seroreversion for each 
repeat blood donor. This figure shows three donors with the same idealized signal-to-cutoff (S/C) curve but 
different donation dates. The first donor was discarded because the observed S/C was rising. The second donor 
did not become negative yet after seroconversion, thus the seroreversion date is estimated by extrapolating 
an exponential curve that contains the last two positive results. The third donor became negative after 
seroconversion; hence, the seroreversion date was estimated by applying an exponential interpolation that 
contains the last positive result and the first negative result after seroconversion.
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Appendix 1—figure 12. Cumulative seroprevalence estimated with 95% credible intervals (ribbons) using three 
different methods to calculate the time-to-seroreversion distribution. For the analyses in this paper, we consider 
the seroprevalence curve in green, obtained using repeat donors to estimate the time to seroreversion.
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Appendix 1—figure 13. Measured weekly crude seroprevalence compared to the crude seroprevalence 
reconstructed by our proposed seroreversion correction model. The high similarity between both quantities shows 
that the seroprevalence estimated by the model is compatible with the observations.
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Appendix 1—figure 14. Serial donations of 218 convalescent plasma donors (symptomatic and known date of 
onset, PCR-positive) and 7675 repeat whole blood donors (unknown if symptomatic or date of onset, unknown 
PCR status) included in this study. These cohorts were used to determine the rate of antibody waning and time-to-
seroreversion distributions for the anti-nucleocapsid chemiluminescent microparticle immunoassays.
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Appendix 1—figure 15. Mortality by severe acute respiratory infection per million inhabitants in each of the eight 
cities without any age standardisation.
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Appendix 1—figure 16. Seroprevalence estimates disaggregated by age and sex for the eight cities. As in 
Figure 2D, three seroprevalence estimates are shown: (i) crude seroprevalence; (ii) seroprevalence adjusted 
for sensitivity, specificity, and reweighted by age and sex, but not corrected for seroreversion; and (iii) adjusted 
seroprevalence estimated by our seroreversion corrected model (continuous curves), which accounts for 
seroreversion in addition to sensitivity, specificity, and age-sex distribution. This seroprevalence estimate consists 
in the sum of infections and reinfections among seronegative donors; hence, it can be larger than 100%.
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Appendix 1—figure 17. Crude monthly seroprevalence disaggregated by sex. Boxplots represent the crude 
seroprevalence obtained by aggregating all months, defined as the proportion of positive tests combining all 
months.
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Appendix 1—figure 18. Crude monthly seroprevalence disaggregated by age. Boxplots represent the crude 
seroprevalence obtained by aggregating all months, defined as the proportion of positive tests combining all 
months.
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Appendix 1—figure 19. Estimated in-hospital fatality rate (HFR) over time in Manaus. The HFR was calculated by 
dividing the number of deaths by the number of hospitalisations using a moving window of 14 days. The HFR had 
a peak in the Gamma-dominated wave in January 2021 in all age groups.
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Appendix 1—figure 20. Seroprevalence in December 2020 disaggregated by race and education level. The 
seroprevalence was estimated using a threshold of 0.1 signal to cutoff and correcting for sensitivity and specificity, 
without any explicit correction for seroreversion. To aid visualization, we merged the White and East Asian races 
and discarded Indigeneous individuals. Information on education level is available for very few donors in Manaus, 
hence, the large confidence intervals.
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Appendix 1—figure 21. Abbott SARS-CoV-2 anti-nucleocapsid half-life and peak signal to cutoff (S/C) estimated 
in convalescent plasma by hospitalisation status. Instead of estimating one half-life for each plasma donor, a 
different half-life was calculated for each pair of consecutive donations with decaying S/C reading. Box plots show 
the median (central lines), interquartile range (hinges), and range extending to 1.5 times the interquartile range 
from each hinge (whiskers).
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Appendix 1—figure 22. Infection fatality rate (IFR) and seroprevalence measured in December 2020 using 0.1 as 
threshold and correcting for sensitivity, specificity, and reweighting by age and sex. No seroreversion correction 
was performed to estimate the seroprevalence. That the wide confidence intervals for the IFR of Curitiba and Belo 
Horizonte are due to the small number of infections and deaths in these cities.
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Appendix 1—figure 23. Validation of the seroprevalence estimates using infection fatality rate (IFR) extrapolation. 
(A) Seroprevalence obtained by extrapolating the IFR measured in June 2020 to the following months. The 
seroprevalence was obtained by dividing the cumulative number of deaths in each month by the IFR estimated for 
June 2020. (B) Age-specific IFR estimated in June 2020. Cities with small attack rate in June 2020 as Belo Horizonte 
and Curitiba present a large uncertainty in the estimated IFR.
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Appendix 1—figure 24. Distribution of signal to cutoff (S/C) in Manaus obtained in November 2020 and April 
2021 with the anti-spike assay. Each point represents the test result for a blood donor. Using a threshold of 50 
(dashed line), the crude seroprevalence was 56.7% in November and 78.7% in April. Adjusting for sensitivity, these 
estimates increase to 60.0 and 83.3%.
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Appendix 1—figure 25. Severe acute respiratory infection (SARI) deaths disaggregated by case classification over 
time. (A) Monthly number of SARI deaths in the eight cities for each case classification recorded in the SIVEP-
Gripe dataset from 2013 to 2021. (B) Proportion of SARI deaths following each classification among all SARI deaths 
recorded in that month.
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Appendix 1—figure 26. Severe acute respiratory infection (SARI) hospitalisations disaggregated by case 
classification over time. (A) Monthly number of SARI hospitalisations in the eight cities for each case classification 
recorded in the SIVEP-Gripe dataset from 2013 to 2021. (B) Proportion of SARI hospitalisations following each 
classification among all SARI hospitalisations recorded in that month.
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