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Genetic analyses of the electrocardiographic
QT interval and its components identify
additional loci and pathways

A list of authors and their affiliations appears at the end of the paper

The QT interval is an electrocardiographic measure representing the sum of
ventricular depolarization and repolarization, estimated by QRS duration and
JT interval, respectively. QT interval abnormalities are associated with poten-
tially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses
(>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT
and QRS, respectively, including a male-specific X-chromosome locus. Using
gene-based rare-variant methods, we identify associations with Mendelian
disease genes. Enrichments are observed in established pathways for QT and
JT, and previously unreported genes indicated in insulin-receptor signalling
and cardiac energy metabolism. In contrast for QRS, connective tissue com-
ponents andprocesses for cell growth and extracellularmatrix interactions are
significantly enriched. We demonstrate polygenic risk score associations with
atrial fibrillation, conduction disease and sudden cardiac death. Prioritization
of druggable genes highlight potential therapeutic targets for arrhythmia.
Together, these results substantially advance our understanding of the genetic
architecture of ventricular depolarization and repolarization.

The electrocardiogram (ECG) is a non-invasive tool that captures car-
diac electrical activity1. TheQT interval (QT) represents the sumof ECG
measures that estimate intervals for ventricular depolarization (QRS
duration; QRS) and repolarization (JT interval; JT) at an organ level
(Fig. 1). The QT is used to diagnose congenital long or short QT syn-
dromes and acquired QT-prolongation, which are associated with an
increased risk for ventricular arrhythmia and sudden cardiac death
(SCD)2–5. Susceptibility to congenital long QT syndrome (LQTS) is
mediated by rare and common variation at 15 genes including KCNQ1,
KCNH2, and SCN5A6,7. However, 25-30% of LQTS cases have a negative
genetic test and LQTS genes do not adequately explain the heritability
of the QT in the general population, or predisposition to QT-
prolongation from precipitating factors such as medication8,9.

QT and JT phenotypes are highly correlated, whereas QRS has a
modest positive and a negligible negative correlation with QT and
JT, respectively10. While at a cellular level, repolarization starts
directly after depolarization of the first ventricular cardiomyocyte,

at an organ level the majority of ventricular repolarization occurs
during the JT interval. Therefore, investigation of the QT and its
individual components has the potential to identify both shared and
specific biological mechanisms for ventricular depolarization and
repolarization. Genome-wide association studies (GWAS) for QT
and JT have reported common variants at genes regulating cardiac
ion channels, calcium-handling proteins and myocyte structure11,12.
GWAS for QRS have highlighted genes for sodium channels, kinases
and transcription factors in cardiac embryonic development13,14.
However, a large proportion of the heritability remains unexplained
(~67% for QT, ~83% for QRS), and our limited understanding of the
underlying biological networks restricts the potential translational
opportunities15–17.

We have performed the largest multi-ancestry GWAS meta-
analysis to date for QT, JT, and QRS in over 250,000 individuals, to
discover additional candidate genes and pathways relevant to ven-
tricular depolarization and repolarization, identify new therapeutic
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targets, and test the association of polygenic risk scores (PRSs) with
cardiovascular disease.

Results
Meta-analysis of GWAS
Thirty-five studies contributed to our primary multi-ancestry GWAS
meta-analysis for QT, JT, and QRS, comprising a maximum total of
252,977 individuals of European (84%), Hispanic/Latino (7.7%), African
(6.7%), South and South-East Asian (<1%) ancestries (Supplementary
Data 1–3, Supplementary Note 1). The meta-analysis workflow is sum-
marized in Fig. 2. No evidence of inflation of test statistics was
observed (Supplementary Figs. 1 and 2).

QT GWAS meta-analysis
We discovered 176 genome-wide significant (GWS; P-value
(P) < 5 × 10−8) lead variants at independent autosomal loci (114 unre-
ported) associated with QT in the multi-ancestry meta-analysis
(Table 1, Supplementary Fig. 3a).Of the previously reported loci forQT
or JT (grouped as the phenotypic correlation is high), there was sup-
port for association at 62/66 (93.9%) loci (P < 5 × 10−8). There was
weaker support for association at 3 loci (NRAP, MYH6, NACA,
P < 1.29 × 10−4) and no evidence of support for SUCLA2 (P > 0.05)
(Supplementary Data 4). Ancestry-specific analyses identified addi-
tional unreported loci in European (11),Hispanic/Latino (1), andAfrican
(1) individuals (Supplementary Data 5). All European and African
ancestry-specific lead variants were supported in the multi-ancestry
analysis (P < 5 × 10−5). TheHispanic ancestry locuswasnot supported in
the multi-ancestry analysis (P =0.07), however, the lead variant at this
locus was rare (MAF =0.002) and monomorphic in Europeans.

To identify additional signals, we performed joint and conditional
analyses with Genome-wide Complex Trait Analysis (GCTA)18 using
summary statistics from the European ancestry meta-analysis with the
reference sample from UK Biobank (52,230 individuals of European
ancestry). These analyses identified an additional 65 conditionally
independent variants at 38 loci at Pjoint < 5 × 10−8 (Supplemen-
tary Data 6).

JT and QRS GWAS meta-analyses
For JT and QRS, we identified 155 and 121 lead variants at independent
autosomal loci (96 and 77 unreported) in multi-ancestry meta-analyses
respectively (Table 1, Supplementary Fig. 3, Supplementary Data 7 and
8). Ancestry-specific analyses identified additional unreported loci
(N = 18) in European (4 JT, 6 QRS), African (4 JT, 2 QRS) and Hispanic/
Latino (1 JT, 1QRS) ancestries.Of these, 13 lead variants had evidence for
support in themulti-ancestry analysis (P < 5 × 10−5). Joint and conditional
analyses identified an additional 56 and 29 conditionally independent
variants at 32 JT and 18 QRS loci, respectively (Supplementary Data 6).

X-chromosome meta-analyses
X-chromosome analyses (multi-ancestry sample size: 86,600 and
60,343 for separate female and male analyses, respectively) identified
one locus inmales inbothmulti- and Europeanancestrymeta-analyses,
for QT and JT (Table 1, Supplementary Data 5 and 7). There were no
GWS findings for QRS or female X-chromosome analyses, and no
suggestive evidence of association on a lookup of the lead QT/JT var-
iant (rs55891214) in these analyses (P >0.05). rs55891214 is highly
correlated (r2 > 0.9) with lead variants reported in GWAS for serum
testosterone, estradiol levels, male-pattern baldness, and heel bone
mineral density19–22. The nearest gene, FAM9B, is exclusively expressed
in the testis, and together these findings suggest the association may
be driven by serum testosterone levels19,23.

Overlap of genetic contributions and heritability of QT, JT,
and QRS
There was substantial overlap of multi-ancestry JT and QT GWAS loci
(130/200, 65%) but less between QRS and QT (53/243, 21.8%) (overlap:
r2 > 0.1 between lead variants or within ±500 kb). For QRS and JT, there
was overlap at 34 loci, where a lead variant was genome-wide sig-
nificant in both analyses (Supplementary Data 9). Predominantly dis-
cordant (27/34, 79.4%) directions of effect were observed at these lead
variants (Fig. 3). Across all loci for QT, JT and QRS, overlap was
observed with previously reported loci for PR interval (51 (29.1%), 46
(29.7%), 42 (34.7%), respectively) and resting heart rate (58 (33.1%), 57
(36.8%), 46 (38.0%)), demonstrating shared genetic contributions. 13
loci were common to all 5 ECG measures (Supplementary Data 10),
highlighting these loci as integral genetic determinants of global car-
diac electrophysiology. Estimated genetic correlationswere calculated
using LD Score Regression (LDSC)24,25. A strong positive correlation
was observed between QT and JT (rg = 0.91, P < 0.001) and a weak
positive correlation between QT and QRS (rg = 0.17, P = 0.05) (Sup-
plementary Fig. 4). In contrast, a negative genetic correlation was
observed between JT and QRS (rg = −0.25, P =0.003).

SNP-based heritability estimations in Europeans fromUKB for QT,
JT and QRS were 29.3%, 29.5% and 15.0% (standard error [SE]:1%)
respectively. The percentage of overall variance explained by all lead
and conditionally independent variants from the European meta-
analysis was 14.6%, 15.9% and 6.3%. Therefore, these variants explain
49.8%, 53.9%, and 42.0% of the SNP-based heritability of QT, JT and
QRS in the UKB individuals included in the heritability calculations
(Supplementary Note 2).

Gene-based meta-analysis
To investigate whether rare variants (MAF <0.01) in aggregate mod-
ulate ECG traits, we conducted gene-based meta-analyses of rare var-
iants predicted by Variant Effect Predictor (VEP)26 to have high or
moderate impact on protein function, using Sequence Kernel Asso-
ciation Testing (SKAT)27. These analyses discovered 13, 16, and 3 genes
for QT, JT and QRS, respectively (P < 2.5 × 10−6; Bonferroni adjusted for
~20,000 genes). These genes were brought forward for conditional
analyses, and 7, 7 and 2 genes remained associated with QT, JT and
QRS, respectively, after conditioning on the rare variant with the
lowest P-value at each gene (P < 0.05/number of genes) (Table 2).
These results indicate that the gene-based associations were not a
consequence of a single variant with a strong effect. We identified an
association of rare variants in aggregate at Mendelian long-QT syn-
drome (LQTS) genes (KCNQ1 [QT and JT], KCNH2 [QT]). SCN5A was
associated with JT and QRS, however, it did not reach the Bonferroni
corrected threshold for significance for QT. This could be explained by
the discordant directions of effect observed for QRS (Beta [β]: 0.04)
and JT (β:−0.05), which subsequently reduce the strength of the
association observed for QT (β:−0.03). MYH7 and TNNI3K were also
associated with JT. TNNI3K, which was not associated using single
variant analysis, encodes a cardiomyocyte-specific kinase previously

Fig. 1 | Annotation of an example ECG signal. QRS duration and the JT interval
approximate the time periods for ventricular depolarization and repolarization on
the surface ECG. The entire segment from onset of the Qwave to end of the Twave
is the QT interval.
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linked to familial cardiac arrhythmia and dilated cardiomyopathy
(OMIM:613932)28,29.

As several genesmapped to loci implicated in single variant GWAS
analyses, we explored the relationship between these rare gene-based
signals and common (MAF >0.05) or low frequency (0.01 ≤ MAF ≤
0.05) variants. Analyses were repeated in 76,202 individuals fromUKB

conditioning on independent significant variants identified in the
corresponding European GWASmeta-analysis, and residing within the
same locus as the gene. These conditional analyses showed that
associations for KCNQ1, KCNH2, and RNF207 with QT and/or JT were
independent of flanking variants identified by GWAS (Supplementary
Data 11). Because conditional analyses required a large sample with a
shared set of variants, we lacked adequate power to definitively
determine the independence of DLEC1 from nearby common variants.
ForMYH7 and TNNI3K, there were no GWS variants at the locus in our
single-variant meta-analysis.

Variant-level functional annotation
Most multi-ancestry QT lead variants, 160/176 (90.9%), were common,
13 were low frequency and 3 were rare (RUFY1, DNAJB5, CACNB2;
Supplementary Data 5). At 25 loci, a lead variant or proxy (r2 > 0.8) was
annotated with VEP, as missense (N = 24) or stop-gain (N = 1) (Supple-
mentary Data 12a). Ten of these (40%) were predicted by SIFT or
PolyPhen-2 to be “deleterious” or “damaging”. These included:
rs1805128, a KCNE1 polymorphism D85N (c.253G>A), which is a
recognizedmodifier of Long QT syndrome30, and amissense variant in
NEXN (rs1166698). NEXN mutations are associated with cardiomyo-
pathies (OMIM:613121)31,32. At 16 loci, a lead variant or proxy had a
Combined Annotation Dependent Depletion (CADD) score ≥ 20 and
therefore was predicted to be among the top 1% most deleterious in

Table 1 | Number of loci identified in each QT, JT and QRS
meta-analysis

QT JT QRS
Autosome Sample size No.

of loci
No.
of loci

No. of loci

Multi-ancestry up to 252,977 176 155 121

European up to 212,199 171 150 110

Hispanic 19,501 13 13 13

African 16,816 7 10 5

X-chromosome
(Males)

Sample size No.
of loci

No.
of loci

No. of loci

Multi-ancestry 60,343 1 1 0

European 51,386 1 1 0

Number of loci identified for each ECG trait split into autosome meta-analyses and
X-chromosome sex-stratified analyses.
Sample size maximum sample size in the meta-analysis, No. number.
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Fig. 2 | Workflow of the genetic analyses performed for QT, JT, and QRS.
Workflow including single variant and gene-based meta-analyses, and down-
stream bioinformatics. VEP (Variant Effect Predictor), CADD (Combined
Annotation Dependent Depletion), eQTL (expression Quantitative Trait Locus),
GTEx (Genotype-Tissue Expression project), COLOC (Colocalization), GAR-
FIELD (GWAS Analysis of Regulatory and Functional Information Enrichment

with LD correction), DEPICT (Data-driven Expression-Prioritized Integration
for Complex Traits, GWAS (Genome-Wide Association Study), EA (European
Ancestry), PRS (Polygenic Risk Score), AF (Atrial Fibrillation), CAD (Coronary
Artery Disease), CD (Conduction Disease), HF (Heart Failure), NICM (Non-
Ischemic Cardiomyopathy), VA (Ventricular Arrhythmia), SCD (Sudden Car-
diac Death).
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the genome (Supplementary Data 12b). Of these, the variants at 10 loci
were non-coding.

A similar proportion of lead variants for JT (91%) and QRS (95.9%)
were common. Missense variants were identified in 21 JT and 11 QRS
loci (Supplementary Data 12a) and predicted to be “deleterious” or
“damaging” at 8 JT and 7 QRS loci. At 18 JT and 13 QRS loci, the lead/
proxy variant had a CADD score ≥ 20 (Supplementary Data 12b). Of
these, the variant was non-coding in 13 JT and 7 QRS loci.

Association with gene expression levels in cardiac tissue
Using data from the Genotype-Tissue Expression (GTEx) project33, we
identified 39 (22.2%) multi-ancestry QT loci where a variant was a cis-
eQTL in left ventricle (LV) or right atrial appendage (RAA) tissue
samples (Supplementary Data 13). There was strong support for pair-
wise colocalization (posterior probability>0.75) at 17 loci for LV tissue
and 14 for RAA.

At 37 (23.9%) JT and 18 (14.9%) QRS multi-ancestry loci the lead
variant or proxy was a significant cis-eQTL in LV or RAA tissue (Sup-
plementaryData 13). Therewas support for colocalization at 12 JT and7
QRS loci in LV tissue and 12 JT and 8QRS loci in RAA. ComparingQT/JT
and QRS, discordant directions of effect were identified at 3 over-
lapping loci (KLF12 [RAA],PRKCA, andTCEA3 [RAA andLV]), suggesting

differences at a variant level may translate to opposing effects on
tissue-specific gene expression (Fig. 4).

Tissue- and cell-type specific effects of variants through reg-
ulatory elements
Potential target genes of regulatory variants were identified using two
long-range chromatin interaction datasets (40 kb-resolution Hi-C and
~4 kb-resolution promoter-capture Hi-C) from LV and RV tissue34,35.
Promoter interactions were identified at 39 (22.2%) QT loci (Supple-
mentary Data 14a and 14b). Evaluation of cardiac cell-type specific
effects using single nucleus Assay for Transposase-Accessible Chro-
matin using sequencing (snATAC-seq) data36, identified significant
enrichment at open chromatin regions for QT in atrial and ventricular
cardiomyocytes (Supplementary Fig. 5).

Promoter interactions were identified at 46 (29.7%) JT and 28
(23.1%) QRS loci (Supplementary Data 14a and 14b). Cardiac cell-type
specific enrichment was significant in atrial and ventricular cardio-
myocytes for both JT and QRS, and in adipocytes for JT (Supplemen-
tary Fig. 5).

Tissue-specific enrichment of variants in DNaseI hypersensitivity
sites, using GWAS Analysis of Regulatory and Functional Information
Enrichment with LD correction (GARFIELD, v2)37 identified strongest

Fig. 3 | Circular Manhattan plot for QT, JT, and QRS multi-ancestry meta-ana-
lyses. Circular Manhattan plots for QT (outer, yellow), JT (middle, red), and QRS
(inner, blue) multi-ancestry GWAS linear regression meta-analyses. The Y-axis has
been restricted to -log10 P-value < 30. Two-sided P-values are reported. A
Bonferroni-corrected threshold (<5 × 10−8) was used to declare significance. Over-
lapping JT andQRS loci are labeledwith themost likely candidate at the locus color

coded according to a concordant (green) or discordant (purple) direction of effect
at a variant level. Direction of effect was comparedby comparing the lead JT variant
beta with the corresponding direction of effect of the same variant in the QRS
GWAS meta-analysis. This plot was produced using the R package Circlize version
0.4.10. Gu, Z. (2014) circlize implements and enhances circular visualization in R.
Bioinformatics. 10.1093/bioinformatics/btu393.
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enrichment in fetal heart tissue for QT, JT, and QRS (Supplemen-
tary Fig. 6).

Gene-set tissue/cell-type enrichment and pathway analyses
Candidate genes were prioritized to common functional pathways
using reconstituted gene sets in Data-driven Expression-Prioritization
Integration for Complex Traits (DEPICT) software38. These gene sets
were highly expressed (false discovery rate [FDR] < 0.01) in cardiac
tissues for all three traits (Supplementary Data 15). Additionally, for
QRS, connective tissue cell types including heart valve, chondrocytes,
and joint/skeletal tissues, were significant (Supplementary Fig. 7).

The most significant (FDR <0.01) gene-ontology (GO) biological
processes for QT could be grouped into broad categories, including
cardiac andmuscle cell differentiation/development, and regulationof
gene expression (Supplementary Fig. 8). In addition, and previously
not reported for QT, response to insulin and insulin receptor signaling
processes were identified (Fig. 5). In the Reactome database, top
pathways were related to signal transduction, including protein kinase
Bmediated events,mechanistic target of rapamycin (mTOR) signaling,
the phosphoinositide 3-kinases cascade and the insulin receptor sig-
naling cascade (Supplementary Data 16). The top 10 mouse pheno-
types enriched for these gene sets included abnormal myocardial
layer/trabeculae morphology, decreased embryo size/growth retar-
dation, and increased heart weight.

GO biological processes significant for JT (and QT), but not QRS,
included regulation of gene expression, histone and chromatin mod-
ification, insulin receptor signaling and response to insulin stimulus
(Fig. 5, Supplementary Data 16). Cellular growth, the transmembrane
receptor protein serine/threonine kinase signaling pathway and vas-
culogenesis were enriched only for QRS. Reactome pathways sig-
nificant for JT (and QT) but not QRS included regulation of lipid
metabolism by peroxisome proliferator and its activated receptor
effect on gene expression, along with insulin receptor signaling and
related events (Supplementary Fig. 9). The top Reactome pathway for
QRS, not significant for JT (or QT), was extracellular matrix
interactions39. A summary of the findings for all bioinformatic analyses
for previously unreported loci is in Supplementary Data 17–19.

Identification of potential drug targets for therapeutic
opportunities
To identify potential drug targets for arrhythmia, we interrogated the
druggable gene-set database published by Finan et al.40. We examined
all 200, 173 and 155 plausible candidate genes from the QT, JT andQRS
multi-ancestry meta-analyses respectively, including known and pre-
viously unreported loci. 53 (QT), 46 (JT), and 31 (QRS) genes were
identified as potential drug targets, that are not current targets of anti-
arrhythmic drugs (Supplementary Data 20). Of these, 21 QT, 17 JT, and
10QRS genes were classed as Tier 1, encoding proteins that are targets
of drugs either approved or in development. Genes from significant
signals in cardiac tissue-specific eQTL co-localization andHi-C analyses
may be favored for prioritization. Of the 53 potential gene therapeutic
targets for QT, ABCC8, KCNA7, KCNK13, PRKCA and THRB had support
for co-localization in eQTL analyses and NFKB1,MITF, PLK2 and CASQ2
were significant Hi-C findings. CASQ2 and PLK2 were previously
investigated as potential targets of gene transfer technology41,42.

Association of genetically determined QT, JT, and QRS with
cardiovascular disease and sudden cardiac death
PRSs were constructed using European-ancestry lead variants to
determine the relationship of genetically determined QT, JT and QRS
with the directly measured ECG phenotype, and cardiovascular dis-
eases thatmay have shared genetic contributions to risk. Each PRSwas
tested for association with the directly measured ECG trait in 4214
individuals fromUKBnot included in theGWAS. Associations observed
for each PRS were (β [95% CI]): 6.4ms (5.7–7.1) for QT; 6.4ms (5.7–7.1)
for JT; and 2.2ms (1.7–2.7) for QRS (ms per standard deviation [SD]
increase in the PRS). A significant difference in means was observed
(two sample t-test, P < 2.2 × 10−16), when comparing individuals in the
top and bottom quintiles of the PRS distribution (16.0ms for QT;
16.0ms for JT and 6.2ms for QRS).

In ~357K unrelated individuals of European ancestry from UKB
not included in the GWAS meta-analysis, each PRS was tested for
associationwith prevalent cardiovascular disease cases including atrial
fibrillation (AF), “atrioventricular block (AVB), or permanent pace-
maker implantation (PPM)”, “bundle branch block (BBB) or fascicular

Table 2 | Significant genes from gene-based meta-analysis for each ECG trait following conditional analysis

Gene N P-value Unconditional No. of variants Beta SD Conditioned variant P-value after
conditioning

QT KCNH2 180,961 9.11E−12 43 0.15 0.022 7:150654525-G-A 1.68E−07

NOS3 183,747 1.04E−10 68 0.03 0.012 7:150698349-G-A 1.65E−05

KCNQ1 158,377 1.23E−11 36 0.06 0.047 11:2790111-C-T 1.75E−05

RNF207 168,015 9.46E−16 39 −0.15 0.020 1:6279316-C-T 3.89E−05

OLFML2B 183,747 5.30E−12 46 0.06 0.012 1:161970046-A-G 6.85E−04

TSSC4 189,264 5.16E−18 25 −0.10 0.014 11:2424684-A-C 1.97E−03

MYH7 173,501 3.13E−07 38 0.05 0.025 14:23892910-A-G 3.58E−03

JT SCN5A 181,936 2.53E−15 90 −0.05 0.013 3:38591853-A-G 1.03E−05

NOS3 183,468 5.13E−12 68 0.04 0.012 7:150698349-G-A 1.60E−05

RNF207 167,737 1.33E−16 39 −0.16 0.020 1:6279316-C-T 5.55E−05

MYH7 173,223 1.48E−08 38 0.06 0.025 14:23892910-A-G 1.47E−04

KCNQ1 158,099 5.01E−11 36 0.10 0.047 11:2790111-C-T 3.09E−04

TNNI3K* 181,936 3.48E−08 56 0.03 0.016 1:74929170-T-C 2.79E−03

OLFML2B 183,468 1.35E−12 46 0.07 0.012 1:161970046-A-G 2.91E−03

QRS SCN5A 181,930 3.34E−11 90 0.04 0.013 3:38591853-A-G 7.89E−06

DLEC1 188,621 1.05E−06 117 0.05 0.012 3:38163900-C-T 2.91E−04

N total sample size at gene-basedmeta-analysis for each gene, P-value unconditional Gene-based P-value (P) for associationwith the ECG trait as output fromSequence Kernel Association Testing in
rareMETALS (see “Methods” for more information). Findings were reported as statistically significant if P < 2.5 × 10−6 (Bonferroni-corrected for ~20,000 genes tested), No. of variants Number of rare
variants included in burden testing, SD Standard Deviation, Conditioned variant Variant with the smallest P-value used for conditional analysis to test whether the association was driven by a single
variant, P-value after conditioningGene-based P-value (as output from Sequence Kernel Association Testing in rareMETALS, after conditioning on the variant with the smallest P-value. A Bonferroni-
corrected threshold (0.05/number of genes brought forward for conditional analysis for each ECG trait) was used to declare significance. Statistical tests were two-sided. *Gene within a locus
previously unreported for these ECG measures using single-variant GWAS methods.
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block”, and heart failure (Supplementary Data 21, Fig. 6). A Bonferroni
threshold (0.05/number of conditions tested) was used to indicate
significance (P < 6.3 × 10−3). Genetically determined QT and JT were
associated with decreased risk for “AVB or PPM implantation” (odds

ratio [OR] (95% CI) per SD: 0.94 [0.924–0.963] and 0.94 [0.918–0.956]
respectively). In contrast, genetically determined QRS was associated
with increased risk for “BBB or fascicular block” (1.07 [1.037–1.105]).
Genetically determined QT and QRS were associated with decreased
risk for AF (0.97 [0.954–0.979]) and 0.93 [0.921–0.945], respectively).
Including the QRS PRS as a covariate in the QT model did not sub-
stantially change the point estimate (OR: 0.97 [0.958–0.983]), indi-
cating the relationship with AF was not driven by overlap with the
genetic contribution for QRS.

As these ECGmeasures are established riskmarkers formalignant
ventricular arrhythmia and SCD, we also tested each PRS for associa-
tionwith SCD in theAtherosclerosis Risk inCommunities (ARIC) study,
Cardiac Arrest Blood Study (CABS), Finnish Genetic Study for
Arrhythmic Events (FinGesture) and Northern Finland Birth Cohort of
1966 (NFBC1966) cohorts (Supplementary Data 22). Results are
reported as risk for SCD, per unit increase in the average ms per allele.
The PRSdistribution (mean [SD]) was: 0.321 (0.02) for QT; 0.361 (0.02)
for JT; 0.134 (0.008) for QRS. Therefore, findings are reported as log
OR (95% CI). The lead variant at the NOS1AP locus for QT and JT
(rs12042862, T-allele) was associated with increased risk for SCD (0.11
[0.036–0.190], P =0.004), as previously reported43. There was no
association observed between each PRS and SCD in the full sample
(Supplementary Data 23). As the incidence of SCD is different between
men andwomen,weperformed sex-stratified analyses44. IncreasingQT
PRS was associated with SCD in females (8.2 [3.05-13.35], P = 1.8 × 10−3)
with a concordant direction of effect across all studies. Sensitivity
analyses in FinGesture suggested the association between the QT PRS
and SCD in women, may be driven by non-ischemic aetiologies com-
pared with ischaemic (P =0.004 vs. 0.926 respectively).

Discussion
Our large-scale GWAS meta-analyses for QT and its components, QRS
and JT, substantially advance our understanding of the genetic archi-
tecture of ventricular depolarization and repolarization.Wemore than
double the number of autosomal loci associated with each trait and
identify sex-specific effects at an X-chromosome locus (FAM9B). In
addition to established processes, we report loci involved in energy
metabolism and response to insulin, which have greater enrichment
for ventricular repolarization. Extracellular matrix interactions, cell
growth, and connective tissue components are significantly enriched
amongQRS-associatedgenes.We identifyMendelian genes forwhich a
burden of rare variants are associated with these ECG measures (e.g.
KCNQ1, KCNH2, TNNI3K). We also highlight potential therapeutic tar-
gets and together with the association of PRSs with AF, conduction
disease and SCD, these indicate possible translational opportunities of
our findings.

Previous knowledge of ventricular repolarization has centered
on the role of cardiac ion channels, predominantly from the inves-
tigation of inherited arrhythmic syndromes3. However, ventricular
repolarization is complex and influenced by multiple processes, as
suggested by previous GWAS, and now advanced in our present
study11,12. Our analyses have identified additional candidate genes
involved in cardiomyocyte differentiation, tissue development, car-
diac contraction and regulation of gene expression. In this study, we
also report pathways related to insulin receptor andmTOR signaling,
along with genes that implicate cardiac energy metabolism. Ion
homeostasis is an energy-consuming process and mismatch in the
supply and utilization of adenosine triphosphate (ATP) can lead to
electrical and mechanical instability45. Appropriate cardiac energy
utilization is therefore, necessary to maintain normal physiological
activity. Candidate genes common toQT and JTwithin insulin related
pathways include SLC2A4, PIGQ, and ABCC8. SLC2A4 (alias GLUT4), is
a glucose transporter in cardiomyocytes with effects on cardiac
contractility, development of hypertrophy, and susceptibility to
atrial and ventricular arrhythmias46–48. PIGQ is involved in the

QT JT QRS QT JT QRS

RAA LV

Fig. 4 | Comparison of co-localized eQTL signals for QT, JT, and QRS in right
atrial appendage and left ventricle tissues. Colocalization analyses performed
using data from GTEx (version 8), using the R package COLOC (methods). A pos-
terior probability of >75%wasused todeclare significance. Boxes are color coded to
show either increased (red) or decreased (blue) effect on tissue-specific gene
expression. The degree of shading reflects the normalized effect sizes (and there-
fore no units) from the slope of the linear regression model for the effect allele
relative to the non-effect allele (see methods for more information). The direction
of effect has been aligned to the ECG trait prolonging allele. Y axis: Transcripts.
RAA: Right atrial appendage, LV: Left ventricle.
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biosynthesis of glycosylphosphatidylinositol-anchored proteins,
which are involved in membrane protein transportation and cell
surface protection49. Mutations involving these proteins cause
cardiac-related glycosylation disorders, including congenital defects
and arrhythmia50. ABCC8 (alias sulfonylurea receptor 1) modulates
ATP-sensitive potassium channels and insulin release. It is a crucial
component of sarcolemma K+ ATP channels in mouse atrial myo-
cytes, however a similar role has not been identified in human
cardiomyocytes51,52. In humans, the role of ABCC8 is predominantly
within pancreatic beta cells, and therefore may indicate indirect
effects on ventricular repolarization through insulin secretion53.
Insulin is considered cardioprotective and receptors for insulin sig-
naling are highly expressed in the heart54. Type-1 diabetic mice have
altered ion channel kinetics in ventricular and atrial myocytes, that
increase the risk of arrhythmia and can be reversed with insulin
therapy55–57.

Sex differences in ventricular repolarization are well recognized
and incorporated into clinical definitions for QT-prolongation58. Our
study identified an X-chromosome locus (FAM9B), which may con-
tribute to these differences through serum testosterone levels. In rat
cardiomyocytes, testosterone upregulates KCNQ1 expression with a
long-term effect on QT-shortening59. Androgen receptors are expres-
sed in the atrial and ventricular myocardium in multiple species
including humans of both sexes60,61. During puberty in males, appro-
priate shortening is driven by increasing testosterone, while the
comparatively gradual development of a relatively hypogonadal state
in post-pubertalmales,may explain senescent increases58,62. Prolonged
ventricular repolarisation is also a feature of several human diseases

that share androgen deficiency as a common characteristic63–66. In
addition to testosterone, a role for other hormones in ventricular
repolarization is supported by the association of variants with QT
and JT at the THRB locus, a nuclear hormone receptor for
triiodothyronine67.

Loci forQRS in comparison, have greater enrichment in processes
for vasculogenesis, cell growth, and embryonic development (Fig. 5).
These include candidate genes encoding transcription factors (or their
regulators) with roles in cellular proliferation and cardiac conduction
system development (ID2, PRDM6 and PALLD)68–71. Gene sets were also
enriched in connective tissues and cell types. PDE1A is an example of
one of these genes. It encodes a cyclic nucleotide phosphodiesterase
and regulates cardiac fibroblast activation and fibrosis formation72.
Myocardial fibrosis is a pathophysiological process in ventricular
remodeling, which impairs cardiac electrical conduction and increases
the risk for arrhythmogenesis39,73.

In this study, we observed predominantly discordant directions of
effect comparing overlapping QRS and JT loci. Despite the strong
phenotypic and genetic correlation between QT and JT, the genetic
contribution to the QT interval represents the combined effects of
variants associated with QRS and JT. Therefore, overlap and shared
biology are also observed across QT and QRS loci, along with a weak
positive genetic correlation. These findings could inform drug devel-
opment for arrhythmia, as genes or their encoded proteins could be
targeted for their specific effects on predominantly ventricular depo-
larization or repolarization.

Inherited arrhythmic syndromes highlight the importance of
rare variation on ECG traits and arrhythmic risk. However, our

Fig. 5 | Enrichment network visualization of DEPICT GO biological processes.
The first three panels (QT, JT, and QRS) were created using Cytoscape (v3.8.2).
Significant GO biological processes (false discovery rate [FDR] < 0.01) fromDEPICT
pathway analyses (represented as a colored point in the image) were linked toge-
ther (light orange line) when containing a minimum of 25% overlap of gene mem-
bers. Orphan pathways or those with less than three edges were excluded. This
created discrete “modules” of interlinked pathways, from which common themes

could be identified. The final panel shows a bar graph with the most significant GO
process members (Y-axis) for JT and QRS from each “common theme”, along with
their enrichment P-values (X-axis) and color codedbyFDR (see legend). Enrichment
P-values are as output by DEPICT which compares z-scores derived fromWelch’s t-
test again the null hypothesis (see methods for more information). TGF-beta:
Transforming growth factor beta, TRPS/TKS: transmembrane receptor protein
serine/threonine kinase.
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understanding of the relationship with common variation in the gen-
eral population has previously been limited. A recent study suggests
the phenotypic effects of rare variants on QT are modulated by poly-
genic variation in the general population74. Our gene-based meta-
analyses identified aburdenof rare coding variants associatedwithQT,
JT, and QRS, in genes typically linked with inherited channelopathies
(KCNQ1, KCNH2) and cardiomyopathies (MYH7, TNNI3K). Therefore,
ourfindings support a continuumbetween the genetic architectures of
polygenic traits and disorders that are classically considered mono-
genic, and highlight the utility of employing a rare-variant gene-based
approach in large, unselected populations.

In PRS analyses, we observed decreased risk of AF with increasing
QT and QRS PRSs. This is an opposite direction of effect compared
with epidemiological studies using directly measured ECG intervals
where an increase in QRS or QT is associated with increased risk of
AF75–77. However, this relationship may be J-shaped, and an increased
risk of AF is also observed in patients with short QT syndrome com-
pared to the general population78,79. In addition, class-III anti-arrhyth-
mics, used for the chemical cardioversion of AF and maintenance of
sinus rhythm, inhibit hERG K + currents that both increase the atrial
refractory period (thereby contributing to a protective effect) and
prolong the QT interval80,81. However, our findings along with the
association with conduction disease, may also reflect different biolo-
gical information captured in the variance explained by the PRS,
compared to the directly measured ECG trait; the latter being sus-
ceptible to modification by other factors such as coronary artery dis-
ease. This may also account for the differences observed when
comparing phenotypic and genetic correlations of these traits. Addi-
tional research is warranted to investigate these observations. Fur-
thermore, improved risk scores fromour study could be used in future
work to evaluate themodification of phenotypic expression in families
with inherited channelopathies.

While cohorts have extracted ECG parameters using different
methods, we believe the large sample sizes and averaging of effect
estimates during meta-analysis should limit the impact of any varia-
bility on our findings. Of note, we did not observe substantial het-
erogeneity across results from previously unreported variants. Future
GWAS meta-analyses could use the same algorithm across all cohorts
to extract ECG phenotypes, but raw digitalized data are not available

for all participants of the current study, so we were unable to do this
without substantially reducing the total sample size. Our study
includes extensive in-silico follow-up of variants; however, it does not
identify causal relationships. Functional follow-up is warranted using
the latest advances, including single-cell genomics to further evaluate
the relationship of variants with gene-expression82 and gene-editing
tools (e.g. CRISPR) to investigate the effects of coding and regulatory
variants on target genes and cellular function in relevant cell types (e.g.
human iPSC cardiomyocytes)83,84.

In summary, by analyzing the largest available sample size to date,
we have substantially advanced the delineation of shared and distinct
mechanisms influencing ventricular depolarization and repolarization.
This work will inform functional follow-up and the prioritization of
potential therapeutic targets for arrhythmia.

Methods
A summary of all input data and tools for each analysis performed in
this study is provided in Supplementary Data 24.

Study cohorts
A total of 35 studies (involving 53 ancestry-specific sub-studies),
including members of the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium85 contributed to this
study (Supplementary Data 1). Amaximum total of 252,977 individuals
of European (84%), Hispanic (7.7%), African (6.7%), South and South-
East Asian (<1%) ancestries were included. All participating institutions
approved this project and informed consent was obtained for all
individuals at the study level. Cohorts werepredominantly population-
or community-based with a small number of studies ascertained on a
specific case status. Affymetrix or Illumina arrays were typically used
for genotyping. Study-specific genotype quality control filters prior to
imputation, including call rate, Hardy-Weinberg equilibrium (HWE) P-
value, and minor allele frequency, are provided in Supplementary
Data 2. All GWAS summary data utilized NCBI build 37. Most studies
imputed ungenotyped rare and common variants using 1000G refer-
ence panels (40/53 sub-studies); the remainder used the Haplotype
Reference Consortium (HRC) panel (r1.1 2016), (Supplementary
Data 2)86,87.

Fourteen studies (including 31 sub-studies), imputed genotype
data for X chromosome analysis. The pooled multi-ancestry sample
size for X chromosome analyses was 86,600 (75,607 European, 7040
Hispanic, 1943 African, 709 South Asian, 590 South East Asian and 711
mixed) for females and 60,343 individuals (52,070 European, 5182
Hispanic, 1518 African, 806 South Asian, 479 South East Asian and 379
mixed) for males.

Cohort-level single variant association analyses
Single variant genome-wide association studies were performed by
eachparticipating cohort forQT, JT, andQRS. For each trait of interest,
additive geneticmodelswere implemented for twophenotypes: (1) the
raw phenotype (on the millisecond (ms) scale)) and (2) the rank-based
inverse normal transformation of each phenotype (on the standard
deviation scale due to non-normal distributions of these traits). Per
study summary statistics for each ECG measure and covariate are
provided in Supplementary Data 3. Individuals were excluded at the
study level for: prevalent myocardial infarction or heart failure, preg-
nancy at the time of recruitment, implantation of a pacemaker or
implantable cardiac defibrillator, QRS duration >120ms, or right or left
bundle branch block or atrial fibrillation on ECG. The QRS duration
criterion was used as a surrogate marker for bundle branch block and
interventricular conduction delay that was not identified during ECG
analysis. Additionally, if the data were available, individuals using
digitalis, class I or III anti-arrhythmics or QT prolonging medication
were excluded. These exclusions were chosen to reduce the risk of
confounding in our analyses of ECG parameters, where the bulk of the

Fig. 6 | Odds ratios and confidence intervals for ECGPRSwith clinical outcomes
in UK Biobank. Data are presented as odds ratios (OR) and 95% confidence
intervals (lower 2.5% and upper 97.5%) for association of each ECG (QT – blue, JT –

green, QRS – yellow) polygenic risk score (PRS) with prevalent cases in UK Biobank
from logistic regression analyses. Associations are reported as risk per standard
deviation increase in the PRS and statistical tests were two sided. To adjust for
multiple testing, a Bonferroni-corrected threshold (P < 6.3 × 10−3) was used to
declare significance. A total of 371,951 individuals of European ancestry were
included in this analysis. AF (Atrial Fibrillation), AVB (Atrioventricular block), PPM
(Permanent pacemaker), BBB (Bundle branch block), HF (Heart Failure).
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power comes from normal variation of QT, JT, and QRS. This will have
reduced the total sample size available, however the genetic con-
tribution to ECG interval variation in these disease states could differ,
warranting separate investigations. Cohorts including related indivi-
duals used appropriate software to account for this e.g BOLT linear
mixed model software (BOLT-LMM)88 (which fits a linear mixed model
on hard-called genotyped single nucleotide polymorphisms (SNPs)) or
other software incorporating a kinship matrix or pedigree89–91. An
imputation quality cut-off of Rsq >0.3 (or similar in IMPUTE) was
applied in all cohorts to ensure high quality variants were included in
the meta-analysis.

Covariates were included in the GWASmodel and chosen for their
known associationwith eachECGmeasure. These included age (years),
sex (except in sex-stratified X chromosome analyses), RR interval (ms),
height and body-mass index (BMI, kg/m2). Genetic principal compo-
nents (PCs) were included to account for cryptic population stratifi-
cation except in cohorts with pedigree data available or when analyses
were performed using linear mixed models. As there may be ancestral
differences in ECGmeasure, cohorts comprised of multiple ancestries
performed separate analyses for each ancestry to control for under-
lying population stratification. Separate summary statistics for each
ancestry were submitted for central analysis, and for secondary
ancestry-specific meta-analyses. Additional cohort-specific covariates
were included when deemed appropriate locally, for example,
recruitment site or genotyping array. Autosome and X chromosome
analyses were performed separately. For X chromosome analyses,
male genotypes were coded as 0 or 2 and sex-stratified analyses were
performed to account for random X chromosome inactivation in
females. Pseudoautosomal regions were excluded from the analyses
due to the high risk of genotyping errors in these regions.

Cohort level generation of covariance matrices for gene-based
testing
To test for associations due to a burden of rare (MAF ≤0.01) variants
with functional consequences within protein-coding genes, additional
analyses were performed by participating cohorts using Rare variant
test (Rvtests, version 2.0.6)92. Rvtests generates summary score sta-
tistics per variant using a separate matrix file containing the covar-
iances between markers in a specified sliding window. To avoid
associations driven by extreme outliers, these analyses were per-
formed using only rank-based inverse normal transformed values for
QT, JT, and QRS. To reduce computational demand, only variants with
aMAF < 1%andRsq>0.3were included andLDwindowsof 500 kbwere
specified for construction of the genotype-covariance matrices.
Rvtests uses a genomic kinship matrix to account for relatedness in
each cohort and PCs were again included to adjust for residual
population stratification. Analyses were only performed using indivi-
duals of European ancestry due to the potential of population differ-
ences in allele frequencies in rare variants. Only autosomes were
included in these analyses.

Central quality control of study-level data
Quality control of all study-level GWAS summary statistics was
performed centrally using the EasyQC R package (version 9.2)93. In
brief, variants were aligned to either the 1000 G or HRC reference
panel and allele frequency plots for each study were compared
against the reference. Quantile – quantile (QQ) and P-value –

Z-score statistics (P-Z) plots were visually inspected. Variants with
invalid beta estimates, standard errors or P-values were removed.
Per-study summary statistics were generated including standard
error and beta estimate ranges. Genomic-control inflation factors
(lambdas) were calculated to identify systematic inflation of test
statistics, which can result from a variety of factors, including
population stratification, and lead to a large number of true positive
findings94.

GWAS Meta-Analysis
The meta-analysis workflow is summarized in Fig. 2. The primary
analyses were pre-specified to be the multi-ancestry rank-based
inverse normal transformed meta-analysis for each ECG trait, to avoid
unstable normal approximation test statistics for low-frequency var-
iants or outlier trait values. Ancestry-specific secondary meta-analyses
were also performed for European, African, and Hispanic ancestries.
Due to the lack of suitably sized replication datasets, we undertook a
one-stage, single-discovery design. Additionally, to enable estimation
of clinically recognizable effect sizes (inverse normal transformation
produces results on a standard deviation scale), a meta-analysis for
each trait and ancestry was also performed using the raw phenotype
on themillisecond (ms) scale. All meta-analyses were conducted using
an inverse variance-weighted, fixed effects model using METAL (ver-
sion released 2011-03-25) and performed independently across two
sites and checked for consistency95. Genomic control was applied
during meta-analysis to studies in which the inflation factor (λ) was >
1.0. Summary genome-wide association (“Manhattan”) plots, QQ plots
and lambdas for the entire meta-analysis were produced for each trait
using qqman R package (v0.1.8). For all subsequent analyses, only
variants present in >50% of the total sample size of the meta-analysis
were included. Genome-wide significance (GWS) was defined as P≤
5 × 10−08. The 1000 Genome reference panel was used for calculating
correlations between variants in downstream analyses, including all
individuals for multi-ancestry summary statistics and individuals from
relevant populations for European, African and Hispanic meta-
analyses. Where pre-computed LD scores were required, or correla-
tions calculated within tools that did not permit modification of indi-
viduals included in the reference panel, the European ancestry meta-
analysis was used in place of the multi-ancestry recognizing a sub-
stantial proportion of the multi-ancestry meta-analysis included indi-
viduals of European descent.When this is the case, it is explicitly stated
in the methodology and results.

Definition of known and novel loci
To identify novel associations in our results, we first defined bound-
aries for previously published loci (Supplementary Data 4) using the
following process in PLINK(v1.9)96. Reported genome-wide significant
(P≤ 5 × 10−08) lead variants from each published GWAS were extracted
and correlations calculated using the 1000 Genome phase 3 reference
panel (Nov 2014)86 in a 4Mb region centeredon each variant. The locus
start was defined as minus 50kb from the most upstream variant that
was in r2 > 0.1 with the leadvariant and the locus end asplus 50 kb from
the most downstream variant which was in r2 > 0.1. Overlapping
boundaries were subsequently merged. This window was declared the
genomic boundary for the locus or a minimum physical distance
window of ±500 kb around the reported variant – whichever was lar-
ger. For the purpose of these analyses, as QT and JT phenotypes are
highly correlated phenotypes (Fig. 1), previously reported JT and QT
lociwerepooled. A separate list was compiled for previously described
QRS duration loci. Novel loci in our meta-analyses were identified by
applying the same approach to variants meeting the GWS threshold in
our results. Variants within loci boundaries not overlapping with
known loci were declared novel associations. Subsequently, to evalu-
ate for evidence of heterogeneity at each locus, a forest plot was
produced for the lead variant using the R-package Metaviz (version
0.3.0) andmanually inspected alongwith the I2 heterogeneity index for
that variant. Finally, Locus-Zoom plots were generated for each locus
to visually inspect correlations (r2) between lead variants and sur-
rounding markers and their associated P-values using LocusZoom
(v0.12)97.

Conditional and heritability analyses
We sought to determine whether any variants at a given locus were
conditionally independent (i.e. independent signals of association).
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Conditional analyses were performed using Genome-wide Complex
Trait Analysis (GCTA, v1.26.0), for loci that achieved genome-wide
significance in the European-ancestry analysis with a reference sample
of 52,230 individuals of European ancestry fromUK Biobank18. Related
pairs up to the 2nd-degree (kinship coefficient< 0.0884) were exclu-
ded. Due to insufficient reference sample size and an inability to
effectively reproduce the ancestral mix, conditional analyses were not
performed for other ancestries or the multi-ancestry meta-analyses.
Stringent thresholds of PJoint < 5 × 10−08 and minimal correlation
(r2 < 0.1) with the lead variant were used to declare a variant “con-
ditionally independent”. Using the same dataset, heritability estimates
for each trait in European samples were obtained using BOLT-
Restricted Maximum Likelihood (REML, v2.3.2), which applies var-
iance components analysis using modeled directly genotyped SNPs to
calculate SNP-based heritability88. The percent variance explained
(PVE) by lead and conditionally independent variants was subse-
quently calculated (Eq. 1)98;

PVE =
½2*ðbeta^2Þ*MAF*ð1�MAFÞ�

½2*ðbeta^2Þ*MAFð1�MAFÞ + ððseðbetaÞÞ^2Þ*2*N*MAF*ð1�MAFÞ� ð1Þ

The total PVE by all lead and conditionally independent variants
was calculated as the sum of each variant’s PVE. The heritability
explained was the total PVE divided by the heritability of the trait.

LD score regression
To calculate the genetic correlation between ECG traits, LD score
regression was performed using LD Score (LDSC) software (v1.0.1)24.
European meta-analysis summary statistics were filtered to include
only variants present in the International HapMap Project (~1.1 million
variants), along with pre-computed LD scores using the 1000G refer-
ence panel provided by LDSC24. LDSC uses the LD scores as regression
weights and subsequently calculates the genetic correlation using
intersecting SNPs from each meta-analysis25.

Gene-based testing meta-analysis
Gene-based meta-analysis was performed using the R package rar-
eMETALs (v.7.1)99. Analyseswere restricted toup to 192,780 individuals
of European descent (from 37 studies) due to potential differences in
the allele frequency of rare (MAF≤ 0.01) variants between populations.
QC of study-level data was performed as described above for the
single-variant meta-analysis. Variants from all studies, however, were
subsequently filtered to only include those predicted by VEP (Ensembl
release 99) to have high or moderate impact (and thus be protein-
altering). Score and covariancefiles used as input for gene-basedmeta-
analyses in rareMETALS were generated using Rvtests as described
above92. Gene-based meta-analysis was subsequently performed for
inverse-normal transformedQT (N = 192,780), JT (N = 192,501) andQRS
(N = 192,495) using Sequence Kernel Association Testing (SKAT)27,
which considers the joint effects of multiple variants on the pheno-
type, while taking into account the effect size and direction of effect of
each variant. Power under SKAT is maximal for genetic variation in a
gene that causally increases and decreases a quantitative trait, but is
less powered to detect genetic effects that all influence a quantitative
trait in one direction. Gene-based meta-analysis was conducted for
18,751 genes that had more than one rare (MAF ≤0.01) variant anno-
tated as high or moderate impact. A gene-based test was considered
significant if P < 2.5 × 10−06 (Bonferroni correction for ~20,000 tes-
ted genes).

To follow-up on gene associations passing Bonferroni correction,
additional conditional analyses were performed for each of the three
traits. First, to confirm that the gene-based association is not solely
driven by one rare variant, conditional gene-basedmeta-analyses were
repeated while conditioning on the most significant variant in the
gene. Genes were considered significant if Pconditional < 0.05/number of

genes tested for the trait (13 genes for QT, 16 genes for JT and 3 genes
for QRS), upon gene-based analysis conditioned on the most sig-
nificant variant. Second, conditional analyseswere restricted to 76,202
individuals from the UK Biobank to ensure a common set of variants
were able to be examined. To confirm that the gene-based association
was not solely driven by flanking low-frequency and common (MAF >
0.01) QT/JT/QRS variants at the locus in which the gene is located
regardless of their annotation with VEP, (P < 5 × 10−08 and r2 < 0.1 or
±500 kb from the lead variant in the respective GWAS meta-analysis)
analyses were repeated while conditioning on all independent variants
at the locus. Furthermore, additional conditional analyses were con-
ducted for associated genes that reside in the same locus. This was
done to ensure that these are independent gene associations in the
same locus and not attributable to rare variants in the other gene in
the locus.

Biological annotation of GWAS loci
Identification of variant consequences. To identify variants with
potential functional consequences, we annotated lead and con-
ditionally independent variants, and their proxies (r2 > 0.8), using VEP
(Ensembl release99)26 to extract informationon the impactof a variant
on a transcript or protein including their deleteriousness scores using
the Sorting Intolerant From Tolerant algorithm (SIFT, version 5.2.2)100

and PolyPhen-2 (Version 2.2.2101). Additionally, Combined Annotation
DependentDepletion (CADD, v1.4)102 andRegulomeDB (v.2.0.3)103 rank
scores for these variants were extracted. CADD scores correlate with
pathogenicity of both coding and non-coding variants and rate a var-
iant according to its deleteriousness within the genome102. Reg-
ulomeDB annotates variants with known and predicted regulatory
elements in intergenic regions including regions of Dnase hypersen-
sitivity, transcription factors binding sites, and promotor regions uti-
lizing publicly available datasets103.

Association with tissue-specific gene expression. To evaluate cor-
relations between GWAS variants and tissue-specific gene expression,
data from the Genotype-Tissue Expression project (GTEx, v8)33,104,105

were extracted for tissues relevant to cardiac electrophysiology
including cardiac, vascular (coronary artery and aorta) and brain (as
autonomic regulation influence ECG traits). First, lead and con-
ditionally independent variants and their proxies (r2 > 0.8), were
checked todeterminewhether they overlappedwith the leadvariant at
an expression quantitative trait locus (eQTL) for each tissue. Addi-
tionally, to determine whether the same variant may be causal in both
our GWAS meta-analysis and the original eQTL study, colocalization
analyses were performed using the R package COLOC (v5.1.0), which
uses Bayesian methods to determine the correlation between variants
from the two datasets106. A posterior probability of >75% was used to
determine significance.

Tissue- and cell-type specific regulatory elements. To identify
tissue-specific enrichment of variants in DnaseI hypersensitivity sites,
we used GWAS Analysis of Regulatory and Functional Information
Enrichment with LD correction (GARFIELD, v2)37. GARFIELD performs
greedy pruning of GWAS SNPs (r2 > 0.1) and annotates them based on
overlapping functional information to assess the enrichment of asso-
ciation signals with features extracted from the ENCODE, GENCODE
and Roadmap Epigenomics projects37. Odds ratios are quantified and
assessed using a generalized linear model framework while matching
forMAF, distance to the nearest transcription start site, and number of
proxies (r2 > 0.8).

We sought to identify potential target genes of regulatory variants
using long-range chromatin interaction (Hi-C) data analyzed using
FUMA GWAS (Functional Mapping and Annotation of Genome-Wide
Association Studies) software (v1.3.6)107. Within FUMA, pre-processed
significant loops computed by Fit-Hi-C pipelines filtered at an FDR <
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0.05 and overlap with lead and conditionally independent variants
and their proxies (r2 > 0.8) was identified34. Additionally, we utilized
recently publishedpromoter captureHi-Cdatawhichuses loops called
from Knight-Ruiz normalized 5 kb, 10 kb and 25 kb resolution data35.
Promoter interactions in left and right ventricular tissue for potential
regulatory variants were extracted and variants with the highest reg-
ulatory potential were determined using a RegulomeDB score cut-off
of ≤3b103.

To identify cardiac cell-type specific functional effects of non-
coding variants, we integrated GWAS variants with cell-type chromatin
marks from single nucleus Assay for Transposase-Accessible Chro-
matin using sequencing (snATAC-seq) data36. Thesedata containopen/
accessible chromatin information for nine cell types obtained from the
heart, including atrial and ventricular cardiomyocyte, smooth muscle,
endothelial, adipocyte, macrophage, fibroblast, lymphocyte and ner-
vous cells. Haplotype blocks were created for each lead and con-
ditionally independent variant including variants with r2 > 0.1 within a
2Mb radius. Subsequently, using a SNP enrichment method, CHEERS
(Chromatin Element Enrichment Ranking by Specificity, v2019)108, the
peaks with the lowest 10th percentile of total read counts from the
snATAC-seq data were removed, the peak counts were subsequently
quantile normalized, and the Euclidean distance calculated108. A one-
sided P-value for enrichment of variants in estimated haplotype blocks
within cell-type specific ATAC-seq peaks was calculated and a
Bonferroni-corrected threshold used to declare significance (0.05/
number of cell types).

Candidate gene prioritization and pathway enrichment. To prior-
itize candidate genes at each locus, we used Data-driven Expression-
Prioritized Integration for Complex Traits (DEPICT, v3). DEPICT
prioritizes the most likely causal genes at associated loci according to
common functional pathways using reconstituted gene sets contain-
ing a membership probability for each gene in the genome38. Addi-
tionally, it highlights enriched pathways and tissues/cell types where
genes from associated loci are highly expressed. DEPICT uses a
clumping method (r2 = 0.1, window size = 250 kb, P = 5 × 10−08) to
identify uncorrelated variants from each meta-analysis using 1000G
reference data after excluding the major histocompatibility complex
region on chromosome 6. Gene-set enrichment analysis was con-
ducted based on 14,461 predefined reconstituted gene sets from var-
ious databases and data types, including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), REACTOME, phenotypic
gene sets derived from the Mouse genetics initiative, and molecular
pathways derived from protein–protein interactions. Finally, tissue
and cell type enrichment analyses were performed based on expres-
sion information in any of the 209 Medical Subject Heading (MeSH)
annotations for the 37,427 human Affymetrix HGU133a2.0 platform
microarray probes. Cytoscape (version 3.8.2, https://cytoscape.org/)109

was used to visualize significantly enriched (FDR<0.01) DEPICT GO
biological processes for each ECG trait. Processes were connected by
overlap of significantly enriched genes (minimum number of 25% of
member genes). Orphan pathways or those with less than three edges
were excluded. Each module was labeled with a common theme to
represent the group of biological processes.

DEPICT requires at least ten genome-wide significant loci to be
able to perform the analysis. Therefore, for African and Hispanic
ancestries, candidate genes were identified using g:Profiler110, a func-
tional enrichment tool for the annotation of a list of genes. It also
enablesmapping of variants to gene names,where they overlapwith at
least one protein coding Ensembl gene with annotation of predicted
variant effects.

In addition to DEPICT gene prioritization results, the list for each
locus was supplemented with candidate genes highlighted by these
bioinformatic analyses. A literature review was performed which also
included a look up of genes using the Online Mendelian Inheritance in

Man (OMIM, https://www.omim.org/) andMouse Genome Informatics
(MGI, http://www.informatics.jax.org/) databases.

Druggability analyses. To identify potential novel drug targets from
our GWAS findings, we interrogated a previously published druggable
gene set database developed by Finan et al. which includes detailed
information onmethods used to assemble and annotate the dataset40.
In brief, this reference set contains predominantly protein-coding
genes (as annotated from the Ensembl v.73). Genes were subsequently
assembled into three tiers: Tier 1 includes targets of approved drugs
and drugs in clinical development including targets of small molecule
and biotherapeutic drugs. Tier 2 incorporates proteins closely related
to drug targets or associated with drug-like compounds. Genes where
one or more Ensembl peptide sequence shared ≥50% identity (over
≥75% of the sequence) with an approved drug target were included.
Tier 3 incorporated extracellular proteins and members of key drug-
target families (including G protein-coupled receptors, kinases, ion
channels, nuclear hormone receptors, and phosphodiesterases). Using
the list of “most likely candidate genes” at unreported GWAS loci and
previously reported candidate genes for QT, JT andQRS, a look upwas
performed in the database. Genes which are existing drug targets for
anti-arrhythmic drugs (annotated using KEGG drug (https://www.
genome.jp/)were excluded. As geneswhichwere significantfindings in
cardiac tissue-specific eQTL co-localization and Hi-C analyses may be
favored for prioritization, a look up was performed in our data to
highlight these.

Association between genetically determined QT, JT, and QRS and
relevant cardiovascular diseases. To determine relationships of
genetically pre-determined QT JT QRS with cardiovascular diseases
PRSs were constructed using the lead variants from the European-
ancestrymeta-analyses and tested for association with prevalent cases
of atrial fibrillation, stroke, coronary artery disease, heart failure, non-
ischaemic cardiomyopathy, conduction disease (“AVB or PPM
implantation” and “fascicular block/BBB”) and ventricular arrhythmia
in the UK Biobank. Secondary analyses were also performed to test for
association with subgroups including myocardial infarction and
stroke. Outcomes were identified using self-reported data, operation
codes, ICD-9/ICD-10 codes from hospital episodes statistics and mor-
tality registry (Supplementary Data 25). Analyses were performed in
individuals of European-ancestry without ECGs and therefore not
included in the GWAS meta-analysis and related pairs up to the 2nd-
degree (kinship coefficient <0.0884) were excluded. To take advan-
tage of genotype probability data in BGEN format, PRSice-2 (v2.3.3)111

was used to calculate the PRS. The PRS was calculated by summing the
dosage of the ECG trait prolonging allele, weighted by the effect size
from the correspondingGWAS. Associationswith prevalent cases were
identified using logistic regression including covariates age, sex, 10
PCs and genotype array. A Bonferroni-corrected threshold of 0.05/
number of outcomes tested (0.05/7 = 7.1 × 10−3) was used to determine
significant associations. P-values < 0.05 but greater than 7.1 × 10−3 were
considered as suggestive associations.

To determinewhether genetically determinedQT, JT, andQRS are
associated with SCD, PRS were constructed for each trait and tested in
four cohorts: the Atherosclerosis Risk in Communities study
(ARIC)112,113, the Cardiac Arrest Blood study (CABS)114, the Finnish
Genetic Study for Arrhythmic Events (FinGesture) and Northern Fin-
land Birth Cohort of 1966 (NFBC1966)115. The latter three are inde-
pendent cohorts as they were not included in the GWASmeta-analysis.
While ARIC was included in the GWAS meta-analysis, it contributes a
relatively small proportion of the GWASmeta-analysis sample size and
thus effects on beta-estimates would be negligible. Individual study
information and case definitions used are available in Supplementary
Data 22. As FinGesture contains only cases, population controls were
taken from NFBC1966116. For these analyses, only individuals of

Article https://doi.org/10.1038/s41467-022-32821-z

Nature Communications |         (2022) 13:5144 11



European-ancestry were included, due to low sample sizes of other
ancestries. PRSs were constructed by averaging the dosage of each
lead variant allele associated with prolongation of the ECG trait being
tested, from the European ancestry meta-analysis, weighted by the
effect size from the corresponding raw-phenotype meta-analysis. To
ensure only high-quality variants were included, each study applied an
imputation quality threshold (Rsq> 0.8). The PRS was included in a
logistic regression (Cox for ARIC) model along with covariates age
(when appropriate), sex, 10 PCs and genotyping array (when appro-
priate). Sex-stratified analyses were performed to identify sex-specific
effects. Per study summary statisticswere subsequentlymeta-analyzed
using an inverse-variance weighted fixed effects model with the R
package ‘Meta’ (v.5.5.0)117.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics from each genome-wide association study meta-
analysis will be made available on the NHGRI-EBI Catalog of human
genome-wide association studies website, https://www.ebi.ac.uk/
gwas/. Electrocardiographic phenotype data derived from UK Bio-
bank digitalized signals, will be returned to the study. The UK Biobank
will make these data available to all bona fide researchers for all types
of health-related research that is in the public interest, without pre-
ferential or exclusive access for any person. All researchers will be
subject to the same application process and approval criteria as spe-
cified by the UK Biobank. Please see the UK Biobank’s website for the
detailed access procedure (http:/www.ukbiobank.ac.uk/register-
apply/). Other datasets used in these analyses are publicly available
and can be sourced from: 1000 Genomes reference panel: https://
www.internationalgenome.org/category/reference/; Haplotype refer-
ence consortium reference panel: http://www.haplotype-reference-
consortium.org/; Variant level annotation fromVariant Effect Predictor
(VEP), Ensembl release 99: https://www.ensembl.org/info/docs/tools/
vep/index.html; Variant level Combined Annotation Dependent
Depletion scores from Combined Annotation Dependent Depletion
(CADD, v1.4): https://cadd.gs.washington.edu/; Variant level tissue-
specific gene expression fromTheGTEx portal (v8): https://gtexportal.
org/home/; HiC data from the Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA GWAS, v.1.3.6): https://
fuma.ctglab.nl/; DNaseI hypersensivity site enrichment data from
GWAS Analysis of Regulatory and Functional Information Enrichment
with LD correction (GARFIELD, v2): https://www.ebi.ac.uk/birney-srv/
GARFIELD/; Gene-set, biological pathways and tissue expression data
from Data-driven Expression-Prioritization Integration for Complex
Traits (DEPICT, v3): https://github.com/perslab/depict; Variant level
RegulomeDB scores from RegulomeDB (v.2.0.3): https://regulomedb.
org/regulome-search/; A compendium of promoter-centered long-
range chromatin interactions in the human genome (Jung et al., 2019):
https://doi.org/10.1038/s41588-019-0494-8; Cardiac cell type-specific
gene regulatory programs and disease risk association (Hocker et al.,
2021): https://doi.org/10.1126/sciadv.abf1444; Druggable genome
dataset from Finan et al., 2017: DOI: 10.1126/scitranslmed.aag1166;
g:Profiler (accessed May 2021): https://biit.cs.ut.ee/gprofiler/gost;
Online Mendelian Inheritance in Man database: https://www.omim.
org/; Mouse Genome Informatics: http://www.informatics.jax.org/;
KEGG drug database: (https://www.genome.jp/).

Code availability
Codes are available from the original software used for each analysis
(see methods and Reporting Summary).
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