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Malaria is one of the most devastating human infectious diseases caused by

Plasmodium spp. parasites. A search for an effective and safe vaccine is the

main challenge for its eradication. Plasmodium vivax is the second most

prevalent Plasmodium species and the most geographically distributed

parasite and has been neglected for decades. This has a massive gap in

knowledge and consequently in the development of vaccines. The most

significant difficulties in obtaining a vaccine against P. vivax are the high

genetic diversity and the extremely complex life cycle. Due to its complexity,

studies have evaluated P. vivax antigens from different stages as potential

targets for an effective vaccine. Therefore, the main vaccine candidates are

grouped into preerythrocytic stage vaccines, blood-stage vaccines, and

transmission-blocking vaccines. This review aims to support future

investigations by presenting the main findings of vivax malaria vaccines to

date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best

protective efficacy was a vaccine formulated with synthetic peptide from a

circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5%

efficacy in a phase IIa study. In addition, the majority of P. vivax antigen

candidates are polymorphic, induce strain-specific and heterogeneous

immunity and provide only partial protection. Nevertheless, immunization

with recombinant proteins and multiantigen vaccines have shown promising

results and have emerged as excellent strategies. However, more studies are

necessary to assess the ideal vaccine combination and test it in clinical trials.

Developing a safe and effective vaccine against vivax malaria is essential for

controlling and eliminating the disease. Therefore, it is necessary to determine

what is already known to propose and identify new candidates.
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1 Introduction

Malaria has a devastating impact on people’s quality of life,

mortality, and morbidity. In 2020, it caused more than 241

million cases worldwide and killed approximately 627 thousand

people (1). It occurs in several tropical and subtropical regions,

with a high incidence in sub-Saharan Africa, Southeast Asia, the

Eastern Mediterranean, the Western Pacific, and the Americas

(1). It is caused by Plasmodium spp. And transmitted during the

blood meals of infected females of Anopheles spp. Mosquitoes.

Seven species of Plasmodium affect humans: P. falciparum, P.

vivax, P. malariae, P. ovale, P. knowlesi, P. cynomolgy and P.

simium, of which P. falciparum and P. vivax are responsible for

approximately 99% of malaria cases. Although P. falciparum is

the deadliest parasite, P. vivax is the most geographically

spread (1).

P. vivax was neglected for decades because of the belief that

its infection causes milder disease (2). However, recent studies

reported severe cases caused by vivax malaria, such as severe

anemia, cerebral malaria, thrombocytopenia, and acute

respiratory syndrome (3–9). Studies have shown that P. vivax

has the ability to promote cytoadherence to the host’s

endothelium and form rosettes (10–12), features frequently

associated with severe P. falciparum malaria (13, 14).

Nevertheless, due to the numerous challenges that this parasite

poses, there are few vaccines under development (15).

The development of a safe and effective vaccine against malaria

is the best and most relevant strategy for preventing, controlling,

and eliminating malaria. However, we are still far from achieving

this, especially for vivax malaria (16). The difficulty in finding the

best immunogen combined in a formulation that induces
Frontiers in Immunology 02
protection is the main challenge in vivax vaccines. The majority

of experimental vaccines against P. vivax contain a recombinant P.

vivax protein with an adjuvant. In addition, different technologies

have been used in an attempt to improve malaria vaccine efficacy,

such as recombinant viral vectors, virus-like particles (VLPs), DNA

plasmids, long synthetic peptides (LSPs) and irradiation-attenuated

parasites. However, they all failed to induce a strong protective

effect. For P. falciparum malaria prevention, a vaccine called

Mosquirix (RTS, S) was recently approved for children

(ClinicalTrials.gov number, NCT00380393). The RTS/S is a

subunit vaccine that targets the central repeats and the C-

terminal of the P. falciparum circumsporozoite surface protein

(PfCSP), including T-cell epitopes (T) fused to hepatitis B surface

antigen (HBsAg) (S), mixed with native HBsAg (S), formulated

with the AS01 adjuvant. The vaccine efficacy against clinical malaria

over 4 years of follow-up was estimated at 25.9% in infants and at

36,3% in children, but as the age and time of vaccination advance,

the estimative drops to low levels (17, 18). Over 7 years of follow-up,

the efficacy was estimated at 4.4% (19).

R21/MatrixM is a vaccine candidate in the approval process

(ClinicalTrials.gov number, NCT03896724) with promising

results of 77% efficacy in phase III studies (20). However, for

P. vivax, the scenario is meagre. To this parasite, there are only

three antigens in the initial clinical phases, presented in Table 1,

which confer only partial protection and few candidates in

preclinical trials (28). The antigens used in malaria vaccine

formulations have a high polymorphism, which induces a

strain-specific response representing a significant challenge to

vaccine development (29). Many of the antigens evaluated in

vivax malaria vaccines were initially discovered for P. falciparum

and are not necessarily the best antigens in a vivax vaccine. To
TABLE 1 Plasmodium vivax vaccines in clinical trials.

Candidate Phase Key findings
Clinical
Trial

Number
References

Preerythrocytic stage vaccines

VMP001 1/2a Recombinant PvCSP with adjuvant AS01B. Reduction of parasitemia, but low efficacy. NCT01157897 (21)

Peptides N
R&C

1b/2
PvCSP derived from long synthetic peptides (LSP) with Montanide ISA 720 and 51. Long-lasting
antibody response, with 36.6% efficacy in naive volunteers.

NCT0108184 (22, 23)

PvRAS 1/2a P. vivax irradiated sporozoite. Poor cellular response and 42% efficacy. NCT01082341 (24)

Blood-stage vaccines

ChAd63-
MVA-
PvDBPII

1a/2a
Heterologous prime-boost regimen with recombinant viral vectors ChAd63-MVA-PvDBPII.
Induction of antibodies that inhibit interaction with reticulocytes, humoral and cellular response,
50% of strain-transcendent immunity.

NCT01816113 (25)

PvDBPII-
GLA-SE

1
Recombinant PvDPBII with GLA-SE adjuvant. High production of specific antibodies can inhibit
interaction with reticulocytes and strain-transcendent response.

CTRI/2016/
09/007289

(26)

Transmission-blocking vaccines

Pvs25 1
Recombinant Pvs25 with Montanide ISA 51 adjuvants. Good induction of antibodies and 30%
reduction in infected mosquitoes. High reactogenicity.

NCT00295581 (27)
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date, it has not been possible to establish P. vivax long-term in

vitro culture, which makes antigen discovery more challenging.

Thus, some studies seek to identify parasite proteins in silico,

whereas features such as antigenicity and immunogenicity are

evaluated, and antigens against different stages of the paras’te’s

life cycle combined with different adjuvants and immunization

schedules have been tested (30–33). These vaccine candidates are

categorized as preerythrocytic stage vaccines, blood-stage

vaccines, and transmission-blocking vaccines (34).

The parasite’s life cycle begins in the vertebrate host during

the blood repast of the infected Anopheles spp. female (35). The

sporozoites along with the salivary fluid are inoculated into the

dermal tissues. Into skin, sporozoites acquire motility and are able

to penetrate the blood vessels and start stimulating a host immune

response (36, 37). After that, sporozoites move through the blood

system to the liver, invading hepatocytes (38, 39). Here, a

preerythrocytic vaccine could interrupt this interaction or its

subsequent intracellular development (40–42). In liver cells, a

series of morphological changes occur. It can generate

hypnozoites, the dormant stage, which can remain in the liver for

many years and cause numerous recurrences of the disease (43, 44).

After modifications in the hepatic phase, merozoites are released

into the bloodstream (45), and different from other Plasmodium

species, in P. vivax infection, the parasite selectively invades only

reticulocytes, which represents less than 2% of all erythrocytes in

human blood, developing low parasitemia (46, 47). Here, blood-

stage vaccines attempt to stop the invasion of blood cells by

merozoites or stop their development into red blood cells,

preventing the onset of symptoms (40–42). Inside the cells, the

parasite quickly undergoes further modifications, giving rise to

gametocytes, which are rapidly transmitted to mosquitoes during

a new blood meal (48, 49). In the invertebrate host, gametocytes

form gametes that will be fertilized to form tokineteete. This life

form invades the epithelium of the insects’ midgut, forming the

oocyst, which releases sporozoites in the hemolymph. Sporozoites

migrate to the salivary gland and can continue the cycle (42). Then,

transmission-blocking vaccines aim to stop the fusion of gametes

and subsequent development in the invertebrate host (40–42). The

cycle and the targets of malaria vaccines are illustrated in Figure 1.

This review summarizes and discusses themain approaches, the

results, and challenges related to the development of vaccines

against P. vivax. Our main objective is to elucidate and clarify the

situation of vivax malaria vaccines, trying to investigate the best way

to forward further studies.
2 Insights into the immune response
in Plasmodium vivax infection

Immunity to Plasmodium is complex, and many aspects

remain poorly understood. In a natural immune response, short-

term protection is induced, as individuals are often reinfected.

However, repeated exposure to Plasmodium can induce
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immunity, supporting the potential of vaccines (50). The

quality of the immune response is highly variable and will

depend on several factors, as it increases with age, prior

exposure, and transmission intensity (51). Both innate and

adaptive responses are important for the development of

acquired immunity (52).

Dendritic cells (DC) recognize Plasmodium pathogen-

associated molecular patterns (PAMPs), such as hemozoin,

immun o s t imu l a t o r y n u c l e i c a c i d mo t i f s , a n d

glycosylphosphatidylinositol anchors (GPI), leading to activation

of T and B lymphocytes, natural killer (NK) cells and macrophages

(53). Immune cells are induced to produce interferon-y (IFN-g).
This cytokine plays an important role in the control of parasitemia

both in the hepatic and blood stages (54, 55). IFN-g activates CD8+
T cells, B cells, and macrophages (56, 57). It induces isotype

switching, leading to the production of cytophilic antibodies,

which can bind to merozoites, block reticulocyte invasion,

opsonize the parasite and promote phagocytosis by macrophages

(54). IFN-g can induce the expression of MHC class I in

reticulocytes, leading to the elimination of infected cells by T cells

(58). Additionally, this cytokine is important in the differentiation of

atypical memory B cells (MBCs) into plasma cells (59).

In the preerythrocytic stage, the cell response predominates

since sporozoite surface antigens can be recognized by MHC

class I of CD8+ T cells, leading to the activation and proliferation

of these cells. On the other hand, in the blood stage, the humoral

response prevails (28). The antibody response, especially IgG3

and IgG1 cytophilic antibodies, can neutralize sporozoites and

inhibit invasion of hepatocytes, opsonized merozoites and block

reticulocyte invasion, activate cell-mediated death and are

associated with protection against clinical disease (28).

However, there is still no consensus on the longevity of

humoral responses during malaria, since immunity is antigen

specific. However, studies report that it rapidly declines after

parasite clearance (50).

The comprehension of the association between protective

immunity and the longevity of antibodies and MBCs is valuable

for future vaccine development since MBCs are major

contributors to antibody production. However, the persistence

of specific MBCs to P. vivax antigens remains unclear (50).

Several studies have investigated the relationship between the

induction of specific antibodies and specific-MBC responses. In

general, an increase in the number of plasma cells is observed

during P. vivax acute infection, but the presence of long-lived

MBCs was not consistently related to the antibody response

(60–66).

The presence of antigen-specific MBCs was detectable at 6

months for PvAMA-1 and PvMSP-9 (66), 9 months for PvDBPII

(60) and PvMSP1-19 (65), 12 months for PvMSP-8 (65), 3 years

post-infection for PvDBPII (60) and PvRBP1a (64), and even for

up to 4 years post-infection for PvMSP-8 (65), suggesting a long-

lasting immune response and potential for vaccines. In addition,

P. vivax acute infection is characterized by an increase in the
frontiersin.org
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frequencies of activated and atypical MBC populations (60, 62–

64). The increase in these cells is a consequence of augmented

systemic IFN-g production and multiple stimuli, such as TLR7/8

and IL-21 (59). However, the exact function of atypical MBCs

and their relation to previous infection remain uncertain. Thus,

more studies are necessary to understand its role in Plasmodium

vivax infection.
3 Preerythrocytic stage vaccine

Preerythrocytic vaccines target sporozoite antigens and

could reduce infections by preventing hepatocyte invasion and

establishing hypnozoites, which could achieve an anti-infection

effect and decrease the risk of relapse and transmission (67). The

main candidates for PEV are circumsporozoite surface protein

(CSP) and thrombospondin‐related anonymous protein (TRAP)
Frontiers in Immunology 04
antigens (Figure 2). It is important to note that the presence of

hypnozoites in the liver is a major challenge to therapy

development; thus, identifying new antigens derived from the

dormant stage could be a strategy for vaccine development.
3.1 PvRAS

One of the vivax malaria vaccines tested in humans is the P.

vivax radiation-attenuated sporozoites (PvRAS) vaccine,

whereas sporozoites were inoculated into humans by mosquito

bites. After immunization, individuals were challenged with live

sporozoites, and 42% of them were protected (24). Neither IFN-g
nor total IgG was correlated with protection, although IgG1 and

IgG3 antibodies to a synthetic PvCSP peptide were higher in

protected individuals (24). These cytophilic antibodies might

opsonize parasites by interacting with the Fc receptor on
FIGURE 1

Plasmodium vivax life cycle and targets of malaria vaccines. Sporozoites are inoculated in the host skin during the blood repast of female Anopheles spp.
They move to the liver by the circulatory system and invade hepatocytes. PEVs (preerythrocytic vaccines) are designed to block this step. Inside the liver
cells, morphological changes occur in the parasite and might lead to the development of hypnozoites, the latent hepatic form. After its activation, the
liver schizont is formed, followed by the merosome. When it ruptures, it releases merozoites into the blood circulation. BV (blood vaccines) are
designed to prevent the invasion of reticulocytes by merozoites. After erythrocyte invasion, new forms are generated, including male and female
gametocytes, which stay in the blood. If a new blood repast happens, these forms are ingested by mosquitoes, where the sexual cycle takes place. The
gametocytes fertilize, giving rise to the zygote and then the ookinete. The ookinete invades the midgut epithelium of the mosquito and originates the
oocyst. When it ruptures, it releases sporozoites, which migrate to the salivary gland and can restart the cycle. TBV (transmission-blocking vaccines) are
designed to interrupt this development to reduce transmission. Created with BioRender.com.
frontiersin.org
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phagocytic cells. The possibility of using sporozoites in challenge

models to test the efficacy of PEV was a great accomplishment;

however, due to the lack of an in vitro culture for P. vivax,

obtaining sporozoites is difficult. Therefore, the use of this

method is limited to endemic regions, where blood from

infected patients is available. Thus, the development of subunit

vaccines has emerged as a strategy to overcome this limitation.

The main candidates under study are described below.
3.2 PvCSP

The principal and the more advanced vaccine candidate at

this stage employs the PvCSP. This protein consists of three

main domains: the central region of tandem repeat sequences, of

which three different variants are described, VK210, VK247, and

P. vivax-like, in addition to the N- and C-terminal regions,

which are two nonrepetitive conserved sequences (68–70). This

protein is attached to the surface of the sporozoite and in early

liver stages and is critical for sporozoite formation in the oocysts,
Frontiers in Immunology 05
invasion of mosquito salivary glands, and invasion of

hepatocytes (71). Thus, a CSP-based PEV may induce a

protective response by preventing sporozoites infection and

inhibiting the establishment of hypnozoites (21).

The first vaccine study against PvCSP in humans was the

Vivax Malaria Protein 001 (VMP001) associated with AS01B

adjuvant. This vaccine consists of a chimeric protein that

incorporates the amino and carboxy-terminal regions of the

CSP and a short repeat sequence from the VK210 and VK247

parasite strains (72). The vaccine induced sterile protection in

Aotus nancymaae and a high specific antibody response in a

preclinical test when the antigen was combined with Montanide

ISA 720 plus CpG 10104 adjuvants (73). However, phase I

clinical trials did not induce sterile protection in humans

despite providing a delay in parasitemia. In addition, the

association of anti-VK210 repeat region antibodies and the

prepatent period was observed, demonstrating that this region

may improve strain-specific vaccine efficacy (21). Even if the P.

vivax antigen was the same, vaccine formulations were made

with different adjuvants, which could explain, at least in part, the
FIGURE 2

Preerythrocytic stage vaccine targets. The main candidates for PEV are PvCSP (surface antigen), PvTRAP and PvCelTOS (microneme antigens),
which have a role in the invasion process of hepatocytes. Antibodies against these proteins (represented by “Y shaped” on the figure) can
interrupt the invasion of P. vivax to hepatocytes and the development of liver forms of the parasite. Created with BioRender.com.
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different outcomes observed in those studies. Similarly, in the

RTS, S vaccine, the adjuvant of choice was responsible for

slightly different outcomes (18).

A trial was developed with another VMP001 formulation,

defined as CSV-S, S, which is coexpressed as a hepatitis B fusion

particle (74). The results showed that CSV-S, S and VMP001

were immunogenic and capable of inducing potent humoral and

cellular responses in preclinical studies (74). The CSV-S, S, was

better at inducing a higher antibody response in humans,

indicating that more studies are necessary to investigate this

candidate’s potential (75).

Salman et al. (76) tested a VLP platform using hepatitis B

surface antigen to present PvCSP, called Rv21, a particle of CSV-

S, S. This vaccine has the VK210 and VK247 sequences of PvCSP

fused with hepatitis B viral particles and was expressed in the

yeast Pichia pastoris. Rv21 vaccination combined with Matrix-M

as an adjuvant showed highly lasting sterile protection against

sporozoites in mice. Antibodies against both strains recognized

the PvCSP on the surface of P. vivax sporozoites (76).

Different recombinant proteins, based on VK210, VK247,

and P. vivax-like variants, were expressed in Pichia pastoris to

obtain secreted proteins to immunize mice (77). One of the most

promising antigens was a hybrid polypeptide called yPvCS-All

epitopes, which contains epitopes of the three variants and a

conserved C-terminal. This candidate was utilized in

immunization with Poly (I:C). The results demonstrate a

strong humoral and a low cellular response against all three

repeat regions and the C-terminal. The vaccine reduced the liver

parasite burden of C57BL/6 mice challenged with transgenic P.

berghei sporozoites (77). Similarly, de Camargo et al. (78)

developed a study involving two recombinant multiallelic

proteins called yPvCSP-AllCT (containing only the C-terminal

region) and yPvCSP-AllFL (containing the N- and C-terminal

regions), both with the three central repeat regions of different

PvCSP alleles. After immunization with the adjuvants, high

levels of specific IgG were induced against the three variants.

The protective efficacy of these vaccines, with Poly (I:C) as an

adjuvant, was assessed with a homologous and a heterologous

immunization system. Both vaccines protected mice against a

PvCSP transgenic P. vivax/P. berghei parasite, provoking a

significant delay in parasitemia (78).

Another promising study applied two recombinant proteins,

consisting of the conserved N- and C-terminal regions flanking a

truncated repeat region of either VK210/VK247, called

rPvCS127, or VK247/VK210, called rPvCS712 (79). These

proteins were recognized by monoclonal antibodies and the

plasma of P. vivax-infected patients. Antibodies against these

proteins recognize the native protein on the surface of P. vivax

sporozoites (79). Both proteins were tested with naloxone

(NLX), oligodeoxynucleotides (CpG-ODNs), and a saponin

from the Quillaja aponaria tree (QS21), alone or in

combination, in mice immunization (80). The results showed

that both proteins and adjuvants could induce a high immune
Frontiers in Immunology 06
response, with antigen-specific humoral and cellular responses

in vivo. When mice were immunized with PvCS127 or PvCS712,

with all adjuvants, higher IgG2b, IgG2c, and IFN-g levels were
induced, indicating a Th1 response (80). However, when

administered alone, the adjuvants CpG and QS21 induced

higher avidity of antibodies than NLX. PvCS712 showed a

marginally higher induction of humoral responses than

PvCS127 (80).

Marques et al. (81) developed a vaccine derived from

mumps’ viral nucleocapsid protein (NP). The PvCSP allelic

variants (VK210, VK247, and P. vivax-like) were fused with

the mumps virus NP in two different manners: NLP-CSPR and

NLP-CSPCT, in the absence or presence of the conserved C-

terminal domain of PvCSP, respectively. After mouse

immunization with these candidates and Poly (I:C), animals

showed high IgG titers against all PvCSP variants, especially

NLP-CSPCT. This antigen triggered a high titer of antibody

against PvCSP repeated and nonrepeated regions, different

from what was observed with the NLP-CSPR (81). An

increased number of antibody-secreting cells (ASCs) specific to

NLP-CSPCT was observed after the third immunization (81).

After a mouse challenge with Pb/PvVK210 sporozoites, a

decrease in parasitemia and 30% sterile protection in

immunized animals were observed (81). Gimenez et al. (82)

investigated the efficacy of NLP-CSPCT and NLP-CSPR vaccines

against other strains (VK247 and P. vivax-like). Mice were

immunized in a homologous prime-boost immunization

system with three doses of the recombinant proteins in the

presence of Poly (I:C) or Montanide ISA750 and challenged with

transgenic parasites Pb/PvVK210, Pb/PvVK247 and Pb/PvCSP-

like-G10. The study revealed a high induction of IgG against the

three strains, which intensified after the second and third doses

in all vaccine formulations, but a better response was observed

with Montanide ISA750 (82). Protective efficacy was estimated

by the time animals reached 1% parasitemia after challenge, and

partial protection was observed in all vaccine formulation

groups (82).

A platform based on Qb VLP was used to test the efficacy of

different epitopes from the VK210 and VK247 regions (83). The

more immunogenic peptides were selected to be inserted into the

Qb particle for mouse vaccination. A tetramer, AGDR, within

the nonamer repeat unit of VK210 is a target of neutralizing

antibodies and was the only one to generate antibodies

recognizing native PvCSP (83). It also conferred 100%

protective efficacy against homologous challenge. In contrast,

peptides derived from conserved regions (N- and C-terminal

regions) could not confer protection (83). The Qb-(AGDR)
vaccine was tested with full-length and truncated PvCSP.

These proteins alone conferred protection of 100% in the case

of a truncated protein and 0% for the full-length protein.

However, in combination with Qb-(AGDR), the full-length

protein showed an increase of 83% efficacy, while the

truncated protein showed a decrease in efficacy (83).
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Herrera et al. (84) determined a high antigenicity of malaria

PvCSP–derived long synthetic peptides (LSPs) in exposed

individuals and its immunogenicity in nonhuman primates.

These polypeptides were designed and synthesized based on

functional domains RI and RII (N and C peptides) or B and T-

cell epitopes (R peptide) of the PvCSP (84). The vaccine

formulation PvCSP-LSPs with Montanide ISA720 (85) or

Montanide ISA51 (22) were safe and well tolerated in phase I

clinical trials on malaria-naive volunteers in Colombia. All

peptides could induce high specific antibodies and IFN-g
production at high doses, which remained for up to three

months when the 100 µg dose was utilized (85). In general,

95% of the volunteers seroconverted and 86% recognized the

native protein of the sporozoite. The C peptide was less

immunogenic than N and R Furthermore, Montanide ISA 51

showed a better anti-sporozoite response than Montanide ISA

720 (22). Following that, in a phase II clinical trial, three LSPs

were formulated with Montanide ISA-51 and applied in healthy

malaria-naive and semi-immune volunteers (23). The

participants received three doses of a vaccine containing a

mixture of LSPs or placebo. The first dose contained N and C

peptides, while the second and third contained all three peptides.

After immunization, patients were challenged with sporozoites

in a CHMI (23). The vaccine was safe, well tolerated, and

induced sterile protection in 36.6% of the naive volunteers and

27.3% of the semi-immune volunteers against CHMI (23).

Although the first immunization induced seroconversion in

both groups, after the third dose, the antibodies significantly

increased, mainly in the naive group (23). An increase in single-

cell IFN-g production by PBMCs during immunization was

found. However, a decrease was observed after CHMI, mainly

in the naive group (23). This study showed some limitations due

to difficulties in the follow-up of the volunteers. Hence, a new

trial (NCT 04739917) is being conducted to analyse more

volunteers in malaria-endemic and nonendemic areas and

evaluate other factors that may influence vaccination.

Other studies developed different LSP formulations, such as

PvCS-NRC and PvNR1R2, and characterized them in preclinical

tests. Both were able to induce significant immunogenicity and

antigenicity in immunized mice. Furthermore, they can

recognize and block sporozoite invasion in vitro (86, 87).
3.3 PvTRAP

Thrombospondin‐related anonymous protein (TRAP), also

known as surface protein-2 (SSP-2), is a transmembrane protein

characterized by an N-terminal hydrophobic sequence (domain

I); an A-domain (domain II); a thrombospondin type 1 repeat

(TSR) (domain III); a repeat region (domain IV), variable among

different Plasmodium spp; a hydrophobic transmembrane

domain (domain V); and a cytoplasmic tail region (88).

PvTRAP is expressed in sporozoite micronemes and
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translocates to the sporozoite surface during hepatocyte

invasion since it is required for sporozoite motility and

interaction with host cells. Additionally, it is an essential

ligand during salivary gland invasion (71, 89). This protein

was related to the induction of the T-cell response and high

levels of sterile protection against malaria in animal models and

humans (90–92).

Castellanos et al. (93), who were interested in elucidating the

immunogenicity and protective efficacy of PvTRAP, conducted a

study in BALB/c mice and Aotus monkeys utilizing PvTRAP-

derived LSP. The peptide was designed to contain the region II

motif of the N-terminal, which is important for the interaction

with host cells (94). This peptide was utilized with Freund’s

adjuvant in mouse immunization and Montanide ISA 720 or

Freund’s in monkeys, and it was immunogenic in both species

(93). Specific antibodies were higher and dose-dependent in

mice after the first immunization. In contrast, in monkeys,

significant boosting doses were necessary, and a significant

cross-reactivity with the parasite was observed with Freund’s

adjuvant alone. However, the production of IFN-g was not

significant in either formulation (93).

With the same goal, Bauza et al. (95) developed two new

recombinant vectors expressing PvTRAP, the chimpanzee

adenovirus ChAd63 and modified vaccinia virus Ankara

(MVA), and tested their potential as vaccines. They applied a

heterologous prime-boost system using ChAd63-PvTRAP,

followed by MVA-PvTRAP. High induction of antibodies and

T-cell responses in immunized mice was found (95). The vaccine

efficacy and protection were assessed utilizing infectious

transgenic P. berghei expressing PvTRAP in rodents, which

showed that both CD8+ T cells and IgG antibodies could

mediate protection against malaria (95).

Bacteriophage Qb VLPs conjugated to PvTRAP peptides

were applied to identify potential B-cell epitopes with protective

efficacy (96). Qb VLPs are noninfectious particles that, when

used as immunogens, can be captured and processed by APCs

and presented by MHC-I and MHC-II to T helper and T

cytotoxic lymphocytes, enhancing the immune response (97).

In this system, a synthetic peptide is chemically coupled by a

terminal cysteine residue to the Qb VLPs. Peptides were chosen

by screening sera from TRAP-vaccinated mice for immunogenic

peptides or exploiting sporozoite invasion protein conservation

regions, which were coupled to the Qb platform (96). Mice were

vaccinated with these formulations, and a malaria sporozoite

challenge was performed to assess the protective efficacy of these

epitopes (96). Four new epitopes were discovered to confer

partial protection in mice in the Qb system. Furthermore, they

could inhibit sporozoite invasion in vitro and were recognized by

antisera monoclonal antibodies from immunized mice (96). The

antibodies against the conserved region are neutralizing, but just

one, called TRSP, was demonstrated to have protective efficacy.

Additionally, this study investigated the immune interference

between peptides and showed that this is the principal challenge
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regarding the manufacture of a multiantigen vaccine (96).

Despite the low protective efficacy of the peptides identified,

this study was groundbreaking by showing the potential of Qb-
VLPs as a system to identify novel epitopes. (98) The potential of

microcrystalline tyrosine (MCT) as an adjuvant in combination

with PvTRAP VLPs was evaluated as a vaccine candidate in mice

(98). The PvTRAP was coupled with VLPs derived from the

cucumber mosaic virus fused to a universal T-cell epitope of the

tetanus toxin (CMVtt) (98). A challenge was performed with P.

berghei transgenic plants expressing PvTRAP to measure the

protective capacity of these different formulations. After

vaccination, the group receiving PvTRAP-CMVtt with MCT

developed the highest, earlier, and more lasting antibody

response than the other groups. IgG subsets showed a

dominance of IgG1 response in all formulations (98). A

significant induction of IgG2a, IgG2b, IFN-g, and TNF-a
production was found when MCT was utilized as an adjuvant.

Moreover, this formulation showed significant protective

efficacy by delaying parasitemia but no sterile protection (98).

R e comb inan t PvTRAP a s s o c i a t e d w i t h th r e e

different adjuvants, NLX, CpG-ODN and 2-O-deacylated

monophosphoryl lipid A (MPL), was inoculated individually

or mixed and compared with CFA/IFA in mice (99). After

immunization, an increase in the antibody response, especially

IgG2b and IgG2c, was observed in all formulations compared to

rPvTRAP alone (99). Even though all groups immunized with

PvTRAP plus an adjuvant had an increase in IgG2b, IgG2c and

IFN-g, the group that received the mix of adjuvants had the

highest levels of those as well as antibodies with greater avidity,

which were persistent up to 180 days (99). In contrast, low levels

of IL-10 and no production of IL-4 were detected in any group.

These results indicate a Th1 response, which is important to

eliminate intracellular parasites at the P. vivax liver stage;

however, it is still necessary to test the efficacy of this vaccine

in challenge models (99).

PvTRAP is immunogenic in natural infections since

naturally acquired antibodies to recombinant PvTRAP were

detected in exposed individuals from the Brazilian Amazon

(100), Thailand (101), Iran (102), Afghanistan (102) and

Pakistan (102).A positive correlation between the IgG3

response and longer times to the last malaria episode was

found, suggesting that this subclass could be related to

protection (100). These findings corroborate those from Nazeri

et al. (102), who found an association of IgG1 and IgG3 antibody

responses with high avidity against PvTRAP. Understanding the

antibody response to a vaccine candidate in exposed individuals

might help to find better candidates (102).
3.4 PvCelTOS

Cell-traversal protein for ookinetes and sporozoites

(CelTOS) is an essential protein for the parasite to pass
Frontiers in Immunology 08
through cells during its life cycle through the disruption of the

membrane. It binds directly on the cytosolic face of the plasma

membrane, creating pores for the parasite’s exit (103).

PvCelTOS was found to be highly conserved worldwide (104).

A polypeptide of approximately 19 kDa was produced in E. coli,

and 30% of patients infected with P. vivax had specific antibodies

to recombinant PvCelTOS (105). To recognize potential B and

T-cell epitopes, peptides were analysed, demonstrating that all

peptides have regions with potential B-cell epitopes (105). A

study carried out by Alves et al. (104) used 4 different vaccine

platforms to immunize CD-1 and BALB/c mice: 1) the

recombinant chimpanzee adenoviral vector (ChAd63)

expressing PvCelTOS (Ad); 2) the recombinant MVA vector

expressing PvCelTOS (MVA); 3) PvCelTOS conjugated to

bacteriophage Qb virus-like particles (VLPs); and 4) the

PvCelTOS protein produced in eukaryotic HEK293T cells.

First, ChAd63 was given intramuscularly using the Matrix-M

adjuvant; the other three platforms were delivered 8 weeks later

to boost responses. The highest antibody titer was after boosting

with VLPs and protein (104). However, none of the platforms

were able to generate cellular protection, which was assessed

based on IL-2, TNF-a, and IFN-g (104).
3.5 Multiantigen PEV

A vaccine targeting multiple antigens could be more effective

than a single one. However, antigenic interference can prejudice

immune recognition, so this fact needs to be considered when

developing multiple antigen vaccines. To verify the efficacy of

multiple vaccines, Atcheson et al. (106) developed a formulation

combining Rv21 with viral vector TRAP, in which TRAP was

expressed by recombinant adenovirus ChAd63 or modified

vaccinia virus (MVA). This formulation was tested without or

with AddaVax or Matrix-M adjuvants. A chimeric P. berghei

sporozoite expressing both PvCSP and PvTRAP was used as a

challenge model to assess the protective efficacy (106). The

results showed 100% sterile protection, with or without

adjuvant, when mice were immunized with both antigen

combinations at low doses, which was not observed when they

were administered alone (106). This response may be related to a

high titer antibody and CD8+ T-cell response against PvCSP and

PvTRAP, which can inhibit hepatocyte invasion and induce the

elimination of hepatocytes infected by cytotoxic T cells.

Therefore, this study showed that the combination of Rv21

and MVA-TRAP, in coadministration, improves immunity

and increases protective efficacy against malaria.
3.6 Perspectives on PEV

Many strategies have been used to obtain an effective vaccine

capable of interrupting the preerythrocytic stage. One of the
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main vaccines uses the irradiated whole parasite. However, due

to the limitations of cell culture and sporozoite obtention,

subunit vaccines are more advantageous. Among the main

strategies for the development of subunit vaccines are the use

of T and B-cell epitopes, viral vectors, viral particles, and

multiple antigens or alleles. The most advanced studies use the

PvCSP protein. To date, candidates that have reached the clinical

stage have not conferred satisfactory efficacy, indicating the need

for further studies and new technologies to obtain an ideal

candidate. Advances in the development of vaccines targeting

P. falciparum, such as RTS, S and R21, indicate that CSV-S, S

and Rv21 vaccines targeting P. vivax have great potential since

they showed strong responses in preclinical studies. Multiallelic

vaccines targeting the three variants of PvCSP are a strategy that

may help overcome the limitations imposed by the high

polymorphism of P. vivax. However, these formulations have

not yet been evaluated in clinical trials, which may indicate the

future of these vaccines. PvTRAP-derived vaccines have also

been used in different formulations. When expressed in viral

vectors, they have the ability to induce a high antibody response

and reduce parasitemia. However, more studies are needed,

especially in the clinical phase, to evaluate the efficacy of these

formulations. Another candidate is PvCelTOS, which is also

expressed in the sexual stages of P. vivax, and it has highly

conserved amino acid regions that are accessible to the immune

system. Among the candidates presented, the multigenic vaccine

that combines PvCSP (Rv21) and PvTRAP (MVA-TRAP) has

high potential, since it was the only formulation that was able to

induce sterile protection in animal models. This formulation will

be evaluated in the clinical phase in the coming years, which

could elucidate the potential of this vaccine. New technologies,

such as mRNA vaccines, might bring better results; however, it is

matter of testing whether known antigens would be the best on

this kind of formulation or new ones need to be discovered. One

of the main difficulties in eliminating P. vivax is the formation of

latent hypnozoites. PEV may reduce the number of hypnozoites;

however, the ideal would be a vaccine candidate targeting this

latent form. In this sense, it is necessary to develop new studies

and strategies aimed at better understanding the dormancy

process and how to interrupt it.

Finally, based on what is known about PEVs, it is possible to

conclude that a single antigen vaccine will not be able to induce

sterile protection. Therefore, it is suggested that preerythrocytic

stage antigens be combined with antigens from other stages to

achieve higher efficacy. For this, it is important to identify for

each antigen the most conserved and immunogenic epitopes and

verify the best antigen combination and formulation.
4 Blood-stage vaccine

Blood-stage infection is the sole cause of symptoms of

malaria. The asexual blood stage involves merozoites, early
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and late trophozoites, and schizonts. The majority of antigens

studied in BVs are expressed in merozoites and schizonts.

Merozoites are the free form of Plasmodium parasites during

the blood cycle and are therefore more exposed to the host

immune system. In addition, the majority of antigens expressed

during the intraerythrocytic cycle are encoded by multigene

families and are very polymorphic. P. vivax merozoites infect

reticulocytes exclusively (107). The presence of these antigens in

the blood stimulates T cells and B cells to produce immune

responses (108). Thus, a BV should block parasite growth,

prevent disease and death, and reduce the density of parasites

in the blood (parasitemia and gametocytemia) and the

transmission of P. vivax (67). Today, the leading candidate

antigen for this stage is DBPII, but other candidates, such as

the RBP family, MSP family, and AMA-1, have been promising

(109–111). The BV candidates are illustrated in Figure 3.
4.1 Merozoite surface antigens

4.1.1 PvMSP family
The merozoite surface protein (MSP) family contains

numerous blood-stage vaccine candidates. These proteins are

GPI-anchored, mediate invasion into host cells and are essential

to the parasite’s life cycle (112). During the last decade, several

studies have investigated the potential of MSP as a vaccine

candidate against malaria vivax. They showed that the antigen

derived from PvMSP induces a high cellular and humoral

immune response, which was associated with a reduced risk of

malaria infection (113).

The main protein studied is MSP-1 (180 to 230 kDa), which

is located on the merozoite surface and plays a key role in

erythrocyte invasion. Several proteolytic cleavage steps occur

during RBC invasion, generating diverse MSP-1 fragments. Of

these, the C-terminal MSP-142 fragment remains on the

merozoite surface and is attached through a GPI anchor.

After processing, two fragments are produced, MSP-133,

corresponding to the N-terminal region, and MSP-119,

corresponding to the C-terminal region (114, 115). MSP-133 is

also cleaved into two other fragments, MSP-114 andMSP-120. All

these fragments were used in different vaccine formulations and

have demonstrated a protective role in diverse animal models

immunized by induction of high specific-antibody and cytokine

responses and reduction of parasitemia, dependent on the

adjuvant used (116–119). The most studied PvMSP-1 vaccine

candidate is the 19 kDa C-terminal region, despite all being

immunogenic. PvMSP-119 is highly immunogenic during

natural infection in individuals living in diverse malaria-

endemic regions (120–122). PvMSP-1 has a homology region

with Pf190 L, an immunogenic region of P. falciparum MSP-1

called Pv200. When utilized in vaccine formulation, it is

recognized by different mouse strains and induces an immune

response that is boosted following natural infection (123).
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Furthermore, Pv200 L is naturally immunogenic, and the

presence of antibodies against Pv200 L was correlated with the

number of previous infections in Brazil and Colombia

(124, 125).

Cunha et al. (126) compared the immunogenicity of

recombinant proteins produced in different bacterial vectors.

Among the candidates analysed, His6-MSP-119 and His6-MSP-

119-PADRE were better recognized by antibodies from several

individuals exposed to P. vivax, inducing specific serum

antibodies against MSP-119. The PADRE epitope did not alter the

recognition of this recombinant protein by human antibodies. In

addition, the antibody immune response was dependent on the

adjuvant formulations utilized (126). Rosa et al. (127) showed that

the presence of PADRE epitope in vaccine formulation could

significantly improve the immune response when adjuvants such

as Quil A, CpG ODN 1826, MPL/TDM or MPL/TDM/CWS that

are not as strong as CFA/IFA are employed. Rosa et al. (128) proved

that His6MSP-119 fused with two T-helper epitopes (PADRE-

epitope and DYDVVYLKPLAGMYK-epitope) was highly
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immunogenic in Callithrix jacchus but only when administered

with incomplete Freund’s adjuvant.

Dobrescu et al. (129) generated transgenic P. berghei lines

expressing PvMSP-119 and utilized them to challenge

immunized mice with vaccine formulations based on PvMSP-

119 or PvMSP-142. Despite the induction of high titers of specific

antibodies and a balanced inflammatory process in immunized

mice, the protective effects of vaccination were observed only

later in the course of infection and were not sufficient to control

initial parasitemia (129). However, this immune response

protected immunized mice from death (129).

Fonseca et al. (130) designed a recombinant modular

chimera based on PvMSP-1 (PvRMC-MSP1), including the

five most promiscuous T-cell epitopes, to enhance the

immunogenicity of PvMSP-119 with Montanide ISA 51 in a

vaccine formulation. This vaccine induced high cytophilic

antibody responses in both BALB/c and C57BL/6 immunized

mice (130). These antibodies recognized the native protein on

the surface of merozoites. PvRMC-MSP1 elicits both CD4+ and
FIGURE 3

Blood-stage vaccine targets. BV candidates are important proteins involved in the invasion of P. vivax into reticulocytes. The main candidates
are PvDBP-II (which interacts with the DARC/Duffy receptor), PvRBP-2b (which targets the TfR1/CD78 receptor), PvAMA-1, and the PvMSP
family, which are involved in the invasion process. Others were recently described, such as GAMA, PvTRAg (which targets the Band 3 receptor
or Basigin/CD147 receptor, such as TRAg-38), MAELB, ETRAMP, RON2 and EBP-2. They are expressed on the surface (yellow), microneme (red)
or rhoptry (green) of the parasite. Antibodies against these proteins (represented by “Y shaped” on the figure) could inhibit the interaction with
the reticulocyte receptors, reducing parasitemia and preventing disease symptoms. Created with BioRender.com.
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CD8+ T-cellcell responses against MSP-119, which are related to

protection (130).

Sheikh et al. (131) developed a plasmid DNA vaccine

encoding a 42 kDa fragment of PvMSP-1. The immunogenicity

of this vaccine was investigated by priming BALB/c mice either

with the PvMSP-142 DNA plasmid or with recombinant PvMSP-

142 protein and boosting with recombinant PvMSP-142 protein

(131). The best immune response was induced by prime boosting

with recombinant protein, which resulted in higher antibody and

cytokine responses than the control and DNA alone, suggesting

that the recombinant protein is essential for an improved

immune response (131). Kim et al. (132) developed a vaccine

formulation comprising attenuated Korea vaccinia virus

(KVAC103) expressing the 33 kDa fragment of PvMSP-1. A

low cellular response and a strong antibody response were

obtained in immunized mice (132).

The paralogue protein of PvMSP-1, called PvMSP-1P, has

also been investigated as a vaccine candidate. This protein is very

similar in genetic structure to PvMSP-1 but has double

epidermal growth factor (EGF)-like domains at the C-

terminus. It demonstrated high immunogenicity, principally of

the C-terminal region (133). Anti-PvMSP-1P19 human serum

had significant inhibitory effects on erythrocyte binding in an in

vitro assay (133). Min et al. (61) showed that the PvMSP-1P

antigen induces a long-lasting humoral response in natural P.

vivax infections, which was maintained for 9 months after

recovery and associated with the presence of PvMSP-1P19-

specific MBCs during the same period. Furthermore, Han

et al. (115) showed that PvMSP-1P plays an important role in

parasite adherence and host cell invasion. Antibodies against

PvMSP-1P have a strong inhibitory effect on reticulocyte

invasion, suggesting a possible role in the Duffy-negative

invasion pathway (115). Han et al. (134) found two

monoclonal antibodies that are able to inhibit erythrocyte

binding and parasite invasion, suggesting novel epitope

candidates for a subunit vaccine.

Another MSP family investigated as a vaccine candidate is

MSP-3, a multigenic family located on the surface of mature

schizonts and merozoites that appears to interact with the

surface of erythrocytes (135). The most studied members of

this family include PvMSP-3a and PvMSP-3b. These proteins

are related to P. knowlesi and P. falciparum MSP-3 proteins,

which were demonstrated to be immunogenic in animals and

contain conserved regions that induce antibodies that block

merozoite invasion (136, 137). A serological analysis

performed with individuals naturally exposed to malaria vivax

in the Brazilian Amazon found that PvMSP-3a is a target of the

immune response, inducing a high titer of IgG antibodies, which

appears to be related to protective immunity (138). Several linear

B-cell epitopes were predicted in the PvMSP-3a sequence (138).

The presence of antibodies against PvMSP-3a block II and the

PvMSP-9 N-terminal region was associated with reducing the

burden of P. vivaxmalaria and protecting against clinical disease
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(139). Oyong et al. (140) demonstrated that PvMSP-3a
antibodies acquired during P. vivax infection facilitated

complement fixation. Mourão et al. (121) discussed that

despite the natural polymorphism of PvMSP-3a359-798, it

should be considered in vaccine development since specific

antibodies to this antigen were observed in infected patients

with limited exposure to malaria.

Bitencourt et al. (141) evaluated the antigenicity and

immunogenicity of vaccine formulat ions based on

recombinant PvMSP-3a and PvMSP-3b. A higher percentage

of individuals living in endemic areas of natural infection in

Brazil had antibodies against PvMSP-3a (68.2%) and PvMSP-3b
(79.1%) (141). After mouse immunization, PvMSP-3b induced a

humoral immune response even without any adjuvant

formulation, while PvMSP-3a did not. When administered

adjuvants (Alum, Quil A, TiterMax, IFA, and the TLR-5 or

TLR-9 agonists FliC or CPG ODN 1826, respectively), a high

induction of IgG antibodies was observed (141).

Another member of the MSP family investigated is MSP-8,

which contains a GPI-anchor region and two epidermal growth

factor (EGF)-like domains at the C-terminus that are important

targets of protective immunity (142). PvMSP-8 induced high

humoral and cellular immune responses in patients with P. vivax

infection (143). PvMSP-8 was able to induce a long-lasting

humoral immune response, since high specific antibody and

MBC responses against this antigen were observed in individuals

who acquired a natural P. vivax infection (65).

P. vivax MSP-9 has also been investigated as a potential

vaccine candidate. It is a hydrophilic protein with a signal

peptide, a cluster of four cysteines, a conserved N-terminal

domain, and a C-terminal region containing blocks of species-

specific tandem repeats (144). This protein is highly antigenic

and immunogenic, contains several T-cell epitopes and is

associated with a naturally acquired immune response (139,

145–147). Monoclonal antibodies against PvMSP-9 inhibited the

parasite invasion of erythrocytes (135).

Silva et al. (30) identified a highly immunogenic linear B-cell

epitope at the C-terminal portion of domain R2 of PvMSP-9,

called PvMSP-9E795-A808. This peptide is naturally immunogenic

and is recognized by IgG antibodies from individuals living in

malaria-endemic areas (30). This epitope improved the immune

response against a recombinant protein that contains the entire

repetitive region of MSP9 (PvMSP9-RIRII) (30). The specific

IgG1 against the epitope was associated with protection

parameters (30). Silva et al. (148) tested this epitope’s

immunogenicity using three synthetic peptides, with the

sequence PvMSP-9E795-A808 alone or linked to the PvMSP-

9A443-K456 T-cell epitope or the tetanus toxin universal T-cell

epitope (TTRII), in BALB/c mice immunization. Both epitopes

elicited specific IgG antibodies, mainly IgG1 and IgG2, to

recognize the native parasite protein (148). The humoral

immune response was improved only when PvMSP-9E795-A808
linked to the T-cell epitope TTRII was utilized, showing an
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important role of T-cell epitopes in improving immunity in

subunit-based vaccines (148). Soares et al. (66) showed the

induction of short‐lived antibodies but long-lived MBC

responses to PvMSP-9E795-A808 in subjects exposed to declining

malaria transmission in Brazil, suggesting a long-lasting

immune response.

PvMSP-10 has also been investigated (149). This protein

binds selectively to reticulocytes, which could be important to

parasite invasion (150). Two peptides are involved and could be

utilized in immunization trials since these peptides contain low

polymorphism and epitopes of B and T cells and could inhibit

binding to reticulocytes (150). A recombinant protein derived

from PvMSP-10 when utilized in vaccine formulations with

Freund’s, Montanide ISA720, or aluminum hydroxide as

adjuvants in Aotus spp. Induced a strong immune response

(151). The produced antibodies recognized the native protein in

the late schizont stage (151). However, none of the formulations

protected the immunized monkeys in an experimental challenge

with P. vivax VCG-1 strain asexual blood-stage parasites (151).

Cheng et al. (152) reported that anti-MSP10 antibodies are

recognized by serum samples from infected patients,

predominantly of cytophilic IgG1 and IgG3 responses (152).

The same profile of the antibody response was observed after

mouse immunization. A high cytokine response was obtained,

inducing a strong immune response in immunized mice and

rabbits (152).
4.1.2 Pv50
The other identified antigen is a hypothetical protein of 50

kDa, called Pv50 (153). This protein showed reactivity with

malaria vivax-infected patient serum (153, 154). Cheng et al.

(153) showed a colocalization and a stronger interaction

between Pv50 and MSP1, which could be targets of

multiantigenic vaccines. A vaccine was developed with

recombinant Pv50 and elicited high IgG1 and IgG3 antibody

titers in mice (153).

4.1.3 PvEBP-2
Erythrocyte-binding protein 2 (PvEBP-2) is also related to

alternative pathways of reticulocyte invasion (155–158). Studies

have suggested that this activity of PvEBP-2 occurs

independently of PvDBP action (157, 158). In addition,

seroepidemiological studies indicate that this protein is

targeted by naturally acquired immunity in natural exposures

to P. vivax (159, 160). Anti-PvEBP-2 antibodies were related to

the protection and risk reduction of clinical disease (161, 162).

4.1.4 PvETRAMP
The early transcribed membrane protein (ETRAMP),

expressed at the schizont and early ring stages of Plasmodium

spp., was also suggested as a vaccine candidate. Lee et al. (163)

showed that PvETRAMP-4 and PvETRAMP-11.2 were reactive
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to the sera of P. vivax malaria patients. Furthermore, the

immune response was evaluated in immunized mice. A high

induction of specific antibodies, mainly IgG1 and IgG2b, against

PvETRAMP-4 was observed, suggesting an immunogenic

potential of this candidate (163).

4.1.5 PvTRAg
An important family that has been investigated as a vaccine

candidate is tryptophan-rich antigens (TRAgs), belonging to the

Pv-fam-a family. At least fifteen members of this group induce

both humoral and cellular immune responses in P. vivax-

exposed individuals (164). It contains several conserved T and

B-cell epitopes that could be used in vaccine design (164). Some

PvTRAgs could bind to erythrocytes, and this process could be

inhibited by the sera of malaria-exposed patients (164). One of

them is PvTRAg-26, a subcellular protein localized in the ring-

stage parasite colocalized with the caveola-vesicle complex,

which has an important role in parasite invasion (165). A

recombinant protein derived from this antigen presented high

antigenicity and immunogenicity in mice, with a Th1 and Th2

immune response (165).
4.2 Microneme antigen

4.2.1 PvDBP
Duffy Binding Protein (DBP) is a highly polymorphic

protein located in P. vivax merozoites. It is the central

molecule necessary for the invasion of reticulocytes due to its

ability to bind to the human Duffy Antigen Receptor for

Chemokines (DARC/Duffy) (166, 167). PvDBP is a 140-kDa

type I membrane protein consisting of four principal regions: a

peptide signal sequence (region I), two cysteine-rich regions

(region II and region VI), and a transmembrane domain (region

VII). The principal is region II (RII), a conserved sequence

responsible for erythrocyte binding (155, 166, 167). The invasion

mechanism involves different sites of RII that are an important

target for vaccine development (168). PvDBP was believed to be

the only reticulocyte linker, and therefore, Duffy-negative

individuals would be resistant to vivax malaria (167, 169)

(128). However, in recent years, it has been demonstrated that

Duffy-negative individuals can be infected by P. vivax. This is

probably due to other molecules involved in reticulocyte

invasion, suggesting that the invasion mechanism is much

more complex than believed (170–173).

Antibodies against PvDBP showed excellent results in

blocking invasion and reducing infection (174). A long-lasting

MBC response against PvDBP-II variant antigens was observed

among individuals who were living in low malaria endemicity

(60). Naturally, acquired PvDBP-II-specific binding inhibitory

antibodies (BIAbs) are related to protection against P. vivax in a

hyperendemic region, whereas they decreased the risk of P. vivax

infection by 55% in children with BIAbs (175). Additionally, it
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was related to a delay in the time to reinfection and reduction in

parasitemia. The immune response of most children with BIAbs

was strain-transcending, suggesting that a vaccine based on

PvDBP-II may be effective against diverse P. vivax strains

(175). Naturally, acquired strain-specific PvDBP-II antibodies

were associated with higher protection against a homologous

strain than a heterologous strain. A delay in reinfection was

observed when antibody levels for the most common variants

were combined (176). Therefore, a multiallele vaccine could

provide better protection against vivax malaria. Consequently,

the identification and characterization of different PvDBP

polymorphisms are essential to vaccine design since they can

interfere with vaccine efficacy and facilitate parasite immune

evasion (177). A B-cell epitope was identified in a polymorphic

region of PvDBP-II, called the DEK epitope, which targets

human inhibitory anti-DBP antibodies and is related to

protection (178). The sequential region of this epitope was

used to create an immunogen called DEKnull, from which the

polymorphic residues were removed to evaluate its

immunogenicity without the influence of the strain-specific

response and focusing on the immune response toward more

conserved neutralizing epitopes (179). DEKnull has a similar

binding activity as the native protein and induces a high titer of

antibodies and antibodies that can inhibit the binding of the

native protein to erythrocytes (179). These outcomes showed

that a more conserved epitope region could provide protection

against malaria vivax and are potent in inducing strain

transcending immunity (179). These outcomes motivated the

design of DEK-null-2, which contained a conserved region

important to reticulocyte binding and was removed from the

nonfunctional epitopes associated with strain-specific immunity

in trying to obtain a better immunogenic response. After mouse

immunization, the recombinant protein induced a higher BIAbs

than the original protein (180). Individuals living in a malaria-

endemic region from the Brazilian Amazon had a high

prevalence of IgG antibodies to DEK-null-2 until six years

after the exposure and a stable BIAb response. These

antibodies also inhibited P. vivax reticulocyte invasion ex vivo

(180). Since DEK-null-2 is a target of naturally acquired BIAbs,

it could be a good vaccine candidate, inducing a strong and long-

lasting immune response (180). Medeiros et al. (181)

investigated the relationship between naturally acquired

PvDBP-II-specific IgM and IgG antibody/BIAb activity profiles

during a nine-year follow-up period. Antibody responses were

compared between two alleles derived from PvDBP, Sal-1 and

the DEK-null-2 strain (181). Long-term exposure to low and

unstable levels of malaria vivax transmission provokes a

sustained DBP-II-specific IgM response against variant-specific

epitopes that is not associated with IgG neutralizing antibodies.

In contrast, the IgG response against variant-specific DBP-II was

poorly sustained at a low transmission period. These results

suggest that IgM antibodies indicate continuous exposure to

malaria, while IgG is associated with the BIAbs response (181).
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The antibody repertoire might vary in accordance with the

vaccine formulation. A vaccine formulated with PvDBP-RII and

TLR agonists induced a greater antibody repertoire, which was

also able to inhibit the interaction of PvDBP-RII with the Duffy

receptor in vitrowhen compared with a stable emulsion adjuvant

(182). Chen et al. (183) identified and characterized three

broadly conserved epitopes of inhibitory antibodies, called

2D10, 2H2, and 2C, to provide strain-transcending immunity

and critical motifs for future vaccine design. Similarly, Urusova

et al. (184) found two monoclonal antibodies derived from

conserved epitopes with high neutralizing and blocking

activity that were not affected by polymorphism, suggesting

strain-transcending immunity. Rawlinson et al. (185) obtained

and cloned monoclonal antibodies from PvDBP-II-immunized

human volunteers to verify their ability to inhibit the binding of

PvDBP-II to DARC and their capacity to neutralize parasite

invasion in an in vitro assay and in clinical isolates (185). One

mAb called DB9 was able to inhibit the invasion of multiple

strains of P. vivax. This epitope is located in subdomain 3 of

PvDBP-II, showing an important site of inhibition (185). George

et al. (186) found a mAb from subdomain 3, called 3C9, a

conserved and linear epitope capable of inducing an antibody

response in mice against recombinant PvDBP-II, as well as

inhibition of PvDBP-II-erythrocyte binding in vitro. PvDBP-II

contains cryptic epitopes, such as an epitope in subdomain 1

(SD1), which confer a cross-reactive immune response to P.

falciparum VAR2CSA. While it appears to have no role in

protection against P. vivax, antibodies to this epitope blocked

the interaction between P. falciparum and chondroitin sulfate A

(CSA) (187). However, the potential of this epitope as a vaccine

candidate for Pf-VAR2CSA remains to be elucidated (188).

A vaccine based on recombinant PvDBP-II and different

adjuvants (Montanide ISA720, AS02A, MF59, QS21, and Alum)

was evaluated in mice, where significant IgG production was

detected with all formulations (189). However, with ISA720 and

AS02A, the antibody and cytokine induction were higher. These

two formulations and alum showed antibodies with higher

binding inhibition of PvDBP-II to erythrocytes (189). A

preclinical study with Macaca mulatta demonstrated the safety

and immunogenicity of a vaccine derived from PvDBP-II

formulated with Alhydrogel, Montanide ISA 720, or AS02A

(190). Animals showed a high antibody response, mainly with

ISA 720 and AS02A, which were correlated with inhibiting

parasite invasion. In addition, IFN-g induction was

observed (190).

Preclinical studies were performed with human adenovirus

serotype 5 (HAdV5), chimpanzee adenovirus serotype 63

(ChAd63), and modified vaccinia virus Ankara (MVA)

expressing PvDBP-II to assess the increase in immunity in

mice and rabbits (191). It was confirmed that PvDBP-II is

highly immunogenic and provokes a strong antibody response

with either viral vector and antibodies to PvDBP-II recognized

the native PvDBP in P. vivax parasites (191). A mixed-modality
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approach tested two strong adjuvants, Montanide ISA720 and

Abisco 100, combined with viral vectors or recombinant

PvDBP-II. The results showed high IgG and IFN-g T-cell

responses in both combinations, especially after three

immunizations. The highest level of binding inhibition was

found in the Abisco 100 formulation (191).

A phase I clinical trial performed with healthy UK adults

evaluated the formulations ChAd63 and MVA encoding

PvDBP-II from the P. vivax Sal1 strain in a heterologous

prime-boost immunization using an 8-week interval (25). This

vaccine was safe and induced a binding-inhibitory antigen-

specific antibody response. A high B-cell antibody and

memory response was observed after MVA boosting. The

majority of IgG responses were IgG1 and IgG3 subtypes (25).

Additionally, an efficient IFN-g T-cell response was found,

suggesting an important role of this cell in the acquisition of

malaria vivax immunity. In addition, a binding-inhibition assay

with a different allele of PvDBP-II, the HMP013 Indian strain of

P. vivax, resulted in fifty percent binding inhibition, suggesting

strain-transcending immunity (25). These outcomes support the

utilization of this platform in phase II clinical trials and CHMI.

Similarly, another vaccine phase I clinical trial was carried out

with a recombinant PvDBP-II and glucopyranosyl lipid

adjuvant-stable emulsion (GLA-SE) (26). The formulation was

utilized to immunize healthy Indian male adults, with 10, 25, and

50 mg doses, and was demonstrated to be safe and well tolerated

(26). In addition, a strain transcending immunity was observed

through an antibody response against different P. vivax

strains (26).
4.2.2 PvRBP family
The P. vivax reticulocyte binding protein (PvRBP) family

includes important members that mediate reticulocyte invasion

(46). The P. vivax Salvador-I genome has 11 members, five full‐

length genes (pvrbp1a, pvrbp1b, pvrbp2a, pvrbp2b, and pvrbp2c),

three partial genes (pvrbp1p1, pvrbp2p1, and pvrbp2p2), and

three pseudogenes (pvrbp-2d, pvrbp-2e, and pvrbp-3) (192, 193).

Some RBPs, localized at the apical pole of merozoites, are

possibly involved in the alternative invasion pathway of Duffy-

negative individuals since they can bind to erythrocytes and have

reticulocyte selectivity (172, 173, 193, 194). Each protein has one

specific binding site different from PvDBP. Human antibodies

against some RBPs were associated with parasitemia reduction

and protection against clinical malaria (194, 195). Higher levels

of IgG3 to PvRBP2P1 were associated with higher complement

fixing capacity (195). Naturally, acquired antibodies against

PvRBP-2c- and PvRBP-1a-specific domains display high

reticulocyte binding-inhibitory activity (196). Gupta et al.

(197) verified that a rabbit antibody against recombinant

PvRBP-1a30 (352 aa–599 aa) inhibits the binding of PvRBP-1a

to reticulocytes in a dose-dependent manner. However, these

antibodies had no activity in inhibiting P. vivax invasion,
Frontiers in Immunology 14
suggesting alternative invasion pathways. This is probably due

to the considerable variation in the results obtained from the P.

vivax invasion assay from different clinical isolates (193). A

specific binding domain of PvRBP-1a, called RBP1:F8 (157 aa –

650 aa), was characterized using overlapping fragments of the

recombinant protein (198). RBP1:F8 was immunogenic since it

induced a high level of antibody in immunized animals, and

anti-RBP:F8 antibodies blocked the interaction of RBP:F8 and

erythrocytes in vitro (198). Naturally, acquired antibodies were

present in the sera of individuals exposed to P. vivax, which

suggests that this protein is naturally immunogenic (198).

Longley et al. (199) investigated the IgG antibody responses

against P. vivax blood stages of asymptomatic volunteers in a low-

transmission region of Thailand. Among the proteins analysed, five

PvRBP family members were investigated. It was observed that the

magnitudes of IgG responses to different PvRBPs are generally

correlated and tend to increase with age, and asymptomatic patients

have high IgG responses to PvRBP-1b (199). Antibodies to the

PvRBP-2c nonbinding region were associated with child protection

(199). At the same time, RBP2-P2 and RBP-1b could provide an

antibody response early in life and long-lasting even in the absence

of new infections (199). He et al. (200) investigated the antibody

response against six recombinant PvRBPs (PvRBP-1a, PvRBP-1b,

PvRBP-2a, PvRBP-2b, the PvRBP-2c nonbinding region, and

PvRBP2-P2) in populations living in low malaria transmission

regions of Brazil and Thailand. This study showed that the IgG

response to PvRBP-1a, PvRBP-2b, and PvRBP-2cNB could be a

useful immunologic marker of asymptomatic P. vivax infection in

these regions in a broad age range and predict individuals at higher

prospective risk of infection (200). In addition, it was found that

antibody levels against PvRBP-2b are associated with protective

immunity against clinical P. vivax episodes, even at low levels (200).

Gruszczyk et al. (201) identified transferrin receptor 1 (TfR1

or CD71) as an important receptor involved in PvRBP-2b

reticulocyte binding and elucidated the mechanism involved in

this process. Blocking P. vivax invasion was demonstrated in the

absence of this receptor in the reticulocyte membrane. In

addition, monoclonal antibodies against PvRBP-2b were able

to inhibit reticulocyte binding and invasion of P. vivax into

human cells (201). These findings suggest a new blocking site to

design a vaccine against the blood stage and highlight the value

of PvRBP-2b as a potential vaccine candidate.

Interested in understanding the protective function of

PvRBP antibodies, Chan et al . (202) obtained and

characterized monoclonal antibodies to PvRBP-2b from

individuals with naturally acquired immunity to P. vivax. The

study showed that these mAbs inhibit PvRBP-2b binding to

reticulocytes by blocking TfR1-Tf complex formation and

identified some epitopes involved in this process (202).

Different mAbs have different inhibition mechanisms, and

their combination could better block parasite invasion.

Additionally, it was suggested that this strategy could lessen

the impact of polymorphisms that may interfere with antibody
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binding and is the main obstacle for P. vivax vaccine

development (202). The identification and characterization of

different epitopes involved in parasite invasion are extremely

important for designing an effective vaccine.

Chim-Ong et al. (110) examined the functional

characteristics of PvRBP-2P1 as an invasion ligand of P. vivax

and its antibody response in malaria patients. It was found that

rRBP-2P1 bound selectively to reticulocytes over normocytes.

Rabbit antibodies against rRBP-2P1 reduced erythrocyte binding

of PvRBP2-P1 in a dose-dependent manner (110). The human

natural immune response to rRBP-2P1 showed an association

between higher antibody responses and lower parasite densities

(110). Furthermore, the response was higher in asymptomatic

carriers than in patients, indicating past exposure. The

interference of human antibodies in erythrocyte binding

indicates a protective role (110).

4.2.3 PvAMA-1
Apical membrane antigen 1 (AMA-1) is a surface protein

secreted by micronemes of all Plasmodium species. It can play an

important role in parasite invasion into host cells in the

preerythrocytic and blood-stage because it is an essential

component of the moving junction on the apical pole of the

parasite, forming an invasion complex with rhoptry neck protein

2 (RON-2) (203, 204). AMA-1 comprises four main regions: a pro-

sequence; a rich cysteine ectodomain; a transmembrane domain;

and a C-terminal cytoplasmic region (205, 206). The ectodomain

contains three regions, called DI, DII, and DIII (206). While the DI

region has higher genetic diversity andmutation rates, the DII is the

most conserved and immunogenic region of AMA-1, and it is

recognized by human antibodies after natural infection (207, 208).

PvAMA-1 is a promising candidate against malaria since it can

induce a strong immune response and can potentially inhibit

parasite growth (209). Bioinformatics analysis demonstrated that

PvAMA-1 is highly immunogenic and antigenic and has desirable

vaccine characteristics, such as several epitopes that could be a

proper target for vaccine development (210). Bueno et al. (109)

demonstrated that PvAMA-1 in a vaccine formulation modulated

dendritic cell maturation by upregulating antigen-presenting

molecules on the surface of the cells. Moreover, it was observed

that cytokine responses were associated with clinical protection

(109). In addition, Soares et al. (62) and Soares et al. (66) showed

that uncomplicated vivax malaria produces short‐lived antibodies

but long-lived MBC responses to PvAMA‐1 in subjects exposed to

declining malaria transmission in the Amazon. This finding

suggests that populations of areas with declining transmission can

produce and maintain potentially protective antibodies. The

presence of these MBCs could determine whether patients re-

exposed to the same strain would develop a patent blood-stage

infection (62).

Gentil et al. (211) designed different recombinant proteins

derived from PvAMA-1 DII and evaluated its immunogenicity

by immunizing BALB/c mice with different adjuvant
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formulations. The results showed that PvAMA-1 was

immunogenic in all formulations tested. However, a better IgG

response was observed with the adjuvants Quil A, TLR9 agonist

CPG-ODN and TiterMax (211). Antibodies against PvAMA-1

DII were able to recognize native AMA-1 on the merozoite

surface from infected patients (211). Similarly, Vicentin et al.

(212) expressed PvAMA-1 in Pichia pastoris and compared

vaccine formulations by mouse immunization. Quil A and IFA

as adjuvants induced higher antibody and more balanced Th1/

Th2 responses than MPLA or alum. Antibodies against PvAMA-

1 have an invasion inhibitory role against diverse P. vivax strains

(212). Someabozorg et al. (213) demonstrated that naloxone

(NLX) alone as an adjuvant in a vaccine formulation with

recombinant PvAMA-1 cannot induce a good immune

response. However, in combination with another adjuvant,

such as IFA, a balanced Th1/Th2 response was obtained (213).

Bouillet et al. (214) demonstrated that PvAMA-1 in an

adenovirus system could induce long-lasting specific

antibodies, with IgG1 and IgG2a production, and a strong and

durable T-cell response to prime-boost vaccination with

Ad5PvAMA-1/Montanide ISA720. The concurrent induction

of B and T cells against AMA-1 could be significant in

neutralizing P. vivax infection (214). Salavatifar et al. (215)

demonstrated that PvAMA-1 expressed in E. coli could induce

a long-lasting humoral immune response in immunized mice

with Freund’s adjuvant. A higher level of IgG2b and IgG1

production was observed, and a balanced Th1/Th2 response

persisted up to one year after the first immunization (215).

Antibodies against recombinant AMA-1 recognized the native

antigen on the P. vivax parasite (215).

Bueno et al. (216) identified a highly antigenic linear B-cell

epitope of PvAMA-1 DII. Antibodies to PvAMA-1 are

associated with antibody responses to DII in individuals

naturally exposed to malaria, with a predominance of IgG1

and IgG3 subtypes (216). The linear epitope at residues 290-307

aa of PvAMA1-DII was recognized by 58.3% of the individuals

who had antibodies to PvAMA1-DII, suggesting that a specific

antibody against this epitope is produced during natural

infection (216).

Several polymorphisms in parasite antigens are the major

challenge of vaccine development against malaria vivax (217).

Some studies have investigated the presence and influence of the

PvAMA-1 polymorphism in the immune response since

immunity against only one allele can induce strain-specific

immunity (218–220). These polymorphisms could facilitate

parasite evasion of vaccine-induced antibodies since they

cannot confer protection against different parasite strains

(217). Several polymorphisms were observed around binding

interfaces of PvAMA-1, suggesting immune pressure in these

regions (220). Conserved and low genetic diversity regions could

be promising targets for vaccines (220). Additionally, it is

important to consider that the immune response differs

according to each polymorphism (218). Bittencourt et al. (218)
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demonstrated that some Brazilian haplotypes, which are variable

on B-cell epitopes, can induce cross-reactivity immunity against

different alleles in the same population, conferring protection

against different strains. From the same perspective, França et al.

(219) showed that some Brazilian polymorphisms were also

cross-reactive against foreign variants. Additionally, it showed

the presence of common epitopes between them and induction

of strain-transcendent immunity (219). These studies suggest

that the combination of critical PvAMA-1 variants in a

multiallelic vaccine formulation could protect against all

strains distributed around the globe (218).

4.2.4 GAMA
GPI-anchored micronemal antigen (GAMA) is an apical

protein with an adhesive role in apicomplexan parasites. It

contains two conserved regions with reticulocyte binding

properties in P. vivax, which could be attractive to vaccine

development (221). However, the antibody response against

these regions was insufficient to inhibit the interaction (221).

Baquero et al. (221) suggested two functional regions, CR1 and

CR2, under negative selection, which could be suitable targets for

the design of vaccines.
4.3 Rhoptry antigen

4.3.1 PvRON-2
RON-2 is expressed in late schizont rhoptries and has an

important role in parasite invasion of erythrocytes by the

formation of moving junctions with AMA1 and parasitophorous

vacuoles (222, 223). Antibodies against this complex inhibit parasite

invasion, suggesting that it could be used as a potent vaccine

candidate (223). López et al. (224) identified T and B-cell

epitopes that could be utilized in a vaccine formulation and tested

their immunogenicity, showing a low immune response.

Bittencourt et al. (225) suggested that PvRON-2 induces a long-

term antibody response since naturally acquired antibodies against

PvRON-21828–2080, the binding region to PvAMA-1, were found in

exposed individuals who were infected or not infected from a

malaria-endemic region of Brazil (225).
4.4 Multiantigen BV

In an attempt to improve the immune response to antigens and

the protective efficacy of vivax malaria vaccines, some studies have

investigated the immunogenicity and protective effect of

multiantigenic vaccines. Multiantigen BVs are composed of more

than one BV antigen and can enhance the protective effect at the

blood stage. A multiantigenic vaccine composed of both PvDBP-II

and PvMSP-119 demonstrated high induction of humoral response

in mice immunized with Montanide ISA 720 or Alhydrogel (226).

The antibody response was higher than the formulation of single-
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antigen vaccines. No major competition between the two antigens

was observed, which is important for an effective vaccine (226).

Additionally, the combined vaccine showed a high inhibitory effect

of PvDBP-II binding to the DARC receptor in an in vitro

assay (226).

Rocha et al. (227) developed a chimeric recombinant protein

PvAMA166-MSP119 in Pichia pastoris, which was utilized in BALB/

c and C57BL/6 immunization, with adjuvant Poly (I:C) and

compared to vaccination with individual proteins (227). The

serum of individuals exposed to P. vivax has a higher antibody

titer against the chimeric protein than against the single protein

(227). Immunization with chimeric proteins induces a high

antibody titer, such as immunization with the PvAMA-166
protein alone, and improves the immune response to PvMSP-119
(227). However, the antibody titer against PvMSP-119 was lower in

both immunizations when compared to the PvAMA-1 antibody

response, suggesting competition between the presented epitopes

(227). Furthermore, the antibodies recognized the native protein on

the schizonts. Additionally, high cytokine induction in both mouse

strains was observed (227).

Obaldia et al. (228) assessed the effect of a vaccine containing

plasmid DNA and adenovirus-vectored encoding blood-stage

antigens AMA1 and MSP-142 in a prime/boost heterologous

immunization regimen against a blood-stage challenge in Aotus

monkeys. The results showed that this regimen was more protective

than vaccines encoding only one antigen by induction of antibody

titers, reduction of parasitemia levels, and higher rates of self-cure

during the experiment time (228). In addition, a negative

correlation was observed between antibody titers and parasitemia

levels, although sterile protection was not observed, and some

antigen interference was identified (228).

A chimeric recombinant protein targeting the C-terminal

region of PvMSP-119 and PvMSP-8, called rPvMSP8+1, was

utilized as a multiantigenic vaccine in mice (229). The

immunogenicity of this formulation was compared to each

PvMSP-119 and PvMSP-8 single vaccine (229). The specific

antibodies developed against rPvMSP8+1 could recognize

native protein MSP-1 and MSP-8 of P. vivax and P. cynomolgi

mature schizonts, which is phylogenetically close to P. vivax and

sustains long-term culture in vitro (229). Mice immunized with

the multiallelic vaccine developed a higher antibody response

and showed a stronger inhibition of P. cynomolgi growth in an in

vitro assay than both single vaccines (229).
4.5 Perspectives on BV

Blood-stage vaccines have been widely investigated.

However, the major limitation for the development of blood-

stage vaccines against P. vivax is the absence of a long-term cell

culture system and low parasitemia, which hinders the

identification, characterization and evaluation of new

candidates. Another challenge is the high polymorphism of P.
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vivax proteins, especially those that interact with reticulocytes.

Among the strategies used in these vaccines are the identification

of more conserved regions and the use of T and B-cell epitopes,

viral particles, DNA plasmids, and recombinant viral vectors to

enhance immunogenicity. The main and most studied are

PvDBP-derived vaccines, which are primarily involved in

reticulocyte invasion but are highly polymorphic. Despite

showing promising results in the clinical phase, the existence

of alternative pathways of reticulocyte invasion indicates that a

single-antigen vaccine would not be fully effective. Recent

studies have identified new merozoite candidates involved in

this process, such as PvAMA-1, PvRBPs, PvMSPs, RON-2,

PvEBP-2, PvETRAMP, GAMA, Pv50 and PvTRAg, and it is

suggested that only a vaccine with multiple antigens would be

able to confer sterile protection. Thus far, the best formulations

developed are those that use more than one antigen in their

formulation, and it is suggested that the different antigens can

activate different pathways of the immune response that, when

conjugated, provoke a more protective and effective response.

However, these formulations have not yet been used in clinical

studies, which would be fundamental to understanding the

mechanisms involved and whether the protection observed in

animal models is also provoked in humans. Further studies are

still needed to identify the best formulations and antigen

combinations that can confer such a response. Despite several

ongoing studies, the immune response to each antigen, as their

ability to activate immune cells or fix complement, is still not

fully elucidated, so further studies are critical.
5 Transmission-blocking vaccine

TBV targets the sexual stages of the parasite, both the blood

and midgut stages, within the vector mosquito. In the mosquito’s

midgut, gametocytes form gametes, which fertilize to form the

zygote and become the ookinete, which is the other target of

TBV. Such vaccines aim to decrease or completely stop the

transmission of the parasite from the intermediate host to the

definitive host, preventing the maturation of the sexual phases

(230). The leading candidates for TBVs in P. vivax malaria are

the antigens Pvs25, Pvs28, Pvs45, Pvs48, and Pvs230 (Figure 4).
5.1 Pvs25

Pvs25 plays an important role in ookinete survival in the

mosquito midgut, penetration in the epithelium, and

transformation of the ookinete into an oocyst. A study by Miyata

et al. (231) used adenovirus as a vector to assess the potential of

Pvs25 to make a TBV. In a parenteral immunization test, the

antibodies generated in mice reduced the number of oocysts in a
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membrane feeding assay by 82-99% compared to the control group.

In another study, Pvs25 was linked to the cholera toxin B subunit

(CTB) to assess the immunogenic potential of this antigen with that

carrier molecule. When linked to CTB, Pvs25 has a significant

increase in immunogenicity, reaching a transmission block of up to

98% subcutaneously and 88% intranasally in BALB/c mice (232).

Blagborough et al. (233) used a dual expression system with

baculovirus to study Pvs25. Immunization of mice occurred

intramuscularly and intranasally, and in both cases, the

transmission block was high. The intranasal route generated a

high antibody titer maintained for more than 5 months after the

last immunization. In numbers, the reduction in the number of

oocysts was 92.1% through the intranasal route and 83.8% through

the intramuscular route. There was a predominance of IgG1, IgG2a,

and IgG2b, indicating the induction of both Th1 and Th2 responses

(233). Sera obtained from subcutaneously immunized rabbits

exhibited a significant transmission-blocking effect (96%

reduction in infection intensity, 24% reduction in prevalence)

when challenged with human blood infected with P. vivax

gametocytes using the standard membrane feeding assay (233).

Another attempt to create a plausible means of producing a

TBV is the production of the Pvs25 antigen in a plant-based

system. The protein was expressed in Nicotiana benthamiana.

The vaccine candidate was tested using adjuvants, such as

Abisco-100 and Alhydrogel, and the recombinant viral

chimpanzee adenovirus vector expressing Pvs25 (ChAd63-

Pvs25) to immunize BALB/c mice (234). The highest antibody

titer was generated by a combination of adenoviral delivery,

recombinant protein, and boosters with Abisco-100, reaching a

74.5% reduction in the number of oocysts in the membrane

feeding assay (234).

The first phase I clinical trial in humans using Pvs25

demonstrated encouraging results, highlighting the ability of

this protein to generate an immune response. Recombinant

Pvs25 (Pvs25H) was used together with the adjuvant

Alhydrogel. After 194 days, sera containing higher levels of

antibodies generated between 20-30% reduction in the

numbers of infected mosquitoes in the membrane feeding

assay (235). Another study that reached phase I clinical trials

used a Pvs25 protein formulated with the adjuvant Montanide

ISA 51. In this case, the research was interrupted because 2

volunteers had adverse reactions. This may be due to the

combination of Pvs25 and the adjuvant because Pvs25

combined with Alhydrogel was well accepted (27) but with

low efficacy, as shown above.
5.2 Pvs28

Pvs28, like Pvs25, is present in the ookinete and is related to

the survival of the ookinete in the mosquito midgut, penetration
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of the epithelium, and transformation of the ookinete into the

oocyst. As they have redundant functions, Pvs25 and Pvs28 can

be used together for a more effective vaccine, since the absence of

one of them does not seem to impede oocyst maturation.

Knockout of both genes can almost completely block

transmission (236). Antibodies to the recombinant Pvs28

protein were able to block the development of sporozoites in

the Anopheles vector. BALB/c mice immunized with this protein

and CTB had antibodies to Pvs28 for 6 months after

immunization (237). Hisaeda et al. (238) generated two

recombinant proteins, Pvs25 and Pvs28, and immunized mice

with different genetic backgrounds. While immunization with

Pvs25 induced antibodies and T-cell proliferation in all mouse

strains, Pvs28 did not induce antibodies or T-cell proliferation in

C57BL/6 mice. Mouse serum against both proteins blocked

parasite development into mosquitos (238).
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5.3 Pvs48/45

Pvs48/45 is expressed on the surface of gametocytes/gametes

and plays a crucial role in gametic fusion during fertilization.

Arévalo-Herrera et al. (239) evaluated the immunogenicity of

recombinant Pvs48/45 proteins expressed in E. coli. All

immunized mice developed a high titer of specific antibodies and

seroconverted after the first dose. In addition, Aotusmonkeys were

also immunized and seroconverted, maintaining detectable levels of

antibodies for more than five months after the third dose. These

antibodies were able to completely block the transmission of

gametocytes to the vector in a membrane feed assay (MFA),

demonstrating that the epitopes maintain their conformations

(239). Tachibana et al. (240) immunized mice with DNA

plasmids encoding the full-length Pvs48/45. Antibodies produced

in mice recognized the parasite’s native Pvs48/45 proteins,
FIGURE 4

Transmission-blocking vaccine targets. TBV candidates are proteins expressed by sexual forms of the parasite. Pvs230 and Pvs48/45 are
expressed on the gametocyte surface (yellow), while Pvs25 and Pvs28 (both surface antigens) and PvCelTOS (microneme antigen) are important
for ookinete development. The PvCelTOS is also expressed on sporozoites microneme (red) during salivary-gland invasion. Other candidates are
Anopheline antigens (purple), such as FREP1, AnAPN1 and AGAP, which have a role in sexual parasite form maturation. Antibodies against these
proteins (represented by “Y shaped” on the figure) can interrupt the development of the following forms. Therefore, these vaccines are designed
to block or reduce the transmission of the parasites. Created with BioRender.com.
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generating a significant reduction in the number of oocysts in the

mosquito intestine when combined with native serum in a

membrane feeding assay.
5.4 Pvs230

Pvs230 is a prefertilization gametocyte antigen with low

polymorphism (241). To assess the immunogenic potential of this

protein, Tentokam et al. (242) conducted a study with the first

domain of Pvs230 (Pvs230D1 M), using serum from patients in

Brazil and Cambodia to assess seroprevalence in endemic locations

in both countries (242). In Brazil, 27.1% of the participants had

specific IgG for Pvs230D1 M, and in Cambodia, the seroprevalence

was 26.6%. The differential immune response among human IgG

subtypes was evaluated, with IgG3 and IgG1 being the most

prevalent, suggesting that the immune response can be improved

by complement since the two IgG isotypes most present in the study

are known to fix complement (242). Tachibana et al. (243)

conducted a study with DNA immunization to assess the

potential of antibodies to Pv230 to block transmission using P.

vivax samples obtained from Thailand in a membrane feeding

assay. The anti-Pv230 serum significantly reduced the number of

oocysts in the vector in 2 out of 3 patients. With one of the samples,

however, the number of oocysts was reduced, but the infection rate

was not, suggesting that a higher antibody titer is needed to clear the

infection and completely block transmission.
5.5 Other TBV candidates

Someother antigens have also been studied, such asTBV.Oneof

these antigens is FREP1, a protein present in the gut of Anopheles

mosquitoes that participates in invading the ookinete through direct

connection with gametocytes and ookinetes (244). Niu et al. (245)

evaluated the immunogenic potential of FREP1 using Hsd: ND4

mice,whichwere immunized subcutaneously andboosted twice at 3-

week intervals with 20 mg of FREP1 per mouse in Alhydrogel

adjuvant (245). Similarly, five mice were immunized with the

highly conserved portion of fibrinogen-like protein (FBG) under

the same regimen for optimal prime boosting. The results showed

that the anti-FREP1 antibody significantly reduced the number of

oocysts of P. vivax per midgut more than 2-fold compared to the

control serum (245).

Another protein under study is alanyl aminopeptidase N

specific from the middle intestine of Anopheles (AnAPN1),

which is highly conserved among the species of Anopheles and

is a putative target for the invasion of ookinetes by P. falciparum

and P. vivax (246). To evaluate the vaccine potential of AnAPN1,

Mathias et al. (247) immunized BALB/c mice with 2 mg of

AnAPN1 without adjuvant, while the control group received

only IFA. There were no major differences between the

regimens, and it was possible to verify that the antigen
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induced a good immunological response (247). The blocking

activity of anti-AnAPN1 antibodies was achieved by recognizing

a highly conserved epitope. This peptide maintained almost

100% similarity among all species of Anopheles and is a great

candidate for future vaccine studies (248).
5.6 Perspectives on TBV

Transmission-blocking vaccines have been widely

investigated in recent years. However, in natural infections, a

weak immune response against these antigens is induced.

Consequently, in immunization systems, many doses are

needed to observe high efficacy. Another limitation is the lack

of in vitro culture of P. vivax, which makes it difficult to identify

antigens expressed in the early stages of the gametocyte.

However, several candidates have been identified that are

expressed in gametocytes and ookynetes or are present in the

vector salivary gland. The antigens Pvs25/28, Pvs48/45 and

Pvs230 are the most studied, Pvs25 being the only one to

reach a phase I clinical trial. Even so, Pvs28, as well as Pvs48/

45 and Pvs230, have shown good immunogenicity, where the

specific antibodies reduce transmission by preventing

maturation of the oocyst inside the mosquito. In an attempt to

avoid genetic variations of antigens between Plasmodium species

and to create a universal vaccine, the antigens of the anopheline

vector are also of great interest for the production of an effective

TBV, such as the already known FREP1 and AnAPN1 but also

other proteins to be studied and characterized, as is the case of

AGAP008138, which is exclusive to the Anopheles species and

acts by facilitating the invasion of the oocysts of more than one

species of Plasmodium.

Moreover, further studies are needed to identify new

candidates and adjuvant formulations to improve TVB

response. In addition, antigens from sexual stages should be

used in combination with antigens from other stages to assess

protection and efficacy.
6 Multistage vaccine

6.1 MAELB

The merozoite adhesive erythrocytic binding protein

(MAEBL) was associated with protection in Plasmodium yoelli

(249). MAEBL is a membrane protein of the erythrocyte binding

protein (EBL) family. It is expressed in preerythrocytes, blood

stage, and salivary glands (31). Immunoinformatic analysis

showed that MAEBL antigens could be promising interspecies

and inter strain malaria candidates since they have several

conserved epitopes among P. yoelli, P. falciparum and P. vivax

(31). Functional studies showed that antibodies against
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PyMAEBL-M2 were reactive against P. falciparum and P. vivax

with significant inhibition of erythrocyte invasion of these

parasites (31).
6.2 Multistage and multiantigen

A multistage vaccine is composed of antigens from different

parasite stages. Vaccines based on antigens from different stages

could block different parts of the parasite life cycle and, in

theory, could be better strategies for a better vaccine. Lima et al.

(250) analysed the immunogenicity of vaccine formulations

composed of yPvCSP-AllFL (PEV candidate) and PvAMA-1

(BV candidate), alone or in combination, with Poly (I:C) as an

adjuvant in BALB/c and C57BL/6 mice. The BALB/c antibody

response was relatively low against PvCSP, while PvAMA-1 and

the mixed vaccine were higher, which could be related to an

immunodominance of the epitopes of PvAMA-1 (250). In

contrast, the C57BL/6 antibody response was higher and long-

lasting against both immunizations, and no difference was

observed in the mixed vaccine (250). In the IgG profile, a

predominance of the Th2 response was observed, and the

presence of PvAMA-1 seems to improve the balance of the

immune response (250). However, in the mixed vaccine,

antigenic interference was observed in the cell-specific

proliferative response and in cytokine secretion (250). A

decrease in parasitemia was observed in both immunizations

after challenge with transgenic Pb/PvCSP-VK210 sporozoites,

although sterile protection was not observed (250).

PvMSP-1 (BV candidate) was utilized in a chimeric

formulation fused with Pvs25 (TBV candidate) in a

multiantigenic vaccine (251). PvMSP-1 improved Pvs25

immunogenicity (251). The vaccine induced a high antibody

titer, blocking the transmission of P. vivax in the direct

membrane-feeding assay and producing long-lived plasma

cells (251).
7 Conclusion

The achievement of a vaccine capable of fighting

Plasmodium species is one of the main objectives for

combating, controlling, and eliminating malaria. The vaccines

approved against P. falciparum have presented encouraging

results, reinforcing the need for a vaccine against P. vivax

since this is the most geographically distributed parasite. Due

to numerous difficulties related to it, there is still no ideal

vaccine. However, several candidates targeting different stages

of the parasite life cycle have been investigated.
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However, single-antigen vaccines are not able to confer sterile

protection, although they contribute to the reduction of

parasitemia and transmission. On the other hand, vaccines that

combine more than one antigen have shown promising results

but are still in the early stages. Multistage vaccines can increase

human reactivity to genetically diverse populations of

Plasmodium spp. by eliciting strain-transcending immunity.

These vaccines were able to induce a better immune response

and increased protection in preclinical testing. Nevertheless, the

best combination of antigens, platforms, and adjuvants remains

unclear, denoting the need for further studies and greater

investment in research targeting P. vivax. Due to the huge gap

in knowledge about the biology of P. vivax, a huge delay in

vaccine development is observed. Future studies should

investigate unknown proteins to identify and characterize new

vaccine candidates. Vaccine candidates should induce an effective

protective response. When looking for antibodies as markers for

vaccine candidates, it should be important to look for functional

antibodies, and it is important to look for subclasses, avidity, and

the ability to fix complement and not only titers. In addition, new

constructs and formulations should be evaluated and compared

in preclinical and clinical studies. To this end, new technologies

and platforms that already exist, such as viral particles,

nanotechnology, viral vectors, and mRNA, should be used but

slightly explored for this parasite. In addition, it is important to

identify the most conserved regions and epitopes of P. vivax

proteins to overcome their high polymorphism and even use

them in multiantigen vaccine constructions. Immunization

strategies should also be analysed, and the use of heterologous

prime-boost has been very promising. New adjuvants should be

investigated, their mechanism of action, and their safety for use in

humans. All these aspects should be considered in an attempt to

obtain candidates capable of inducing a potent cellular and

humoral immune response, with a robust production of

neutralizing antibodies and long-lasting memory cells. The

study of the immune response in P. vivax natural infections is

essential for the identification of new candidates. Due to several

limitations, such as the absence of an in vitro culture system and

limited access to experimental models to screen new candidates, it

is crucial to develop new studies aimed at optimizing these

aspects, which will have great repercussions on the

development of malaria vaccines. In summary, the best way for

vaccine development targeting P. vivax is to improve multistage

vaccines, as they could disrupt the different stages of the parasite

life cycle. Nevertheless, further studies are needed to identify and

characterize new candidates and evaluate the best combinations

of antigens, platforms, immunization systems, and vaccine

formulation technologies in an attempt to achieve a safe and

effective vaccine.
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