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Abstract

Background

Rhodnius prolixus is a vector of Chagas disease and has become a model organism to

study physiology, behavior, and pathogen interaction. The publication of its genome allowed

initiating a process of comparative characterization of the gene expression profiles of

diverse organs exposed to varying conditions. Brain processes control the expression of

behavior and, as such, mediate immediate adjustment to a changing environment, allowing

organisms to maximize their chances to survive and reproduce. The expression of funda-

mental behavioral processes like feeding requires fine control in triatomines because they

obtain their blood meals from potential predators. Therefore, the characterization of gene

expression profiles of key components modulating behavior in brain processes, like those of

neuropeptide precursors and their receptors, seems fundamental. Here we study global

gene expression profiles in the brain of starved R. prolixus fifth instar nymphs by means of

RNA sequencing (RNA-Seq).

Results

The expression of neuromodulatory genes such as those of precursors of neuropeptides,

neurohormones, and their receptors; as well as the enzymes involved in the biosynthesis

and processing of neuropeptides and biogenic amines were fully characterized. Other

important gene targets such as neurotransmitter receptors, nuclear receptors, clock genes,

sensory receptors, and takeouts genes were identified and their gene expression analyzed.

Conclusion

We propose that the set of neuromodulatory-related genes highly expressed in the brain of

starved R. prolixus nymphs deserves functional characterization to allow the subsequent

development of tools targeting them for bug control. As the brain is a complex structure that
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presents functionally specialized areas, future studies should focus on characterizing gene

expression profiles in target areas, e.g. mushroom bodies, to complement our current

knowledge.

Introduction

Triatomines are hematophagous insects that can transmit Trypanosoma cruzi, the etiological

agent of Chagas disease. It is estimated that this neglected disease affects 7 million people,

located mostly in Central and South America. The study of their biology is relevant because T.

cruzi transmission is mostly controlled by eliminating domiciliated bugs [1].

Triatomines are nocturnal insects that assume an akinetic state while hidden in shelters

during daylight hours. At nightfall, they eventually start a non-oriented locomotor activity,

outside shelters to search for hosts. For host recognition, starved bugs detect cues released by

vertebrates, such as radiant heat, water vapor, carbon dioxide, and other odorants [2]. The

decision to leave a shelter and engage in foraging is risky, as triatomine hosts are often preda-

tors as well. For this reason, starved bugs mostly leave the protection of the shelters when a

robust set of host clues is present [3–5]. Bugs of all nymphal instars and adults of both sexes

feed on blood and can tolerate long starvation. Whereas nymphs have to feed to be able to

molt, and adult females require nutrients to produce eggs [6]. Starved insects orientate towards

host-emitted stimuli, while fed insects can remain indifferent or avoid these cues depending

on the time elapsed after feeding [7].

The central nervous system (CNS) is the main regulator of physiology and behavior. Besides

processing sensory information, the brain is the major accumulation of neuropiles integrating

neural activity of sensory, memory, and proprioceptive nature [8]. As such, it has a main role

in the coordination of motor responses, adjusting their proper timing through a set of clock

neurons [9–11]. Signal transfer and modulation of neural processes in the CNS depend on

neuroactive compounds, including neurotransmitters of diverse chemical nature like biogenic

amines and neuropeptides, and their receptors [12, 13]. Neuropeptides and biogenic amines

can also act as endocrine factors mediating signaling processes in multicellular organisms, and

in the case of insects, they are fundamental in coordinating growth and development, as well

as physiological processes such as metabolism, diuresis, digestion, reproduction, and behavior

[14, 15]. Rhodnius prolixus Stål, 1859 (Hemiptera, Reduviidae, Triatominae) is considered an

important vector of Chagas disease in Colombia and Venezuela due to its adaptability to both

domestic and peridomestic environments, its rapid developmental cycle and the great popula-

tion density it reaches in human dwellings [16–19]. Furthermore, R. prolixus has been widely

used as a model for insect physiology studies, including research on reproduction, develop-

ment, immunology, and vector-parasite interactions [20]. After the publication of its genome

sequence [21], and the introduction of next-generation sequencing (NGS) methods, several

studies have described genetic and molecular components underlying the physiology of R. pro-
lixus [14, 15, 22–30]. Transcriptomic studies allowed the discovery of new genes and tran-

scripts, the identification of differentially expressed genes, and determining targets for broader

functional analyses. Some transcriptomes have analyzed gene expression in different R. pro-
lixus tissues such as salivary glands [31], ovaries [32, 33], gut [29], testicles [34], and antennae

[26]. Furthermore, this technique allowed defining the molecular bases of female reproductive

physiology under differing nutritional states [22], as well as characterizing the innate immune

system of these bugs at the molecular level [35]. Several of these bioinformatic analyses have

recently shown that the genome of R. prolixus has many missing or miss-annotated genes [22,
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33, 36], highlighting the importance of transcriptomes for improving the quality of the anno-

tated genome of R. prolixus. Therefore, the present study aims to describe the genetic compo-

nents that serve as the molecular neural bases controlling behavior in the brain of unfed R.

prolixus nymphs.

Materials and methods

Insects

Rhodnius prolixus were obtained from a colony derived from insects collected in Honduras

around 1990 and maintained by the Vector Behavior and Pathogen Interaction Group at the

René Rachou Institute, Belo Horizonte, Brazil. Insects were monthly fed on citrated rabbit

blood obtained from CECAL (Centro de Criação de Animais de Laboratório, FIOCRUZ, Rio

de Janeiro, Brazil) offered through an artificial feeder at 37˚C, alternating with feeding on

anesthetized chicken and mice. Chickens were anesthetized with intraperitoneal injections of a

mixture of ketamine (20 mg/kg; Cristália, Brazil) and detomidine (0.3 mg/kg; Syntec, Brazil),

and mice with ketamine (150 mg/kg; Cristália, Brazil) and xylazine (10 mg/kg; Bayer, Brazil).

Insects were reared in the insectary under 27 ± 2˚C, 51 ± 7% of relative humidity and natural

illumination. For this study, seven-day-old 4th instar nymphs were fed on citrated rabbit blood

using an artificial feeder. Insects were kept unfed for 30 days after their ecdysis to the 5th instar

and subsequently dissected to collect their brains. This study was carried out in strict accor-

dance with the recommendations in CONCEA/MCT (http://www.cobea.org.br/), which is

associated with the American Association for Animal Science (AAAS), the Federation of Euro-

pean Laboratory Animal Science Associations (FELASA), the International Council for Ani-

mal Science (ICLAS) and the Association for Assessment and Accreditation of Laboratory

Animal Care International (AAALAC). The protocol was approved by the Committee for Eth-

ics in the Use of Animals, CEUA, of the FIOCRUZ (Protocol Number: LW-61/2012).

RNA extraction and illumina sequencing

Insect brains were dissected on a freeze cold dissecting dish (BioQuip, Gardena, CA, US), col-

lected with forceps, and immediately transferred to a microtube immersed in dry ice and

added 1 mL of TRIzol™ reagent (Invitrogen, Thermo Fisher Scientific, MA, USA). For sample

completion, dissections occurred along three days, exclusively between 2 and 4 pm. Two sepa-

rate experiments were performed, with three independent replicates each. Samples for repli-

cates were, each composed of a pool of 20 brains. RNA extraction was performed with TRIzol™
according to the manufacturer’s instructions. Total RNA concentrations were determined

using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, US). Six libraries were con-

structed using the TruSeq Stranded mRNA Sample Preparation Kit (Illumina, San Diego, CA)

and sequenced on an Illumina HiSeq 2500 platform at the Max Planck Genome Center in

Cologne (Germany). Approximately 15 million reads were obtained for each library, using 150

base-pair (bp) paired-end reads. The raw sequence dataset is available with the NCBI-SRA Bio-

project number PRJNA853796 at NCBI.

Bioinformatic analysis

Raw reads were filtered and trimmed for low-quality bases using Trimmomatic (v0.36) [37],

according to standard quality score parameters (Phred-33 (>15); and 50 base-pair minimum

length). Then, STAR v2.6.0 [38] was used with default parameters to map reads to the R. pro-
lixus reference genome (version RproC3.3) accessed through the VectorBase website [39].

Mapped reads were assigned to each gene through the coverage tool in BEDTools (v2.29.2)
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based on an updated gene annotation file [26]. A Principal Component Analysis (PCA) was

performed through the plotPCA function in DESeq2 on RStudio to analyze the variation

between the six libraries. Gene length and total counts of mapped reads were used for calculat-

ing Transcripts per Kilobase per Million mapped reads (TPM) values for target genes in each

library. Subsequently, target gene expression (as Log10 TPM+1) was depicted in heatmaps

built using the pheatmap R package (v1.0.12). Finally, all genes were ranked according to the

highest expression using TPM values, and the top 50 that were present in at least four of the six

libraries, and which presented annotation in VectorBase [39] and/or a positive hit in BLASTp

searches were selected. BLASTp searches were performed against Insecta class sequences in

GenBank to identify putative functions of these highly expressed genes.

Results and discussion

Overall analysis

RNA-Seq data from starved 5th instar R. prolixus brain transcriptomes were summarized in

Table 1. After filtering and trimming raw reads, all libraries showed coverage of around 13 mil-

lion reads. The number of uniquely mapped reads against the R. prolixus genome ranged from

8,8 M to 10,3 M reads. According to the PCA graph, three libraries clustered together (Rep2,

Rep3 from Experiment 1 and Rep4 from Experiment 2), and three segregated apart (S1 Fig).

Based on our brain library outputs, six lists of the expressed genes were obtained after rank-

ing their TPM values. To characterize the set of genes most highly expressed in the brain, we

compared these ranks and built a consensus list depicting genes that ranked top 50 in at least

four out of six libraries (Table 2). Several initiation and elongation factors together with ribo-

somal proteins were identified among top expressed genes, probably reflecting protein biosyn-

thesis induced by starvation. Several heat shock proteins presented high expression in the

brain, also probably due to starvation-generated stress. Different types of soluble carrier pro-

teins, like odorant binding proteins, takeouts and lipocalins were very abundantly expressed in

the CNS, suggesting roles other than odor transportation or detection. Finally, other highly

expressed genes were the neuroendocrine secretory protein 7B2 which functions as a specific

chaperone for the prohormone convertase 2 (PC2) [40], an enzyme required for the matura-

tion of neuropeptide and peptide hormone precursors; and the Glutamine synthetase that cat-

alyzes the synthesis of glutamine, which has a central role in nitrogen metabolism and the

regulation of neurotransmitter production [41].

Neuropeptide precursor genes

Neuropeptide precursor gene (NPG) expression patterns in insects tend to be stereotyped, and

each neuropeptide may be involved in neurotransmission, synaptic neuromodulation, or in

Table 1. Summary of RNA-Seq metrics from R. prolixus brain transcriptomes.

Sample name Raw reads Clean reads Uniquely mapped Uniquely mapped (%)

Brain_rep1 15,816,907 12,843,740 9,235,291 71.90

Brain_rep2 16,109,824 13,304,387 8,860,721 66.60

Brain_rep3 16,379,827 13,237,314 9,795,612 74.00

Brain_rep4 16,367,691 13,094,877 9,451,882 72.18

Brain_rep5 16,811,723 13,819,788 9,699,418 70.18

Brain_rep6 16,462,326 14,243,670 10,330,221 72.52

Sample name: name of replicate; Raw Reads: original sequencing reads; Clean Reads: number of reads after filtering; Uniquely mapped: number of reads that were

uniquely mapped to the reference genome; Uniquely mapped (%): percentages of uniquely mapped reads.

https://doi.org/10.1371/journal.pone.0282490.t001
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Table 2. Consensus list of the top 50 most highly expressed genes in brain transcriptomes of starved R. prolixus.

Gene ID Gene Name P length Top hit of BLASTp against Insecta Average TPM

RPRC006099 NMDAr2a 218 Glutamate Receptor Ionotropic, Nmda 2b Isoform X2 [Halyomorpha halys] 11244

RPRC005193 139 Saga-Associated Factor 29 Homolog [Fopius arisanus] 10131

RPRC015041 462 Elongation Factor 1 Alpha [Platymeris biguttatus] 10114

RPRC000990 702 Hexamerin-Like [Cimex lectularius] 9508

RPRC004310 652 Heat Shock Cognate Protein [Riptortus pedestris] 9005

RPRC011668 NPLP1 454 Neuropeptide-Like Precursor 1 [Rhodnius prolixus] 7909

RPRC010283 450 Alpha-Tubulin 1 [Lygus lineolaris] 7107

RPRC009600 302 Mitochondrial Adp/Atp Translocase [Triatoma infestans] 7020

RPRC012247 287 Polyubiquitin-C Isoform X2 [Pipistrellus kuhlii] 4930

RPRC010096 TO2 242 Protein Takeout [Cimex lectularius] 4589

RPRC012142 239 Elongation Factor 2 [Riptortus pedestris] 4506

RPRC005793 165 Salivary Secreted Protein [Triatoma infestans] 4120

RPRC002589 886 Aminopeptidase N-Like [Cimex lectularius] 3984

RPRC009337 274 Ribosomal Protein S2 [Riptortus pedestris] 3911

RPRC009692 141 Secreted Hypothetical Protein [Pristhesancus plagipennis] 3730

RPRC005729 CPR 680 Nadph Cytochrome P450 Reductase [Triatoma infestans] 3623

RPRC009568 172 Translationally Controlled Tumor Protein [Riptortus pedestris] 3431

RPRC012140 605 Elongation Factor 2 [Riptortus pedestris] 3292

RPRC011442 179 Nucleoplasmin-Like Protein Isoform X1 [Cimex lectularius] 3179

RPRC011742 247 14-3-3 Protein Zeta Isoform X1 [Cimex lectularius] 2996

RPRC003327 RpLP0 275 60s Acidic Ribosomal Protein P0 [Halyomorpha halys] 2763

RPRC009300 320 Polyadenylate-Binding Protein [Riptortus pedestris] 2724

RPRC017359 pAbp1 628 Polyadenylate-Binding Protein [Riptortus pedestris] 2702

RPRC012014 249 Protein Takeout-Like Isoform X1 [Homalodisca vitripennis] 2670

RPRC010786 168 Immunoglobulin Domain-Containing Protein [Cimex lectularius] 2608

RPRC009875 376 Actin-4 [Bombyx mori] 2560

RPRC015317 356 Arginine Kinase [Triatoma infestans] 2468

RPRC004408 OBP11 128 Heme-Binding Protein [Rhodnius prolixus] 2186

RPRC013825 356 Mitochondrial Phosphate Carrier Protein [Riptortus pedestris] 2011

RPRC001993 192 GTP-binding Protein REM 1-like Isoform X2 [Cimex lectularius] 1859

RPRC012101 404 S-Adenosylmethionine Synthase Isoform X2 [Halyomorpha halys] 1840

RPRC013341 120 Secreted hypothetical protein [Pristhesancus plagipennis] 1827

RPRC015183 148 Neuroendocrine Protein 7b2 Isoform X1 [Halyomorpha halys] 1790

RPRC007008 OBP20 149 Putative Odorant-Binding Protein [Triatoma brasiliensis] 1784

RPRC007612 124 Mite group 2 allergen Tyr p 2-like [Cimex lectularius] 1766

RPRC010050 Tsf1 657 Transferrin [Rhodnius prolixus] 1735

RPRC007515 140 Calmodulin Isoform X2 [Nematostella vectensis] 1704

RPRC000843 Tachykinins 215 Tachykinin Precursor [Rhodnius prolixus] 1691

RPRC011264 78 Histone-lysine N-methyltransferase [Nylanderia fulva] 1670

ITG-like ITG-like 243 Glutamine Synthetase Isoform X3 [Halyomorpha halys] 1665

RPRC001419 745 Venom periostin-like protein 1 [Pristhesancus plagipennis] 1646

RPRC000758 243 Glutamine Synthetase Isoform X3 [Halyomorpha halys] 1636

RPRC005040 134 Fatty Acid-binding Protein, muscle [Cimex lectularius] 1632

RPRC007684 222 Putative Elongation Factor 1 Beta [Triatoma infestans] 1606

RPRC012542 RpS4 263 40S Ribosomal Protein S4 [Cimex lectularius] 1577

RPRC005701 RpS8 208 40S Ribosomal Protein S8 [Triatoma infestans] 1562

RPRC007924 323 RNA-binding Protein Squid Isoform X5 [Cimex lectularius] 1541

(Continued)
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conveying neuroendocrine signals at peripheral targets [12]. Currently, structural and func-

tional studies on insect neuropeptides are being performed to develop new insect control

approaches. This is especially true for neuropeptides involved in developmental, nutritional,

and survival processes [13]. For this reason, we focused on the neuropeptides showing the

highest expression in our study.

The four most highly expressed NPGs (Neuropeptide-like precursor 1—NPLP1, Tachyki-

nin—TK, ITG-like, and NVP-like) presented expression values> 3 (Log10 TPM+1). Most

genes coding for neuropeptides (26 genes) had expression values between two and three, while

eight had values between 1 and 2. A few of them, like ecdysis triggering hormone (ETH), eleve-

nin 1 (Ele1), eclosion hormone (EH), sulphakinin (SK), and sifamide (SIFa) had expression

values< 1. Adipokinetic hormone/corazonin-related peptide (ACP) was the only NPG out of

44 annotated for R. prolixus [26] that was not expressed in any of the six libraries here analyzed

(Fig 1A).

Neuropeptide-like precursor 1 (NPLP1) was the NPG showing the highest expression in

our transcriptomic database. Furthermore, it ranked amongst the 10 most highly expressed

genes in the brain, presenting a mean of 3.90±0.03 Log10 TPM+1 among our libraries. There

were two different isoforms with distinct expression patterns previously detected in R. prolixus,
isoform A expressed in CNS, ovaries, testes, and antennae, while expression of isoform B was

only detected in antennae. The presence of mature peptides from NPLP1 precursors was also

previously detected in the salivary glands of R. prolixus using proteomics [27]. The high

expression observed for this neuropeptide precursor in our work suggests a relevant role in the

CNS. Indeed, Sterkel et al. [30] showed that the levels of two mature peptides encoded by the

NPLP1 precursor gene significantly decreased in the CNS 24 hours after feeding, suggesting a

role connected to starvation. A decrease in NPLP1 expression was also observed in the anten-

nal lobe of mosquitoes after blood or sugar ingestion [42].

According to our brain dataset, TK was the NPG showing the second-highest expression

level (3.22 ± 0.07 Log10 TPM+1). Sterkel et al. [30] have also detected TK in the CNS of R. pro-
lixus by means of peptidomics, not observing changes in its abundance after blood ingestion.

This NPG presents expression in a wide set of R. prolixus tissues, as its transcripts have been

detected in salivary glands, fat body, dorsal vessel, the intestinal tract of 5th instar nymphs (by

RT-qPCR) [43], and in the antennae of 5th instar nymphs and adults (using RNA-Seq) [26].

Studies on other insects have shown that TKs can modulate early olfactory processing at the

olfactory lobes, circuits controlling locomotion and food search, aggression, metabolic stress,

and nociception [44]. Similar roles could be expected in triatomines based on the high expres-

sion of the TK gene observed in our study.

ITG-like and NVP-like genes also presented high expression values (3.21±0.08 and 3.10

±0.04 Log10 (TPM+1), respectively) in our database; nonetheless, to our knowledge, a func-

tional characterization is not available for these peptides so far. Latorre-Estivalis et al. [26]

Table 2. (Continued)

Gene ID Gene Name P length Top hit of BLASTp against Insecta Average TPM

RPRC004762 Tubulin beta chain 447 Tubulin beta-1 chain isoform X2 [Cimex lectularius] 1511

RPRC006543 ATPase 9 142 ATP synthase lipid-binding protein [Halyomorpha halys] 1491

RPRC002700 110 Eukaryotic Translation Initiation Factor [Halyomorpha halys] 1437

Gene ID: VectorBase gene code; Gene name: Gene name according to VectorBase; P length: Protein length; Top hit of BLASTp against Insecta in GenBank: Putative

function of the gene according to BLASTp result; Average: Mean gene expression values among all six libraries in TPM.

https://doi.org/10.1371/journal.pone.0282490.t002
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detected high expression of ITG-like in the antennae of immature and adults of R. prolixus and

proposed a modulatory role for this neuropeptide at the peripheral level. In its turn, Leyria

et al. [22] indicated that blood ingestion induced ovarian downregulation of the NVP-like
gene, suggesting a role in R. prolixus reproduction [22]. The quantitative peptidomics analysis

of the R. prolixus CNS by Sterkel et al. [30] showed that the abundance of ITG-like and NVP-

like neuropeptides significantly decreases a few hours post-blood meal, indicating their impli-

cation in a neuroendocrine response to feeding. Considering this and the very high expression

observed for ITG-like and NVP-like in our dataset from starved bugs, we suggest that they

might act by signaling starvation status. Functional genetic studies based on gene silencing

should be implemented to verify potential behavioral phenotypes that could offer evidence

about the roles of these neuropeptides in R. prolixus.
Insulin-like peptide (ILP) presented a high expression in our database (2.90±0.02 Log10

TPM+1). This result was consistent with the characteristics of our samples (brains from

starved bugs) and the putative function of this neuropeptide as a modulator of lipid and carbo-

hydrate metabolism [45, 46]. Indeed, in vitro immunofluorescence studies in R. prolixus brains

demonstrated strong and abundant fluorescence of ILP neurons in unfed nymphs, followed by

an acute decrease 4 hours after ingestion of a food meal, indicating transport and release of

these signaling molecules into the hemolymph soon after feeding [47]. The high expression of

Fig 1. Expression profiles of neuropeptide precursor and neuropeptide receptor genes. (A) Heatmap depicting the

expression level of neuropeptide precursor genes, and (B) neuropeptide receptor genes in the brain of R. prolixus
nymphs. Expression (displayed as Log10 TPM+1) is represented by means of a color scale in which blue/red represent

the lowest/highest expression. Each column represents the expression of one library.

https://doi.org/10.1371/journal.pone.0282490.g001
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this neuropeptide in the CNS of unfed insects was also observed by Leyria et al. [22]. Interest-

ingly, these authors observed that blood ingestion did not affect ILP gene expression in the

CNS of R. prolixus [22].

Neuropeptide processing enzymes

Mature neuropeptides are synthesized by a series of enzymatic steps that sequentially cleave

and modify larger precursor molecules. One step of neuropeptide biosynthesis involves pep-

tide amidation, a process that occurs on half of the known bioactive neuropeptides [48, 49].

The expression pattern observed for these enzymes might be a good proxy to estimate their

abundance and activity [50], deserving their subsequent functional characterization.

A set of eleven neuropeptide processing enzymes was previously annotated for R. prolixus
[26], using sequences of D. melanogaster as references [51]. All of these enzymes showed rela-

tive expression values higher than 1 (Log10 TPM+1) (S2 Fig). Peptidyl alpha hydroxyglycine

alpha amidatinglyase 2 (PAL2) and peptidylglycine α-amidating monooxygenase (PHM), the

enzymes involved in amidation reactions, were the most highly expressed genes of this set

(PAL2–2.92±0.07, PHM– 2.77±0.11).

Neuropeptide receptors

Whether a tissue is targeted by a certain neuropeptide is defined by the presence of the corre-

sponding neuropeptide receptor on the surface of its cells. Neuropeptide receptor genes

showed much lower expression values than neuropeptide gene precursors. Only two out of the

48 neuropeptide receptor genes analyzed showed a relative expression higher than 2 (Fig 1B);

allatostatin C (AstC) receptor with 2.38±0.05 Log10 TPM+1 and calcitonin-like diuretic hor-

mone receptor 3 -CT/DH-R3 with 2.12±0.03 Log10 TPM+1. Twenty-six genes (54%) presented

a relative expression between 2 and 1, and twenty genes (41%) had values lower than 1.

The expression of the AstC receptor in the R. prolixus CNS had been previously reported by

Ons et al. [15] using RNA-Seq. These authors did not see expression changes for this receptor

at the CNS after blood ingestion. Furthermore, Villalobos-Sambucaro et al. [52] observed the

presence of this receptor in the hindgut, midgut and dorsal vessel, and showed that the recep-

tor and its ligand play a key myoregulatory and cardioregulatory role in R. prolixus. Our results

suggest that the AstC receptor may also have a fundamental role at the central level. Two

receptors for CT/DH (named R1 and R2) were previously described in R. prolixus, their tran-

script expression being detected in the CNS and reproductive tissues [53]. The existence of a

third CT/DH receptor in R. prolixus was suggested by Ons et al. [15] and confirmed by an

antennal transcriptome [26]. The latter showed that this receptor had increased expression in

male antennae when compared to those of nymphs, suggesting a stage-enriched role for this

gene [26]. Our results suggest that this receptor may also act at the central level.

Neurotransmitter receptors

As expected, neurotransmitter receptors tended to present higher expression values than the

other receptor gene families studied here. N-methyl-D-aspartate receptor type 2A (NMDAr2a)

was the second gene with the highest expression in the whole brain transcriptome (Fig 2; 4.05

±0.03 Log10 TPM+1). Muscarinic acetylcholine receptor type A (AChR-A) and dopamine

1-like receptor 1 (DOP1) were the other two genes that presented FPKM values higher than 2

in this gene set (2.16±0.12 Log10 TPM+1 and 2.15±0.01 Log10 TPM+1) for AChR-A and

DOP1, respectively). Only two genes, 5-hydroxytryptamine (serotonin) receptors 1A (5HT-
1A-R) and 7A (5HT-7A-R) showed values lower than 1 (0.62±0.08 and 0.82+0.08 Log10 TPM

+1) for 5HT-1A-R and 5HT-7A-R, respectively.
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N-methyl-D-aspartate (NMDA) receptors are one of the subtypes of ionotropic receptors

that bind to L-glutamate, mediating an excitatory activity in the CNS of insects. The NMDARs

are usually constituted of two subunits NR1 and NR2 [54]. Even though these receptors were

characterized in the brain of several invertebrate species, their functions in insects are poorly

understood. However, their involvement in behavioral plasticity is already known [55, 56].

Similarly, a study of the evaluation of NMDAR expression in different tissues from female

Dactyola punctata, showed that DpunNR1A, DpunNR1B and DpunNR2 were highly expressed

in the brain [57]. In Drosophila melanogaster, both NMDA receptors called DmelNR1 and

DmelNR2 were weakly expressed throughout the entire brain, with higher expression observed

in some scattered cell bodies [58]. As far as we know, this is the first report on the expression

of this receptor in the brain of R. prolixus; its high expression suggests a very relevant role in

the neural physiology of these insects. Immunostaining experiments to characterize brain neu-

ropiles depicting NMDAr2a expression will be required to initiate functional studies to

uncover its putative function.

Nuclear receptors

Most nuclear receptor genes presented low expression in the brain of unfed nymphs (Fig 3).

Out of this gene set, the ecdysone-induced protein 75B (Eip75B) receptor was the only gene

Fig 2. Expression profiles of neurotransmitter receptors genes. Heatmap depicting the expression level of

neurotransmitter receptor genes in the brain of R. prolixus nymphs. Expression level (displayed as Log10 TPM+1) is

represented by means of a color scale in which blue/red represent the lowest/highest expression. Each column

represents the expression of one library.

https://doi.org/10.1371/journal.pone.0282490.g002
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that presented TPM values higher than 2 (2.24±0.07 Log10 TPM+1). Ten out of 23 genes (43%)

presented values between 1 and 2 Log10 TPM+1). The Eip75B and HR51 transcripts (the latter

also known as unfulfilled) have been identified in central clock cells of D. melanogaster and

control the expression of clock genes, playing an important role in the maintenance of locomo-

tor rhythms [59–61]. Similar roles could be proposed for R. prolixus, however, functional

information is not available for Eip75B and HR51 genes in this species; only Latorre-Estivalis

et al. [26] reported similar expression values for the Eip75B gene in kissing bug antennae.

Clock and behavior-related genes

Clock genes are responsible for controlling circadian rhythms, and they can cycle in a synchro-

nized way according to daily oscillations of environmental cues such as light and temperature

[62]. Even though most available information on clock gene function has been generated using

D. melanogaster as a model, their fundamental roles and their high level of sequence homology

suggest that their functions should be conserved across insect orders. A total of 31 clock genes

have been previously described and annotated in the R. prolixus genome [21]; however, as far

Fig 3. Expression profiles of nuclear receptors genes. Heatmap depicting the expression level of nuclear receptor

genes in the brain of R. prolixus nymphs. Expression level (displayed as Log10 TPM+1) is represented by means of a

color scale in which blue/red represent the lowest/highest expression. Each column represents the expression of one

library.

https://doi.org/10.1371/journal.pone.0282490.g003
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as we know, this is the first time that the expression of the whole clock gene set is studied in

this insect. As all our brain samples were generated at the same interval of the daily cycle (2–4

PM), the expression profiles obtained here define the levels of expression of clock genes at this

time. Except for vrille (vri), cycle (cyc), single-minded (sim) and timeless (tim) genes, the rest of

the clock genes had expression higher than 1 Log10 TPM+1 values (Fig 4). The most highly

expressed genes (> 2 Log10 TPM+1) were: casein kinase 2 (ck2), protein phosphatases (Pp) 1a

and 2a, no circadian temperature entrainment (nocte), poly(A) binding proteins (pAbp) 1 and

2, and no receptor potential A (norpA). These genes showing high expression probably have

key roles in the brain of unfed kissing bugs. Based on D. melanogaster studies, pAbps genes

form a complex with twenty-four (tyf) and Ataxin-2 (Atx2) that maintain circadian rhythms in

Fig 4. Expression profiles of clock-related genes. Heatmap depicting the expression level of clock-related genes in the

brain of R. prolixus nymphs. Expression level (displayed as Log10 TPM+1) is represented by means of a color scale in

which blue/red represent the lowest/highest expression. Each column represents the expression of one library.

https://doi.org/10.1371/journal.pone.0282490.g004
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locomotor behavior [63]. The Pp2A gene, which is also highly expressed, controls the cyclic

expression of the PER protein [64], which was also detected in our dataset. The nocte gene

encodes a protein involved in temperature compensation of the circadian clock in Drosophila.

It would be relevant to characterize 24h expression profiles of clock genes in the R. prolixus
CNS to identify genes with cycling expression.

Other genes related to the control of insect behavior include foraging (for) whose expression

was detected in our brain transcriptome (S1 Table). This gene encodes a cGMP-dependent

protein kinase and plays an essential role in modulating food search in different species of

insects, such as D. melanogaster [65–67], locusts [68], ants [69], honeybees [70], and social

wasps [71]. In R. prolixus, for has been shown to participate in the modulation of locomotory

activity [4, 72], and its expression in the brain and fat body changes depending on the nutri-

tional status of the insect, increasing with starvation [72]. Our transcriptomic data seem to

reinforce its relevance in the brain of R. prolixus.

Sensory-related genes

Chemosensory proteins (CSPs) and odorant binding proteins (OBPs) can bind, solubilize and

transport hydrophobic molecules [73]. The role of these transporters has been mainly studied

in insect antennae and other sensory tissues where they bind odor molecules [73, 74].

Nevertheless, the expression of certain CSPs and OBPs has been reported in non-sensory

tissues and involved in different functions, like releasing semichemicals in pheromone glands

or associated to insecticide resistance, among others (revised by Pelosi et al. 2018) [75]. For

this reason, we decided to data mine our database to characterize whether representatives of

these protein families showed expression in bug brains (S2 Fig). Interestingly, high expression

levels of several OBP and CSP transcripts, such as those of RproCsp3, RproCsp5, RproCsp7,

RproObp1, RproObp3, RproObp11, RproObp20, and RproObp26, were detected in the brain of

R. prolixus. The presence of these carrier proteins was previously reported in the brain of other

insects [76–78]; however, its functional role in this tissue is still unknown. As proposed by

Walker et al. (2019), these carriers could be monitoring internal chemical signals in the R. pro-
lixus brain [76].

Drosophila melanogaster takeout 1 (to1) gene (DmelTo1) has been related to the regulation

of feeding behavior and locomotor activity, and its expression has been detected in various fly

structures and tissues, including the head, fat body, crop, and antennae [79, 80]. DmelTo1 also

affects male courtship behavior [81]. The role of these proteins has been poorly studied in

insects other than Dipterans, even though to date the scarce evidence also points to behavioral

roles in a locust and a moth [82, 83]. Regarding triatomines, the expression of TO genes has

been reported in the digestive tract [29] and antennae of R. prolixus [26] and T. brasiliensis
[84]. In our brain transcriptome, RproTo1, RproTo2, RproTo4, and RproTo6 were highly

expressed (S4 Fig), suggesting that they may have relevant behavioral functions at the central

level, as observed for D. melanogaster.

Final remarks

Expression datasets obtained using transcriptomes represent powerful tools to uncover molec-

ular targets for functional studies. Furthermore, these data allow improving automatically pre-

dicted gene models of interest through the manual curation of sequences [21, 22]. Therefore,

they also increase the chances of performing successful functional experiments based on more

trustable gene models. A drawback associated with whole tissue transcriptomes is that complex

structures like the brain can present an intricate organization with specialized areas having

very differentiated functional roles, and consequently, specific gene expression profiles.
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Therefore, brain transcriptome studies should acknowledge that expression profiles represent

averages of neuropiles having differentiated properties. This is especially true for clock genes

or NPGs which can be expressed in very restricted sets of neurons. Therefore, any lack of dif-

ferential expression observed in studies comparing levels of expression in different develop-

mental or physiological conditions should be later validated with tissue-specific or single-cell

sequencing methods, when available. Still, the high levels of expression on which we decided

to focus here seem to denote relevant functions that deserve attention, as they might guide

research toward specific targets allowing the development of more rational control methods.

Supporting information

S1 Fig. Principal component analysis graph of the six libraries. Rep 1, Rep 2, Rep 3 (experi-

ment 1) and Rep 4, Rep 5, Rep 6 (experiment 2).

(TIF)

S2 Fig. Expression profiles of neuropeptide processing enzymes genes. Heatmap depicting

the expression level of neuropeptide processing enzymes genes in the brain of R. prolixus
nymphs. Expression level (displayed as Log10 TPM+1) is represented by means of a color scale

in which blue/red represent the lowest/highest expression. Each column represents the expres-

sion of one library.

(TIF)

S3 Fig. Expression profiles of chemosensory proteins and odorant binding proteins. (A)

Heatmap depicting the expression level of chemosensory proteins (CSPs), and (B) odorant

binding protein (OBPs) genes in the brain of R. prolixus nymphs. Expression level (displayed

as Log10 TPM+1) is represented by means of a color scale in which blue/red represent the low-

est/highest expression. Each column represents the expression of one library.

(TIF)

S4 Fig. Expression profiles of takeout genes. Heatmap depicting the expression level of take-
out genes in the brain of R. prolixus nymphs. Expression level (displayed as Log10 TPM+1) is

represented by means of a color scale in which blue/red represent the lowest/highest expres-

sion. Each column represents the expression of one library.

(TIF)

S1 Table. Details of the mRNA expression of Figs 1–4, S2–S4 Figs. Columns are: the abbre-

viation of the gene assigned; gene name according to the annotation; VectorBase code–the

official gene number in the RproC3 genome assembly; values of TPM in each library (repli-

cate); values of (Log10 TPM+1) in each library. ND: not determined.

(XLSX)
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