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Land use changes and biodiversity loss critically disrupts ecosystem functioning and are 
major drivers of infectious disease outbreaks. Trypanosoma cruzi, the agent of Chagas 
disease, is a multi-host parasite whose epidemiology has changed due to the expansion 
of anthropogenic activities over natural areas. We aimed to understand the ecological 
processes increasing parasite prevalence at the individual, the community and the 
landscape levels using the largest database on small mammal infection by T. cruzi in 
Brazil. We applied machine learning techniques and structural equation models to 
show that allometric traits and the relative abundance of rodents in the community 
were important predictors of infection risk, followed by variables associated with the 
landscape environmental quality. Natural vegetation cover change and the taxonomic 
and functional dimensions of biodiversity indirectly reduced infection through its 
effect on the abundance distribution and composition of host communities. According 
to our findings, approaches to biodiversity conservation and restoration based on the 
integration of social inclusion and human welfare would contribute to regulate the 
prevalence of T. cruzi in wild hosts, which may reduce overall transmission risk.

Keywords: biodiversity–disease relationship, Didelphimorphia, land cover change, 
machine learning, neotropical forest, Rodentia, Trypanosoma cruzi

Introduction

Land use changes are one of the main drivers of biodiversity loss in tropical ecosystems, 
caused by the expansion of commodity-oriented economies over natural areas, 
particularly agricultural and livestock sectors (Henders et al. 2015). Local extinctions, 
increased dominance of a few species and biotic homogenization through species 
introductions are among the main components of biodiversity loss (Cardinale et al. 
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2012, Solar  et  al. 2015). A critical consequence of such 
environmental impacts is the reduction of the regulatory 
function of ecosystems and their services, which are also 
major drivers of infectious disease outbreaks (Allen  et  al. 
2017). Although there is growing evidence showing that 
local biodiversity influences parasite prevalence across several 
hosts (Civitello  et  al. 2015), the generality of this pattern 
remains controversial, especially for parasites that cause 
infectious diseases in humans (Randolph and Dobson 2012, 
Wood et al. 2014).

The linkages between land use changes and biodiversity 
loss have established the basis for most research on the 
ecology of infectious diseases through the dilution effect 
hypothesis (Keesing  et  al. 2010). This hypothesis proposes 
that biodiversity can affect parasite infection dynamics both 
directly and indirectly by changing the abundance, behavior, 
immune response and contact rates between host species 
and vectors, and by altering host community composition 
and susceptible host regulation through competition 
(Keesing et al. 2006, Gottdenker et al. 2014). As landscapes 
are modified and biodiversity is reduced, species composition 
changes, the number and diversity of predator species 
decrease, and resilient and fast-growing species dominate. 
A variety of traits have been already associated with human-
altered landscapes, such as small body size, habitat and diet 
generalism, high dispersal ability and short generation time 
(Flynn et al. 2009). If anthropogenic processes favor the most 
competent hosts for a given parasite species transmission, 
anthropogenic changes might enhance transmission 
efficiency, increasing prevalence rates among the host species 
and, consequently, increasing overall parasite population and 
the risk of outbreaks and spillover to other species (Keesing 
and Ostfeld 2021). On the other hand, if amplifying hosts 
are more vulnerable to environmental degradation, then 
biodiversity loss will tend to reduce transmission risk. Studies 
testing the dilution effect hypothesis have mostly focused 
on species richness and abundance (Glidden  et  al. 2021). 
However, biodiversity encompasses all forms of variability 
among living organisms and the ecological complexes of 
which they are a part, including species richness, functional 
groups, interaction networks and heterogeneity in habitat 
composition (Díaz et al. 2005). This highlights the importance 
of encompassing the multiple dimensions of biodiversity 
in the disease–biodiversity debate – including individual 
traits, functional diversity and landscape composition and 
configuration – to have a clear mechanistic understanding 
of the ecological processes driving the association between 
landscape change and zoonotic disease emergence.

In Neotropical forests, small non-volant mammals 
(marsupials and rodents) are not only resources for higher 
trophic levels in the food web, but also play important 
ecosystem functions, such as seed predation and dispersal, 
and control of invertebrate populations by predation 
(Bovendorp  et  al. 2019, Magioli  et  al. 2021). Parasite 
transmission regulation in high-diversity communities is 
also an important ecosystem service in which transmission is 
diluted by lower relative encounter rates between amplifying 

hosts (Frainer  et  al. 2018). Given their smaller size and 
rapid reproductive rates, rodents and marsupials tend to 
be more resilient to environmental disturbances compared 
to larger mammals (Pardini et al. 2010, Dirzo et al. 2014). 
Defaunated sites have small mammal communities with a 
higher abundance of generalist species and lower diversity 
(Pardini et al. 2010, Bovendorp et al. 2019), indicating that 
the functional loss of medium and large mammals potentially 
affects trophic cascades, ecological functions and evolutionary 
history (Magioli  et  al. 2021). Nevertheless, many small 
mammal species are still vulnerable to different drivers of 
disturbance such as habitat loss, fragmentation and reduced 
landscape connectivity (Pardini et al. 2010, Palmeirim et al. 
2019). Rodents and marsupials may act as important 
reservoirs of prevalent zoonotic diseases, such as hantaviruses 
(Prist  et al. 2016), Chagas disease (Jansen et al. 2018) and 
leishmaniasis (Carreira  et  al. 2017). Their high taxonomic 
diversity and turnover of species across the landscape make 
them ideal models for understanding the direct and indirect 
effects of land use change and biodiversity loss on infectious 
disease dynamics.

Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae), 
the causative agent of Chagas disease in humans, has a 
complex ecology that challenges transmission modeling 
and disease control (Jansen  et  al. 2015). T. cruzi has 
already been found infecting more than 100 mammalian 
species and its transmission may be mediated by at least 
three interdependent mechanisms (Jansen  et  al. 2015). 
Transmission of T. cruzi among wild hosts involves trophic 
interactions, either by blood-feeding invertebrate vectors 
(Triatominae) or through a trophic route that cascades along 
the food web, when a susceptible predator feeds on infected 
vectors or preys (Jansen et al. 2015). Therefore, the functional 
structure of host communities and their interactions is at the 
core of T. cruzi enzootic scenarios. Host communities with 
equal numbers of species richness but differences in species 
composition might differ significantly in their functional 
diversity due to different levels of functional redundancy 
(Bovendorp  et  al. 2019), which may result in the loss of 
some ecosystem functions, while increasing the resilience of 
transmission cycles. It has already been suggested that the 
dilution effect plays a role in T. cruzi epidemiology since 
transmission is increased in degraded ecosystems due to the 
reduction of mammal diversity and a positive selection of 
generalist species with high transmissibility competence. The 
consequent amplification of the parasite’s transmission cycle 
occurs due to a higher abundance of competent reservoir 
species, and an increased prevalence of infected vectors 
(Xavier et al. 2012, Jansen et al. 2015).

Here, we used data on the individual interactions between 
rodent and marsupial hosts and T. cruzi in Brazil to model 
1) infection probability at the individual level and 2) the 
landscape and biodiversity predictors of parasite prevalence at 
the community level. At the individual level, we hypothesized 
that host functional traits underlying the transmission 
process would predict the infection probability. Comparative 
studies in mammals have already shown that body size and 

 16000587, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06579 by C

A
PE

S, W
iley O

nline L
ibrary on [31/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Page 3 of 14

diet correlate with a number of life history and ecological 
parameters, such as pace of life, home range size, longevity 
and demographic rates, which ultimately affect host exposure 
to parasites and the resulting infection profiles (Han  et  al. 
2015, Becker  et  al. 2018). At the community level, we 
expected positive effects of natural vegetation cover area on 
the taxonomic and functional diversity of small mammals, 
which in turn would have an indirect effect in reducing the 
prevalence of T. cruzi infection in small mammal communities 
by the dilution effect. We used different accuracy measures, 
different datasets (balanced/unbalanced), different models 
and different spatial scales (landscape buffers size) to ensure 
the robustness of our results.

Material and methods

Small non-flying mammal community data

The small mammals’ dataset encompasses 2054 adult indi-
viduals sampled at 250 linear transects across Brazil (Fig. 1). 
Study areas were chosen based on disease monitoring and 
investigative studies. Field methodology was standardized 

across all the areas (Supporting information) and sampling 
transects were disposed in order to cover all the different eco-
epidemiological scenarios (interior forest areas, forest edges 
with agriculture and livestock, peri-domiciles). We produced 
circular landscapes (buffers) of 3, 5 and 10 km radius around 
each linear transect centroid (Fig. 1A–C) to define our opera-
tional communities and investigate the spatial scale of the effect 
of biodiversity and land cover variables on parasite infection. 
A minimum-size buffer of 3 km (Fig. 1B) was chosen since 
it is sufficient to include the home range area of the largest 
species, Didelphis spp. and Proechimys spp. (Rowcliffe et al. 
2016). Contacting buffers were joined to produce a single 
one (Fig. 1C), thus varying landscape sizes. A total of 50, 45 
and 36 operational communities were classified within the 
3, 5 and 10 km radius buffers, respectively. We calculated 
the landscape and species diversity metrics for each of these 
operational communities. A total of 1637 individuals were 
tested for T. cruzi infection by serological and parasitologi-
cal methods (Supporting information). We assessed parasite 
occurrence at the host individual level by considering infected 
individuals that had at least one diagnostic method positive, 
which means that it interacted with T. cruzi at least once dur-
ing its lifetime. Parasite prevalence at the community level 

Figure 1. Small-mammal opperational communities studied. Map depicting the sampling units of all communities included in the present 
study (A), specifying the representation of 3 km radius buffers circulating the centroid of each sampling transect (B), and the landscape built 
with superposed buffers as a single opperational community to estimate landscape and biodiversity variables (C).
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was calculated as the number of hosts that tested positive for 
T. cruzi infection (by either fresh blood smears examination, 
hemocultures and serological tests) divided by the number of 
hosts tested (Bush et al. 1997).

Land cover variables

We used MapBiomas raster layers (5th collection) for natu-
ral vegetation cover estimations to produce land cover vari-
ables, spanning from 1985 to 2019, and resolution of 30 
× 30 m (Souza et al. 2020). Mapbiomas Project is a multi-
institutional initiative to generate annual land cover and land 
use maps from automatic classification processes applied 
to satellite images. Mean normalized difference vegetation 
index (NDVI) was estimated using NASA Terra Moderate 
Resolution Imaging Spectroradiometer (MODIS) Vegetation 
Indices Monthly (MOD13C2) ver. 6.1 layers (Didan 2021). 
To calculate all vegetation variables, we used raster layers cor-
responding to the sampling year of each study, and to calcu-
late the loss or gain of natural vegetation area, we included 
the natural vegetation cover layers from five years before each 
study started. We computed the vegetation cover area and the 
perimeter of the natural vegetation fragments, both normal-
ized by the total sampling area (VegCov and Edge, respec-
tively). Since changes in land cover are expected to alter the 
composition and relative abundances of host communities 
with a consequent impact on infection profiles, we also esti-
mated the proportion of natural vegetation cover that was lost 
or gained (VegCovChange). VegCovChange was defined as 
the difference in natural vegetation cover area between the 
year of the study and the previous five years, divided by the 
total sampling area, with negative values representing the gain 
of natural vegetation cover in the five years prior to the study 
beginning. A time lag of five years before the sampling period 
was chosen because it comprises at least one generation for all 
small mammal species considered in all studies. A longer time 
lag (10 years prior) was also analysed, but it was not signifi-
cantly different from VegCovChange considering five years 
(Kendall’s tau = 0.63, p < 0.005).

Taxonomic and functional diversity

In order to understand how taxonomic and functional diver-
sity (hereafter species biodiversity) influences the infection 
probability, we applied different metrics to estimate biodi-
versity for each operational community considering all spe-
cies sampled within. We characterized taxonomic diversity 
by two measures: 1) Menhinick index (Menhinick 1964), 
which is the total number of species sampled divided by 
the square root of the total number of sampled individuals, 
and is less affected by sampling effort than species richness 
(Bandeira et al. 2013); and 2) the Fisher’s alpha (Fisher et al. 
1943), which is the curvature parameter of the expected spe-
cies–abundance relationship, and is independent of sample 
size. Higher values of Fisher’s alpha indicate that the distribu-
tion of species abundance in the community is more equitable, 

while smaller values indicate a skewed distribution with a few 
highly abundant species and all the others rare. As the func-
tional diversity of small mammal communities, we calculated 
two different indices: 1) functional dispersion (FDis), which 
is the mean distance in multidimensional trait space of indi-
vidual species to the centroid of all species, weighted by their 
abundances (Laliberté and Legendre 2010); and 2) func-
tional evenness (FEve), which describes the distribution of 
abundances in a functional trait space, where low functional 
evenness indicates that some parts of the functional niche are 
underutilized (Villéger et al. 2008). For trait selection, we fol-
lowed previous studies on small mammals (Bovendorp et al. 
2019, Cardoso  et  al. 2021), including the morphological, 
dietary, foraging stratum and foraging activity time traits 
(Supporting information) which are related to host–para-
site interactions (Stella et al. 2018, Cardoso et al. 2021). We 
obtained the morphological traits from our original data, and 
gathered the ecological traits from literature (Kissling et al. 
2014, Wilman et al. 2014). We estimated pairwise functional 
distances between species using the Gower distance because 
the functional trait matrix includes both continuous and cat-
egorical variables (Pavoine  et  al. 2009). We performed the 
functional diversity analysis using the 'FD' package (Laliberté 
and Legendre 2010) in R ver. 4.0.3 (www.r-project.org).

Since rodents and marsupials respond differently to 
parasite infection due to their biological, ecological and 
epidemiological characteristics, we also characterized the 
species composition of the host communities as the relative 
proportion of rodents. We calculated the rodent abundance 
ratio (number of rodents captured over the total number of 
small mammals; RatioRodent) for each landscape to assess 
whether variations in this ratio influence the probability of 
infection at the community level.

Parasite occurrence predictors at the individual 
level: machine learning models

To investigate the parasite occurrence at the individual level, 
we considered only the individuals tested for T. cruzi infec-
tion, and removed those lacking information on body mass. 
Because infection rates across hosts tend to be highly skewed 
and most individuals are not infected, infection datasets are 
usually unbalanced. In our case, 74.2% of the individuals 
were negative and 25.8% positive. Hence, we created a bal-
anced dataset for investigating how this intrinsic unbalance 
of infection data could affect modeling results, since machine 
learning algorithms are usually designed to maximize overall 
accuracy and thus fail in predictions by overfitting the major-
ity class. We built the balanced dataset by adding synthetic 
individuals to the original unbalanced dataset, using the syn-
thetic minority oversampling technique (SMOTE), which 
generates new samples of the minority class of the target 
variable by interpolation (Chawla  et  al. 2002). We applied 
our machine learning models to both the empirical dataset 
(unbalanced) and a partially synthetic dataset (balanced) 
since the results obtained using these two groups of datasets 
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are complementary. We used SMOTE from the 'unbalanced-
learn 0.8.0' Python library (Lemaitre et al. 2017).

Eight different machine learning algorithms with their 
default parameters applied to datasets (model building, 
evaluation and validation are described in Supporting 
information). We computed the area under the receiver 
operating characteristic curve (hereafter AUROC) and 
the area under the precision–recall curve (AUPRC) to 
evaluate model accuracies. We chose the gradient boosting 
classification (GBM) model since it is largely used in 
ecology (Elith et al. 2008) and builds a robust final model 
through the ensemble of weaker decision trees models fitting 
residuals from previous trees, which incrementally reduce 
prediction errors. To set the hyperparameters values of our 
GBM model, we carried out a grid search through the GBM 
hyperparameters (Supporting information). To estimate 
variable importance, we employed two different methods, 
the model variable importance and the permutation variable 
importance. The former refers to the relative influence of each 
variable during the splitting of the tree building processes. 
The latter is defined as the decrease of the model accuracy 
when a single value is randomly shuffled. We repeated 
this shuffling 10 times for each variable and calculated its 
standard deviation. We also computed partial dependence 
plots to describe the functional relationship between the 
infection probability and the predictor variables, which 
can be linear, quadratic, monotonic or more complex. To 
perform all machine learning analyses, we used the 'scikit-
learn 0.24.1' Python library (Pedregosa et al. 2011). 

Land cover and biodiversity predictors of parasite 
prevalence at the community level: structural 
equation models

To assess the direct and indirect effects of land cover and 
biodiversity measures on T. cruzi prevalence at the host 
community level, we used path analyses, within the structural 
equation models (SEMs). We hypothesized that landscape 
metrics could affect parasite prevalence both directly and 
indirectly through its effect on biodiversity measures, which 
in turn would directly affect parasite prevalence. We also 
assumed the existence of correlations within landscape 
cover variables and among biodiversity metrics and thus 
allowed paths to vary freely. We fitted a general SEM using 
the entire dataset but also separated SEMs for the forested 
biomes (Atlantic Forest and Amazon), since most of our 
samples were taken within those areas. To estimate partial 
regression coefficients and correlations and to fit SEM we 
used maximum likelihood (Shipley 2016) through 'lavaan' 
package (Rosseel 2012) in R ver. 4.0.3. In Results, we describe 
the proportion of the variance explained by biodiversity 
and land cover variables by the marginal and conditional 
coefficients of determination (R2). Data used in this work can 
be found in the Supporting information and code is available 
under request.

Results

Overall, 69 different small mammal species, 49 rodents 
and 20 marsupials, were identified. T. cruzi is able to infect 
all those species and its role as a reservoir will depend on 
environmental variables, parasite subpopulation, vector 
ecology and host parasitemia (Jansen et al. 2018). Individual 
traits (morphological, dietary, foraging stratum and foraging 
activity time), biodiversity measures, land cover metrics and 
infection rates varied among the landscapes (Supporting 
information).

Parasite occurence predictors at the individual level

All GBM models performed better than null predictions (all 
models AUROC > 0.5 and AUPRC > 0.258, Supporting 
information). Unbalanced- and balanced-data trained mod-
els predicted the occurrence of T. cruzi infection in host 
individuals with similar level of accuracy for the 3 km buffer 
(Fig. 2, Supporting information), 5 km buffer (Supporting 
information) and 10 km buffer (Supporting information).

The relative importance of covariates was consistent across 
the three landscape buffers analyzed (Fig. 2, Supporting 
information). The variables RatioRodent and BodyMass 
had the highest relative importance values in all models. In 
unbalanced-data models, morphological traits had the highest 
relative importance in predicting T. cruzi occurrence, followed 
by biodiversity and land cover measures (Fig. 2). In the 
balanced-data models, the relative importance of biodiversity 
variables was higher than in unbalanced-data models, 
and represented the most important group of variables in 
predicting parasite occurrence (Fig. 2). In addition, the 
Ground foraging stratum also became important when 
considering balanced-data models. Furthermore, Menhinick, 
Fisher, FDis, FEve, Tail/Body, VegCov and VegCovChange 
displayed relative importance when considering unbalanced 
and/or balanced data (Fig. 2).

By evaluating the marginal effect of each variable on the 
predicted outcome of the model through the partial depen-
dence plots, we observed that unbalanced and balanced-data 
models had similar fitted functions for the probability of T. 
cruzi infection at the individual level (Fig. 3, Supporting 
information). The probability of T. cruzi infection increased 
with BodyMass and decreased with RatioRodent and Edge 
(Fig. 3, Supporting information). The fitted function for the 
infection probability followed the distribution of Tail/Body 
ratio, with a decreased probability in individuals of species 
with either a lower or higher Tail/Body ratio: those that tend 
to be fossorial or those that have a better locomotion and 
balance in the arboreal strata. The probability of parasite 
infection peaked at lower-intermediate levels of Menhinick, 
but decreased at higher Fisher and FDis (Fig. 3, Supporting 
information), which indicates that there is a minimum host 
diversity required to amplify T. cruzi transmission; but after 
a certain threshold of increased host biodiversity, the infec-
tion is greatly reduced. The probability of T. cruzi infection in 
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individual hosts varied along the VegCov and VegCovChange 
gradient. Intermediate to high levels of VegCov and land-
scapes that experienced negative or positive VegCovChange 
(those that gained or lost natural vegetation cover when 
compared to the previous five years) had higher probability 
of infection. Individuals in landscapes that remained with 
constant vegetation cover (VegCovChange = 0) were those 
with the lowest probability of infection (Fig. 3, Supporting 
information).

Land cover and biodiversity predictors of parasite 
prevalence at the community level

Structural equation models explained nearly 55% of the 
variation in parasite prevalence at the community level and 
goodness-of-fit increased with the size of landscape buf-
fer (R2 = 0.52, 0.53 and 0.57 for 3, 5 and 10 km, respec-
tively). RatioRodent was the only variable with significant 
negative direct effect on T. cruzi prevalence in all landscape 

Figure 2. Variable importance and model performances considering 3 km radius buffer for unbalanced (first row) and balanced (second row) 
datasets. Variable importances are computed both directly from the model (first column) and using the permutation variable method via 
AUPRC (second column) cross-validation accuracy. Cross-validation (CV) AUROC and AUPRC accuracy values are shown with their 
standard deviation between parenthesis. Full AUROC and AUPRC accuracies are calculated fitting the whole input dataset to the model.
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buffers (β = −0.63, −0.61 and −0.80 for landscape buffers 
3, 5 and 10 km, respectively; Fig. 4 show paths for 3 km 
landscapes, for the other buffers see Supporting informa-
tion). VegCovChange had a direct positive effect on para-
site prevalence, but only when considering a 10 km buffer 
landscape (Supporting information). All the biodiversity 
measures (Menhinick, Fisher, FDis and FEve) were positively 
correlated among them and also positively correlated with 
RatioRodent, having a negative indirect effect on the parasite 
prevalence of small mammals communities when consider-
ing the three landscape buffers (Fig. 4, Supporting informa-
tion). Land cover also indirectly affected parasite prevalence 
through its effect on RatioRodent (Fig. 4, Supporting infor-
mation), but this effect varied according to the landscape buf-
fer considered. For the 3 and 5 km radius landscape buffer, 
Edge and VegCovChange positively affected RatioRodent, 
with an indirect negative effect on parasite prevalence 
(Fig. 4, Supporting information). In the 10 km-sized buffers, 
VegCov had a positive effect, Edge had no significant effect 
on RatioRodent and NDVI negatively affected it, having an 
indirect positive effect on T. cruzi prevalence (Supporting 
information).

When considering the Amazon and Atlantic Forest sepa-
rately, we performed SEMs only for the 3 km radius landscapes 
since the largest landscapes had less than 20 observations per 
biome. SEMs explained 72 and 67% of the T. cruzi preva-
lence of small mammals communities in the Amazon and 
Atlantic Forest biomes, respectively. In the Amazon, parasite 
prevalence was negatively directly influenced by RatioRodent 
and indirectly affected by biodiversity variables, which were 
strongly correlated with each other (Fig. 5). Land cover 
influenced biodiversity only by the positive effect of VegCov 
on Fisher (Fig. 5). Higher values of VegCovChange (loss 
in vegetation cover) in the Amazon was negatively related 
to VegCov, Edge and NDVI. Unlike in the Amazon, land 
cover variables in the Atlantic Forest were weakly correlated 
with each other (with the exception of the positive correla-
tion between NDVI and VegCov, Fig. 6) and had no effect 
on small mammals biodiversity measures (Fig. 6). As in the 
Amazon, biodiversity variables such as Menhinick, Fisher, 
FDis and FEve were positively correlated with each other. 
However, only Menhinick, Fisher and FDis were positively 
related to RatioRodent, and this effect was weaker than it was 
observed in the Amazon.

Figure 3. Partial dependence plots for the unbalanced dataset. Marginal effect of the most important variables on the predicted outcome of 
the GBM model considering 3 km radius buffer and unbalanced dataset. The black lines on the partial dependence plots show the functional 
relationship between the infection probability and the variable. Colored lines show the density distribution of the variables in the unbalanced 
dataset for infected individuals (darker with hatched pattern) and non-infected individuals (lighter).
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Discussion

By using a combination of different modeling approaches 
applied at the individual and community levels, we showed 
the complex ways that host traits, multiple biodiversity 
components and landscape structure affect infection risk 
using the multi-host parasite T. cruzi as a model system. 
When considering the unbalanced dataset, morphological 
traits (mainly species body mass) were important predictors of 
the individual infection probability, followed by biodiversity 
measures and landscape structure. For the balanced dataset, 
biodiversity measures, particularly the relative frequency of 
rodents in the communities, and foraging stratum (ground 
foragers) were the most important variables to predict 
parasite occurrence at the individual level. At the community 
level, parasite prevalence was directly affected by the relative 
frequency of rodents in the communities and indirectly by 
biodiversity measures and landscape attributes.

Parasite distributions tend to be highly aggregated, with 
most host individuals showing no infection (Poulin 2007). 
Therefore, the nature of infection data is intrinsically 
unbalanced and reflects the heterogeneity among host 
individuals in their exposure or susceptibility to acquire 

parasites, with parasite traits themselves explaining some 
of the variability in aggregation levels (Poulin 2013). 
This type of skewed unbalanced data is often reported 
as a serious obstacle to the classification performance of 
machine learning algorithms because of its tendency to 
bias the results of the models (Wang et al. 2021). We have 
explored the potential impact of this issue by generating a 
balanced dataset, which included synthetic data obtained 
oversampling from the minority class (infected individuals) 
of the original unbalanced data, and comparing the results 
from both datasets. Unbalanced-data models usually look 
better predictors, yet this effect may be spurius. They tend to 
produce biased predictions towards the majority class (non-
infected individuals) since they are better predictors of it. 
Since infected individuals appear rarely, false negatives may 
not have a strong impact in global accurancy. In our case, 
the accurancy of balanced- and unbalanced-data models were 
similar but variable importance differed according to the 
approach used. Thus, unbalanced-data models inflated the 
importance of morphological traits because small individuals 
had in general a higher probability of not being infected. If, 
instead of on the correctness of the prediction, our interest 
also rested on knowing why infected individuals are so, then 

Figure 4. Structural equation model (SEM) diagram describing the relationships between biodiversity (RatioRodent, FDis, FEve, Menhinick, 
Fisher) and land cover (VegCov, VegCovChange, Edge, NDVI) variables and its effects on Trypanosoma cruzi prevalence at the community 
level (Infection) considering 3 km radius buffer (root mean square error of approximation < 0.05, standardized root mean square 
residual = 0.015). Only significant relationships (p < 0.005) are shown. Double arrow lines represent correlations, and one arrow lines 
represent regressions. Positive and negative pathways are indicated by black and red lines, respectively. The thickness of the arrows is scaled 
to illustrate the relative strength of effects and the standardized coefficients are indicated on each line.
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balancing the dataset may become a solution. However, this 
strategy may also bias data and results. Therefore the best 
strategy to avoid the effect of bias is using both approaches. 
Our results show that biodiversity measures and landscape 
structure were important predictors of individual infection 
in all the modeling approaches used, which ratifies the 
importance of these variables and confirms previous results 
showing that host species composition and habitat quality 
affects zoonotic infection risk (Gottdenker  et  al. 2012, 
Xavier  et  al. 2012, Estrada-Peña  et  al. 2014, Keesing and 
Ostfeld 2021).

Allometric scaling has already been suggested as a general 
rule in parasite interactions (Kuris  et  al. 1980, Hechinger 
2015). Body size is expected to be related with physiological, 
ecological and life-history traits in mammals, such as the 
metabolic rate, the home range size, the longevity and the 
reproductive strategy (Brown et  al. 2004, Jetz  et  al. 2004), 
which affect host interactions with parasites. Our results 
indicate that allometric relationships are important drivers 
of host vulnerability to T. cruzi infection, with individuals 

of larger-sized species having higher T. cruzi occurrence than 
individuals of smaller-sized species. Mammals are constantly 
exposed to T. cruzi infection, which can occur once or 
multiple times during their lifetime (Jansen  et  al. 2015). 
Rodents and marsupials with larger body mass have larger 
home ranges and live longer (Brown et al. 2004), increasing 
their chances of exposure to infection due to a possible higher 
number of contact events through infected vectors and other 
transmission routes (e.g. oral route) (Jansen  et  al. 2015). 
Few studies have investigated the effect of body mass on T. 
cruzi occurrence (Orozco  et  al. 2016, Ghersi  et  al. 2020), 
but among-species comparisons suggest that larger-bodied 
marsupials and rodents tend to have higher prevalence 
and interact with a higher diversity of T. cruzi genotypes 
(Jansen et al. 2015, 2018).

Infection probability tended to follow the distribution of 
Tail/Body ratio values of the sampled individuals, but with 
a lower probability in individuals with lower or higher Tail/
Body ratio. This indicates that species with adaptations to 
terrestrial or arboreal locomotor habits tended to show a 

Figure 5. Structural equation model (SEM) diagram describing the relationships between biodiversity (RatioRodent, FDis, FEve, Menhinick, 
Fisher) and land cover (VegCov, VegCovChange, Edge, NDVI) variables and its effects on Trypanosoma cruzi prevalence at the community 
level (Infection) considering 3 km radius buffer in the Amazon biome (root mean square error of approximation < 0.05, standardized root 
mean square residual = 0.01). Only significant relationships (p < 0.005) are shown. Double arrow lines represent correlations, and one 
arrow lines represent regressions. Positive and negative pathways are indicated by black and red lines, respectively. The thickness of the 
arrows is scaled to illustrate the relative strength of effects and the standardized coefficients are indicated on each line.
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lower probability of being infected. Scansorial species that 
have the ability to use a wider range of strata (intermediate 
values of Tail/Body ratio) may have an increased opportunity 
for interacting with vector species, since triatomine species are 
associated with a wide range of habitats (Péneau et al. 2016, 
Abad-Franch and Gurgel-Gonçalves 2021). In addition, the 
foraging stratum had a relatively high importance in the 
balanced-data models, with ground-forager species showing 
a lower probability of infection, a pattern already observed 
in local studies (Rademaker et al. 2009, Correa et al. 2015).

Host communities with a higher proportion of rodents 
had reduced T. cruzi infection, both at the individual and 
at the community levels. Previous studies have already 
reported higher infection rates in marsupial species, which 
are frequently described as reservoirs of T. cruzi in natural 
environments (Jansen  et  al. 2018). Despite that, rodent 
species may be considered as reservoirs under certain 
circumstances due to the presence of traits that favor the 
gradual accumulation of T. cruzi in the host populations 
(e.g. high longevity and potential for vertical transmission of 
T. cruzi) (Correa  et  al. 2015). In addition, several rodents 
share their microhabitat with T. cruzi vectors, many are 

favored by disturbed environments close to human dwellings, 
eventually contributing to cycles of domestic or peridomestic 
transmission of T. cruzi (Orozco et al. 2014, Dario et al. 2022). 
We propose the use of species abundances distributions, 
here synthesized as the rodents/small mammals’ ratio, as an 
important host biodiversity composition metric to describe 
T. cruzi infection profile in small mammal communities.

The amount of forest edges in the landscape decreased 
infection rates, both at the individual and at the community 
levels, which may be explained by the positive correlation 
between forest edges and vegetation cover, and the positive 
effect of these landscape variables on small mammal taxonomic 
diversity and relative frequency of rodents in the community. 
Although forest edges had already been related to increased 
transmission of several infectious diseases such as yellow fever 
(Prist et al. 2022), malaria (Medeiros-Sousa et al. 2019) and 
spotted fever (Scinachi  et  al. 2017) through its effects on 
vector abundance, we show that when considering the host 
communities, these relationships are not straightforward. In 
our case, forest edges were not related to vegetation cover in 
the Atlantic Forest and positively related to forest cover in the 
Amazon, which indicate that those edges may be increasing 

Figure 6. Structural equation model (SEM) diagram describing the relationships between biodiversity (RatioRodent, FDis, FEve, Menhinick, 
Fisher) and land cover (VegCov, VegCovChange, Edge, NDVI) variables and its effects on Trypanosoma cruzi prevalence at the community 
level (Infection) considering 3 km radius buffer in the Atlantic Forest biome (root mean square error of approximation < 0.05, standardized 
root mean square residual = 0.013). Only significant relationships (p < 0.005) are shown. Double arrow lines represent correlations, and 
one arrow lines represent regressions. Positive and negative pathways are indicated by black and red lines, respectively. The thickness of the 
arrows is scaled to illustrate the relative strength of effects and the standardized coefficients are indicated on each line.
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habitat heterogeneity and favoring a higher diversification of 
small mammal communities and reducing the dominance 
of superabundant species. For instance, edge effects tend to 
decrease the richness and abundance of marsupial species, 
while rodent species were not affected by it in Amazonian 
forest fragments (Santos-Filho et al. 2012). The qualification 
of the type of edges, if it is between natural areas and 
agriculture, pasture, housings or degraded areas would help 
to better understand the effects of land use in shaping host 
assemblages and consequent parasite prevalence.

Although our results support the hypothesis that landscape 
attributes directly affect the taxonomic and functional 
diversity of small mammals, which in turn affects T. cruzi 
prevalence, the interplay among land cover variables and 
their effect on host diversity differed between biomes. Despite 
both being highly diverse rainforest biomes, the Amazon and 
the Atlantic Forest have different environmental histories. 
The latter is highly fragmented and holds nearly 75% of the 
Brazilian human population (Ribeiro  et  al. 2009), whereas 
the former currently comprises large areas of continuous 
primary forest due to a period of regeneration after the pre-
Columbian period of higher human density (de Souza et al. 
2018). Along with the evolution of environments, the 
different history of human occupation contributes to the 
marked differences in the structure of biodiversity. In the 
Amazon, areas with higher vegetation cover, NDVI and forest 
edges also had more diverse small mammal communities 
with a higher relative frequency of rodents, which decreased 
parasite prevalence. On the other side, in the Atlantic Forest 
the landscape attributes had no significant effect on the small 
mammal biodiversity and were weakly correlated with each 
other. Nevertheless, more diverse host communities also 
tended to have a higher relative frequency of rodents, which 
reduced T. cruzi prevalence.

The lowest infection risk at the individual level was found 
in areas with higher vegetation cover and that underwent 
less changes in vegetation cover. At the community level, 
vegetation cover increased the taxonomic diversity of host 
communities and changes in vegetation cover were positively 
related to a higher frequency of rodents in the communities. 
However, this relationship was not found in the Atlantic 
Forest and it is related to differences in the deforestation 
processes in these two biomes. The deforestation process in the 
Atlantic Forest is much older than in the Amazon and larger 
forest remnants are usually protected areas. On the contrary, 
the Amazon is currently experiencing a major deforestation 
front (Silva Junior  et  al. 2021) and largest deforestation 
rates are found in forested areas that are relatively accessible 
through edges such as roads, villages or agricultural lands 
(Carrero et al. 2022). Therefore, highest infection rates were 
mostly related to changes in host community composition 
driven by changes in vegetation cover. At a regional scale (10 
km buffer), there was a direct effect of vegetation cover loss on 
increasing infection rates, considering both biomes. Thus, the 
effects of land use changes on infection risk is scale-dependent 
and this is one of the main reasons explaining contradictory 
results regarding the dilution effect (Johnson  et  al. 2015). 

We recommend scale-dependency to be always taken into 
account when evaluating the ecosystemic function of disease 
regulation.

In summary, our results show that there is a minimum level 
of vegetation cover and of species diversity in small mammal 
communities that is required to maintain the transmission of 
T. cruzi among wild hosts because vegetation cover slightly 
increases individual infection probability at intermediate 
levels. However, at a community level, land cover change 
and deforestation increased host communities infection 
rates. Although the effect of functional diversity on infection 
rates was indirect at the community level, our results show 
that the functional structure of host communities affect the 
probability of infection at the individual level. In this sense, 
control measures that combine epidemiological surveillance 
with broader policies mitigating deforestation as well as 
promoting new approaches to biodiversity conservation and 
restoration founded on social inclusion and human welfare 
can be efficient to reduce the prevalence of T. cruzi in wild 
hosts.
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