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A B S T R A C T   

Motivation: There are several well-established paradigms for identifying and pinpointing discriminative peptides/ 
proteins using shotgun proteomic data; examples are peptide-spectrum matching, de novo sequencing, open 
searches, and even hybrid approaches. Such an arsenal of complementary paradigms can provide deep data 
coverage, albeit some unidentified discriminative peptides remain. 
Results: We present DiagnoMass, software tool that groups similar spectra into spectral clusters and then shortlists 
those clusters that are discriminative for biological conditions. DiagnoMass then communicates with proteomic 
tools to attempt the identification of such clusters. We demonstrate the effectiveness of DiagnoMass by analyzing 
proteomic data from Escherichia coli, Salmonella, and Shigella, listing many high-quality discriminative spectral 
clusters that had thus far remained unidentified by widely adopted proteomic tools. DiagnoMass can also classify 
proteomic profiles. We anticipate the use of DiagnoMass as a vital tool for pinpointing biomarkers. 
Availability: DiagnoMass and related documentation, including a usage protocol, are available at http://www. 
diagnomass.com.   

1. Introduction 

One of the goals of proteomics is to identify and quantify as many 
peptides/proteins as possible to pinpoint those unique or differentially 
abundant to a biological condition. A variety of software tools rooted in 
different paradigms is available for analyzing proteomic tandem mass 
spectrometry data. PatternLab V [1], henceforth PLV, wraps Comet [2] 
to compare experimental spectra to those theoretically generated from a 
sequence database, following the classical and widely adopted peptide- 
spectrum matching approach, filtering results to achieve a 1% false- 
discovery rate (FDR) using SEPro [3]. Novor [4] employs de novo 
sequencing, a strategy that can infer sequences without a sequence 
database. FragPipe [5] can do an open search to facilitate inferring 
posttranslational modifications and mutations while performing 

spectral matching. All these paradigms have advantages and disadvan
tages and are complementary to one another. Their many qualities 
notwithstanding, discriminative spectra still elude them. 

2. Results 

We present DiagnoMass, a software tool that uses complete linkage 
hierarchical clustering (hclust) to cluster tandem mass spectra based on 
precursor tolerance, spectral angle, chromatography elution time, and 
charge state. In a previous study [6], we found hclust to be the most 
effective clustering approach for this task. Before clustering, Diag
noMass removes tandem mass spectra having more than 90% of their ion 
current on a single isotopic envelope. Our software saves the spectral 
clusters on an SQLite database, henceforth referred to as a knowledge 
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base, to enable the seamless pinpointing of spectral clusters that are 
discriminative to one (or more) conditions as well as all further analyses. 
While DiagnoMass stems from our previous tool DiagnoProt [7], we note 
that it is a complete rewrite, including a redesigned graphical user 
interface, tools for viewing the data (Supplementary figs. 1 and 2), and 
significantly improved performance (almost two orders of magnitude 
faster for the data set used in this study). Most importantly, only Diag
noMass can interface with widely adopted proteomic identification 
tools, provide several data visualization strategies, and classify un
known proteomic profiles. Such interfacing enables our software to 
work as a proteomic hub, and annotate spectral clusters. As such, it 
makes available an unbiased approach for comparing biological condi
tions, waiving identification by a search engine as a first step. This 
proves convenient if we consider that, in general, the most interesting 
biological alterations are not found in reference sequences of public 
databases, being therefore overlooked by current standard procedures. 
In fact, according to [8], 75% of the spectra deposited in PRIDE are not 
identified. 

DiagnoMass is moreover capable of spotlighting high-quality mass 
spectra that were missed by widely adopted tools based on comple
mentary spectral identification paradigms. In this regard, DiagnoMass 
allows users to resort to specific methods (or even manual interpreta
tion) to focus on discriminative and biologically relevant spectra. 
DiagnoMass offers several data analysis options - such as PCA, t-SNE 
(Supplementary fig. 1), and heat maps - to analyze the data set and help 
interpret biological patterns. 

We demonstrate the effectiveness of DiagnoMass in shortlisting 
discriminative clusters not identified by widely adopted proteomic tools, 
focusing on a shotgun proteomic data set generated from Escherichia coli, 
Salmonella, and Shigella [9]. Our motivation for choosing these bacteria 
was that most MALDI-profiling diagnostic solutions experience difficulty 
discriminating among them [10]. Briefly, our data set contains three 
biological replicates of each bacterium, each having three technical 
replicates, adding up to 27 raw files acquired on a Q-Exactive Plus. Our 

data set was clustered with default parameters and automatically an
notated while respecting the following minimum quality scores: 90 or 
higher for Novor, an XCorr greater than 2.0 for PLV, and a Peptide 
Prophet Probability of 0.95 or higher for FragPipe. The overlap of 
identifications provided by these proteomic tools is summarized in 
Fig. 1. DiagnoProt took ~3115 min to process the data, while Diag
noMass was 84 times faster (37 min) for knowledge base generation, 
which requires several computations other than spectral clustering. 

DiagnoMass shortlisted 2751, 14,149, and 1519 spectral clusters 
exclusively associated with E. coli, Salmonella, and Shigella, respectively; 
each cluster was detected in all biological replicates (Supplementary fig. 
2). Of these clusters, 1022 (E. coli), 6660 (Salmonella), and 603 (Shigella) 
were identified by at least one proteomic tool. Examples of high-quality 
discriminant spectra (according to our visual assessment) that had not 
yet been identified by some tool are shown in supplementary figs. 3, 4, 
and 5 for each biological condition. 

DiagnoMass also provides new functionalities for classifying un
known proteomic profiles according to one of the biological conditions 
cataloged in its knowledge base. Such a feature can be used to obtain 
diagnostics based on mass spectrometry data, e.g., classifying bacteria. 
Classification occurs by scoring each spectrum relatively to the knowl
edge base. The scoring function we use returns a value s(b) for each 
spectrum and each of the b clusters in which it is found, each cluster for a 
different biological condition. As explained in the online supplementary 
material, s(b) is a fraction of S, the spectrum’s cosine score relative to the 
consensus spectrum of the cluster. It decreases from s(1) = (1 − ϵ)S to s 
(B) = ϵS, where B is the total number of biological conditions and ϵ < 0.5 
is a positive stringency parameter (Supplementary fig. 6). The sum of s 
(b) regarding all spectra in all clusters for a given biological condition 
provides its final classification score. DiagnoMass correctly classified all 
9 proteomic profiles in the knowledge base using the leave-one-out 
cross-validation. 

Fig. 1. A total of 261,664 spectral clusters were generated using default clustering parameters. Of these, 43,677, 76,435, and 5614 were annotated by 1, 2, and 3 
tools, respectively. 
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