Georeferenced data in epidemiologic research

Dados georreferenciados em epidemiologia

Guilherme Loureiro Werneck 2

! Departamento de Endemias
Samuel Pessoa, Escola
Nacional de Salide Publica,
Fundagéo Oswaldo Cruz.
Rua Leopoldo Bulhdes 1480,
Manguinhos. 21041-210
Rio deJaneiro RJ.
gwerneck@ensp.fiocruz.br
2|nstituto de Medicina
Social, Universidade do
Estado do Rio de Janeiro.

Abstract This paper reviews some conceptual
and practical issues regarding the application of
georeferenced data in epidemiologic research.
Starting with the disease mapping tradition of
geographical medicine, topics such as types of geo-
referenced data, implications for data analysis,
spatial autocorrelation and main analytical ap-
proaches are heuristically discussed, relying on
examples from the epidemiologic literature, most
of them concerning mapping disease distribution,
detection of disease spatial clustering, evaluation
of exposure in environmental health investiga-
tion and ecological correlation studies. As for con-
cluding remarks, special topics that deserve fur-
ther development, including the misuses of the
concept of space in epidemiologic research, issues
related to data quality and confidentiality, the
role of epidemiologic designs for spatial research,
sensitivity analysis and spatiotemporal modeling,
are presented.

Key words Epidemiology, Medical geography,
Epidemiologic methods, Small-area analysis, Eco-
logical studies, Clustering

Resumo Neste artigo, faz-se uma revisao acerca
de aspectos conceituais e praticos relacionados a
aplicagdo de dados georreferenciados na pesquisa
epidemioldgica. Iniciando com a tradicional abor-
dagem de mapeamento de doengas da geografia
médica, discute-se heuristicamente com base em
exemplos da literatura epidemiolégica, topicos
como tipos de dados georreferenciados, implica-
¢Oes para a andlise de dados, autocorrelagéo es-
pacial e as principais estratégias analiticas, desta-
cando-se 0s estudos de mapeamento da distribui-
¢ao espacial de eventos de satde, detecgéo de agre-
gados espaciais de casos, avaliagdo de exposicao
em estudos de salide ambiental e estudos ecolégi-
cos. Os comentarios finais salientam topicos espe-
ciais que merecem desenvolvimentos futuros, in-
cluindo os dilemas relacionados a incorporagao
do conceito de espago na pesquisa epidemioldgica,
aspectos relacionados a qualidade dos dados e con-
fidencialidade, o papel dos estudos epidemiolégi-
cos na pesquisa com dados espaciais, andlise de
sensibilidade e modelos espago-temporais.

Palavras-chave Epidemiologia, Geografia médi-
ca, Métodos epidemioldgicos, Analise de pequenas
areas, Estudos ecoldgicos, Conglomerados
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Introduction

Georeferenced data, also known as spatial, geo-
graphical or geospatial data, are the basic pieces
of information needed to identify the geographic
location of phenomena across the Earth’s surface.
In general, georeferenced data consist of measure-
ments or observations taken at specific locations
(points referenced by latitude and longitude) or
within specific regions (areal data). In epidemio-
logic research, this type of information is mainly
used to investigate the relationship between geo-
referenced health events data and aspects related
both to individual characteristics (e.g. genetic, be-
havioral and demographic) and contextual fac-
tors (e.g. socioeconomic neighborhood conditions,
physical environment). Mapping disease distri-
bution, detection of disease spatial clustering, eval-
uation of exposure in environmental health in-
vestigation and ecological correlation studies are
some examples of possible applications of geo-
referenced data in epidemiologic studies.

The geographical distribution of disease has
been considered a key element in epidemiologic
research, as indicated by the importance given to
the description of health events according to “per-
son, place and time” in the classic epidemiology
textbooks'?. In fact, studies on the geographical
distribution of diseases come back to the 18" and
19t centuries, when the term “medical geogra-
phy” was devised?.

Among the precursors of geographic studies
of disease are the physicians James Lind*, mainly
recognized for his work on scurvy, and Leon-
hard Ludwig Finke®, who published in 1792 what
has been considered the most detailed conceptu-
al contribution on medical geography written to
that point and the first to systematize world-wide
data®®. A long tradition on disease mapping also
started at that time. Aparently the first dot map
applied to public health problems is due to Val-
entine Seaman, in 1798, describing the distribu-
tion of yellow fever cases in New York’.

Early roots of epidemiology as a discipline can
be found at this time, with research focusing main-
ly on the relationship between societal conditions
and health®. Various researchers applied what
modern epidemiology usually calls ecological study
designs to address the problem of disease varia-
tion across different places. For instance, André-
Michel Guerry, in 1833, explored the variation of
suicide and homicide rates across regions of
France® and Engels, in 1892, cited evidence of vari-
ation in mortality rates across different cities and
streets surrounding Manchester?.

For nearly every epidemiologist, however, John
Snow’s investigation of the cholera epidemic in
London is the most famous work demonstrating
the importance of studying the geography of dis-
ease'l. Considered a classical example of epide-
miologic reasoning, which led to development of
awater-borne theory of cholera transmission, his
work also became famous in medical geography
because he used a dot-map to plot the location of
cholera deaths around the Broad Street pump in
London Soho's district. Nevertheless, the belief
that Snow used the dot-map to determine the
source of the cholera outbreak and to make a causal
connection between the removal of the pump and
the end of the outbreak seems not to be support-
ed by evidence'?. As a matter of fact, Snow already
had his theory on the transmission of cholera
before collecting data to test it*3.

Despite the longstanding tradition of disease
mapping and geographically oriented research,
during the first half of the 20" century epidemi-
ologists were more inclined to focus their research
on the time dimensions of disease distribution,
and progressively more and more on individual
characteristics, a result of the rising emphasis on
the biological causes of disease®.

Advances in geographic information systems
(GIS) permitted a remarkable increase in the effi-
ciency of processing and analysis of complex geo-
referenced data involving different variables at a
variety of geographical scales, providing new tools
for epidemiologists to incorporate place and space
in their investigations®. Since the 1970s, GIS and
related technologies, such as remote sensing, have
spread rapidly to many scientific and technical
fields, including public health and epidemiolo-
gy*Y". Today GIS and remote sensing are con-
sidered important tools in environmental health
research and disease surveillance'>, and have
been used to investigate patterns of disease spread
and inform control strategies for infectious dis-
eases, in particular vector-borne and zoonotic
diseases'®?, to help define the boundaries of the
communities or neighborhoods where study par-
ticipants reside in multilevel studies??2, and to
estimate socio-demographic and environmental
variables??, This process of increasing incor-
poration of GIS in epidemiologic research should
not be considered simply as a result of techno-
logical forces, but must be put in the context of
the renewed efforts detected after the 1960s to
integrate social sciences and epidemiology?.

In this review, | intend to introduce the basic
approaches used by epidemiologists to deal with
georeferenced data. | will focus on the strategies



for analysis of this type of data, building upon
examples from different areas of epidemiologic
research. | wish to keep statistics apart as much
as possible, emphasizing the conceptual issues
behind the techniques.

For the sake of completeness, it is necessary
to mention that many authors use the terms “spa-
tial epidemiology” or “geographical epidemiolo-
gy” to define this area of investigation®-2. None-
theless, | prefer not to support an unnecessary
autonomy to what | see as a field of epidemio-
logic practice that just carry within its roots a
criticsm concernig the excessive focus of modern
epidemiology on the individual causes of disease.

Types of georeferenced data

Broadly speaking, geospatial data can be point
referenced or area referenced. Point referenced
data are observations registered at specific loca-
tions that might be identified by latitude and lon-
gitude, for instance the location of cases of dis-
ease and the location of air pollution monitoring
stations. Area referenced data are observations
specific to a region (e.g. census tracts, neighbor-
hoods). For both you may also have measured
attributes, such as demographic characteristics
of the disease case, specific measurements of pol-
lutants in each monitoring station, rates of dis-
ease by census tracts, socioeconomic variables
for neighborhoods and so on. Hence, georefer-
enced health data combine the usual informa-
tion available in epidemiologic studies, that is,
values for attributes of some object, with infor-
mation about their locations.

When deciding to choose the appropriate
analysis strategy for georeferenced data, one needs
to consider the statistical model for the spatial
process underlying the available data. A possible
approach is to distinguish data types according
to the nature of the spatial domain in which the
data is observed®®. By spatial domain | infor-
mally mean where things are being observed. The
spatial domain might be continuous or discrete
(do not confuse this with the attribute being
measured, that is, whether the variable measured
is continuous or not) and fixed or random®¥.

A continuous spatial domain means that what
you are observing can be, theoretically, measured
everywhere within that domain. For instance,
imagine that you are interested in obtaining data
on temperature. You will probably gather this
data from monitoring stations that are located
at specific points in the space. However, temper-

ature could have been measured at any place,
hypothetically there are an infinite number of
places that you can place monitoring stations,
but unfortunately you have, in general, only a
sample of possible locations to get data on tem-
perature. On the other hand, a discrete spatial
domain means that you can count the number
of locations in which observations are taken. An
example is the number of dengue cases recorded
in neighborhoods of Rio de Janeiro in January
2008. Here the spatial domain is discrete: you can
count the number of neighborhoods that con-
figure the region of analysis.

A fixed spatial domain is the one that does not
change from one realization of the spatial process
to the next®. Heuristically, a realization of a spa-
tial process is simply a set of georeferenced obser-
vations. Imagine you asked your research assis-
tants to do a fieldwork using some kind of instru-
ment that measures soil contamination by Ar-
senic, a known carcinogenic substance. The re-
sults of your study are a set of measures taken at
different spatial locations, and might be consid-
ered one realization of a spatial process. However,
if you send other assistant researchers to do the
same work, then they will probably take soil sam-
ples from different locations, and this will be an-
other realization of the spatial process. Anyway,
although there are different samples (realizations),
the spatial domain has not changed between the
first and second study.

A random spatial domain can be conceived
in situations where the focus has switched from
studying the attribute itself to studying the loca-
tions. Imagine you label your data as 0 or 1, be-
ing 1 whenever the Arsenic level exceeds a given
threshold (say the level above which soil con-
tamination is considered unacceptable) and 0
otherwise. Throw away all points returning a
value of 0 and keep only those with values of 1.
Now there is no interest in studying the attribute,
because all points represent the same condition
(Arsenic concentration above the threshold). The
interest is now on the spatial arrangement of
observations, which is, together with the number
of points observed, the outcome of the spatial
random process®. Here, the spatial domain is
random since it will change in every new realiza-
tion. Even when attributes are available at each
location, the important statistical feature of these
data is the random domain®.

Based on the nature of the spatial domain,
georeferenced data can be divided in three sub-
types: geostatistical data, areal or regional data
and spatial point patterns®=,
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Geostatistical data

Consist of measurements that can potentially
be taken in any location in space, although the
actual data are sampled at specific locations in a
spatial continuum (fixed and continuous spatial
domain). Statistical approaches to analyze this
type of data are commonly known as geostatis-
tics. Geostatistics is a branch of applied mathe-
matics developed in the early fifties to help obtain
better predictions in mineral prospection®. Usu-
ally the geostatistical approach uses the observed
data to estimate values at unsampled locations
and produce a continuous surface showing the
variation of the attribute across space. The spatial
regression technigque known as kriging is the usu-
al interpolation method used in this setting®. Typ-
ical geostatistical approaches have been used in ep-
idemiologic research for predicting the spatial dis-
tribution of insect vectors of infectious disease®3*
and of air and soil pollutants®.

However, one should be aware that, in gener-
al, data on health events of individuals are only
usually registered where population exists. There-
fore, strictly speaking, geostatistics is probably not
the canonical approach for disease data, since cases
can occur only in selected inhabited parts of larg-
er geographical regions. Because of the patchiness
of population distribution, a continuous surface
of disease rates would not make a sense in many
epidemiological applications. Of course it is pos-
sible to partially circumvent the problem by de-
limiting study areas that are completely populat-
ed and by relaxing the assumption of a continu-
ous spatial domain. Actually, it seems that the geo-
statistical approach is flexible enough to support
different types of geospatial data, and recent de-
velopments have added more and more flexibility
to this type of analysis®*. In fact, there are many
examples of applications of kriging and other
smoothing techniques to produce continuous
surfaces for data that are not typically continu-
ously distributed across space, such as the preva-
lence and parasitic load of ascariasis obtained by
household coproparasitologic surveys in Duque
de Caxias (Brazil)*“, positivity for rotavirus in-
fection in stool specimens collected at laborato-
ries across the United States*?, prevalence of ma-
laria infection in different survey sites in Mali®,
incidence of visceral leishmaniasis in census tracts
of Teresina (Brazil)*, epidemiologic surveillance
data of influenza-like illness in France* and Ja-
pan*, and breast and cervical cancer mortality in
New England counties (United States)®.

Areal, regional or lattice data

Involve observations associated with spatial
regions. Data are not measurable at any location
in space and are artificially gathered at sites or
areas usually defined for statistical or adminis-
trative purposes. The whole spatial domain in
exhaustively divided in areas (fixed and discrete
spatial domain). Regional data can be regularly
or irregularly spaced. An example of regular re-
gional data is that obtained by remote sensing.
Sensing devices on board of satellites measure
reflected or emitted electromagnetic energy from
the earth surface, and data are displayed in a se-
ries of small rectangles (pixels) of the same size*.
However, most data used in epidemiologic re-
search are irregularly spaced, for example, rates
of disease or socioeconomic indicators measured
at county, neighborhood or census tracts level.

Regional data form the basis of the so-called
multiple-group ecological study* in which the
units of analysis are, in general, geographically
defined areas. The aims of ecological studies are
to describe geographical patterns of disease fre-
quencies and risk factors, and estimate putative
ecological correlations between variables. In the
purely descriptive ecological study no data on
exposure is available, and the major interest is to
map the spatial distribution of disease rates, aim-
ing at detecting areas with a significant higher (or
lower) incidence as compared to some expected
rate. The most common approach for this ob-
jective is to use a choropleth map, which is a class
of quantitative thematic maps*. A choropleth
map, also called area or shaded map, is a carto-
graphic representation employing color or shad-
ing schemes, graded in intensity from light to
dark, to depict variability of data distribution
across regions**%0, The name derives from the
Greek words choros (place), and pleth (value,
quantity)*%0. Choropleth maps appear frequently
in epidemiologic studies, and many national at-
lases of mortality and disease distribution have
used this approach®-,

Ecological or geographic correlation studies
are those that examine the spatial variation of
environmental, socioeconomic, demographic and
lifestyle factors in relation to health events, all
measured on a geographic (ecologic) scale?. Ex-
posure variables defined for regions are classi-
fied in three categories: aggregate measures based
on individual data (e.g. proportion of smokers,
mean income), environmental measures (e.g.
temperature, air pollution), and global measures
or contextual attributes (e.g. population density,



social cohesion)*. Outcomes are generally ex-
pressed as incidence or mortality rates for that
region. This type of approach has long tradition
in sociology®* and comes from that discipline one
of the most famous example: Durkheim’s study
on suicide®. Durkheim compared suicide rates
between Prussian provinces classified according
to the proportion of population that was Protes-
tant. He found that suicide rates were higher at
provinces with higher proportion of Protestants.
Although Durkheim had not actually concluded
from that evidence that suicide was more fre-
quently among Protestants, this individual-level
inference coming from an ecological study be-
came “the” example of a typical bias called “eco-
logical fallacy”. The ecological fallacy refers to the
fact that the degree of association between an
exposure and disease may differ in ecological data,
as compared to the same association measured
using data obtained on individuals®. Since none
of the regions were entirely Protestant or non-
Protestant, it is not possible to exclude the hy-
pothesis that are just the minority (Catholics or
Jews) that are committing suicide in the provinc-
es with higher proportion of Protestants.

There are several examples of ecological cor-
relation studies in epidemiologic research. For in-
stance, various ecological studies investigated the
association between per capita consumption of
specific alcoholic drinks and mortality from heart
disease across countries®”. Most of them suggest-
ed that wine was more effective in reducing risk of
mortality than beer or spirits, but evidences from
individual studies indicate that the benefits are
attributable primarily to the alcohol content rather
than to other components of each drink®. In
Northeast Brazil, an ecologic study in 165 munic-
ipalities of the State of Ceara found that, among
others, the level of inequality, population growth,
and the presence of a railroad in the municipality
were predictors of the incidence rate of leprosy®.

Spatial point patterns

Comprise a set of locations of events, usually
indexed by geographic coordinates (latitude and
longitude), in a defined study region®. A spatial
point pattern is an example of the above-mentioned
situation of a random spatial domain. In this case
the locations of the events themselves are the phe-
nomena of interest, and the investigation focuses
on whether the pattern is exhibiting complete spa-
tial randomness, clustering, or regularity®.

In the simplest situation, spatial point pat-
terns include only information on the location of

events (e.g. the location of disease cases), and are
referred as unmarked patterns3®. However, if
you have additional variables attached to the lo-
cations (e.g. socio-demographics, time since di-
agnostic for cases) then it is called a marked pro-
cess. A case-control study in which the geograph-
ical location of both cases and controls is known
and additional variables are collected is a typical
marked point pattern frequently used in epide-
miologic research.

Spatial point patterns arise in many fields of
investigation, for example, in plant ecology to
study the spatial distribution of shrubland® and
very large trees in a forest®, in the analysis of
urban land use to study the distribution of fast-
food restaurants around schools®, in criminol-
ogy to study patterns of urban crimes®, and in
geology to investigate spatial patterns of volcano
eruptions®. In these areas of investigation, hav-
ing the background hypothesis of a complete
spatial random distribution might be interest-
ing, at least for a starting point, because there is
no a priori obvious reason for spatial heteroge-
neity in the distribution of these events®. In epi-
demiology, however, population variation across
space is a major factor leading to geographical
clustering of disease cases and should always be
considered in the analysis, since we are interested
in spatial arrangements that are not explained by
this specific feature. Urban land occupation and
the heterogeneous distribution of risk factors
across space are other important factors that
might explain spatial patterns.

Although methods for spatial analysis were
developed specifically for each of these three types
of data, it is common to see methods originally
developed for one type being applied to analyze
data of a different category. For instance, region-
al data might be artificially allocated to some
point inside the area (e.g. the seat of the state
capital or the centroid, defined as the center of
gravity of the region). Doing so, data will be dis-
played as points and might be analyzed as geo-
statistical data or point patterns. Also, the loca-
tion of cases might be aggregated in regions and
analyzed as lattice data. These approaches, when
applied, need to have their underlying assump-
tions clarified and justified.

Spatial autocorrelation: a key concept

The key issue in the analysis of georeferenced data
is that they often exhibit some spatial structure
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in the sense that there is a tendency of observa-
tions closer together to be more alike than obser-
vations farther apart®. The property that geo-
graphically nearby values of a variable tend to be
similar on a map, that is, high values tend to be
located near high values, and low values near low
values, is called spatial autocorrelation®. In this
case We are saying that exist some positive spatial
autocorrelation, because a negative spatial auto-
correlation means that nearby regions or points
tend to be different, that is, one showing high
values of the attribute and the neighbor low val-
ues, and vice-versa.

In ordinary statistical analysis, researchers
often use the correlation coefficient to measure
the direction and strength or degree of the rela-
tionship between a pair of quantitative vari-
ables®. A variant of conventional correlation is
the serial correlation, which refers to the correla-
tion between measures of a single variable over
successive time intervals®. The geographic ver-
sion of serial correlation is called spatial auto-
correlation (the prefix “auto-" means self), the
relationship between observations on the same
variable taken at different locations in space®.

To assess the nature and degree of spatial au-
tocorrelation, it is necessary to represent the spa-
tial arrangement of observations in order to get a
sense of how close or distant there are apart from
each other®”. Then we use a set of rules, called
weighting function, to express the degree of prox-
imity between observations®”. For instance, for
each possible pair of observations in space we may
attribute a value of one if the observations are
nearby (sometimes we say that they are neigh-
bors) and zero otherwise. There are many other
options for defining these weights, and they may
be based on distances between points (geostatis-
tical and point pattern data) or centroids (areal
data). In this case, pairs of observations might be
defined as neighbors using a dichotomous classi-
fication (yes/no) or entering the actual distance as
a measure of the degree of proximity between
observations. For areal data it is common to use
indicators of proximity based on whether the re-
gions share a boundary or not. In any case, it is
important to consider the fact that any measure
of spatial autocorrelation will be influenced by
the choice of the neighboring weights.

There are basically two major mechanisms
responsible for spatial autocorrelation to occur
with disease data: reaction and interaction®®,
The reaction mechanism implies that neighbor-
hoods or nearby observations behave similarly
because they share a common background risk.

Spatial autocorrelation arises as a result of the
heterogeneous distribution of risk factor across
space. On the other hand, spatial autocorrela-
tion due to interaction mechanisms means that
areas or observations close together are more
alike because proximity facilitates transmission.
The reaction mechanism is the major mechanism
underlying spatial autocorrelation in non-trans-
missible diseases, and interaction isimplicated in
spatial clustering of transmissible diseases. These
two mechanisms may operate at the same time,
in particular for infectious diseases. The term spa-
tial dependence seems to be more appropriate in
the case of the interaction mechanism, since we
are dealing with the so-called dependent happen-
ings, that is, disease incidence in individuals or
regions depends on the prevalence of the infec-
tion in the population™. However, some authors
do not make this distinction and use the terms
spatial autocorrelation and spatial dependence
interchangeably®™.

There are two major reasons for taking spa-
tial autocorrelation in consideration in epidemio-
logic analysis of georeferenced data. First, most
conventional statistical approaches assume that
observations are independent, which is clearly vi-
olated when spatial autocorrelation exists (actu-
ally, the statistical assumption refers to the error
structure, but lets leave formalities behind)®. In
this situation, it is necessary to take spatial auto-
correlation among observations into account in
order to obtain valid estimates of regression coef-
ficients, confidence intervals, and significance lev-
els®. In the statistical jargon, positive spatial au-
tocorrelation increases the likelihood of the null
hypothesis rejection when itis true®. For instance,
take a study on the association between social dep-
rivation and the incidence of breast cancer, both
variables measured at the municipality level (re-
gional data). Consider that the distribution of both
variables show spatial autocorrelation. Even if the
truth is that there exist no association between
deprivation and breast cancer incidence (null hy-
pothesis), the results of a study ignoring the lack
of independence between observations might well
find as statistically significant such association,
thus rejecting the null hypothesis when this is true.
Because of spatial autocorrelation, there is some
redundancy in the information provided by geo-
referenced data, meaning that more spatially au-
tocorrelated than independent observations are
needed to attain similar information®. Werneck
and Maguire™ show an example on how ignoring
spatial autocorrelation may bias regression coef-
ficients and standard error estimates.



The second reason to consider spatial auto-
correlation is conceptual. The detailed description
of how things are distributed in space might be
used to support prediction. For instance, based
on available georeferenced tuberculosis data at the
municipality level, Braga™ used geostatistical ap-
proaches to obtain better estimates in areas where
surveillance reporting of cases was considered in-
appropriate. Lagrotta et al.™* used the spatial pat-
terns of entomological parameters related to the
distribution of Aedes aegypti to identify areas for
targeting control actions. Explicitly accounting for
spatial autocorrelation in a statistical model might
also be used as a proxy for unknown or unmea-
sured variables and improve model specification®.
In other situations, spatial autocorrelation should
be considered as alternative explanations for in-
terpreting study results. Suppose that you imple-
ment a community trial for controlling vector-
borne disease in which the intervention proposed
is spraying houses and the peridomestic environ-
ment with insecticides. The design you choose is
some kind of community intervention trial, in
which the area under study in divided into blocks,
some of them randomly allocated to receive in-
tervention and the other not. Interpretation of
eventual changes in the incidence of the infection
in the study blocks should consider the possibility
of a spillover effect, that is, an area with no inter-
vention might benefit from being a neighbor of
an area in which spraying was performed (or, on
the contrary, spraying would increase even more
mosquito population in surrounding areas due
to a repellent effect of insecticide).

As a matter of fact, spatial autocorrelation has
a dual nature®. Sometimes it is considered a sta-
tistical nuisance asking for new analytical meth-
ods. At times, it is regarded as an intrinsic charac-
teristic of spatial processes carrying essential in-
formation to be considered when interpreting re-
sults of studies using georeferenced data®®®". In a
certain way, this duality represents the focus of
statisticians and geographers, respectively. Epide-
miologists have only recently incorporated spa-
tial analysis in their framework, and still need to
develop meanings for spatial autocorrelation that
are appropriate for their field of investigation.

Analytical approaches

Statistical methods for spatial data analysis gen-
erally are used for either characterization of spa-
tial structure or model adjustment. Character-
ization of spatial structure is well suited for de-

scriptive purposes, hypothesis generation, pre-
diction and forecasting. One main interest in ep-
idemiology is prediction of future occurrences at
specific geographic locations, which can be im-
plemented through space-time models™. Model
adjustment involves the use of the autocorrela-
tion structure to obtain more accurate measures
of effect and standard errors estimates.

Gatrell and Bailey” proposed that the analy-
ses of georeferenced data may be divided into
three broad classes: mapping, exploratory tech-
niques and modeling methods.

Mapping

Mapping is the most elementary technique
employed to describe the basic spatial features of
disease data. For point patterns data, a dot map
might be used to make simple displays of the lo-
cation (usually the residency) of disease cases™.
One should be aware that visual clustering of dots
might reflect only the heterogeneous distribution
of population across space. Interpretation of dot
maps is also problematic since the mapped loca-
tion might not reflect the place where the causal
mechanism leading to disease actually operated.
This is especially important for non-infectious
diseases with long latency and induction periods.
Even for some infectious diseases, such as tegu-
mentary leishmaniasis, the risk of infection is
mainly associated with economic and leisure ac-
tivities in forested areas, including fishing, hunt-
ing, and ecotourism, and the household does not
indicate where transmission occurred. In any case,
adot map is an interesting option to show spatial
density of phenomena, but two critical choices
should be made: dot size and dot value or quan-
tity to be represented by each dot*. Using a small
dot size leads to the sense of a sparse distribution,
but choosing a large dot size may be unattractive
because it increases too much the density of the
distribution. If a dot will represent multiple events
(then dot location does not necessarily relate to
the specific location of a phenomena), choose a
dot value so that the dots just coalesce in the most
dense area on the map but a few dots are still
represented in the sparse areas of the map*. Con-
sider also using different symbol or colors to rep-
resent variations in the attribute being mapped,
for instance to discriminate between cases and
controls in a case-control study™.

Choropleth maps is the most commonly
strategy for the visual display of regional data.
Disease maps of this type usually show directly
age- and sex- standardized rates or standardized
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mortality (or morbidity) ratios (SMR), achieved
by indirect standardization?. Many problems
emerge when mapping areal data, in particular
concerning the choices regarding scale or resolu-
tion, number and boundaries of classes, and the
color or shading scheme?*™. The same data
drawn in different levels of resolutions (e.g. cen-
sus tracts and municipalities) may lead to differ-
ent patterns and interpretations. Aggregation of
small areas usually lead to loss of information,
and the result is a spatial pattern that is pushed
towards the values of the more populated re-
gions?. A related question is the differences in
geometry and size of areal units, larger ones dom-
inating the depicted pattern. The use of grada-
tions of color and shading helps simplifying the
message to be transmitted, but arbitrary color
intensities and types may induce the reader to
focus on specific areas, drawing attention to some
features and leaving other aspects less evident™.

Most mapping softwares supply different
ways to generate data classes. If data has a rect-
angular distribution, classes showing equal in-
tervals might be a good choice. The natural
breaks technique scrutinizes the actual data dis-
tribution to find cut points for creating classes.
The equal area procedure forces the classes to
represent approximately the same area in the
map, but the number of units may vary across
classes. Cutoff points based on percentiles oblige
the classes to have approximately the same num-
ber of units. If the data has normal distribution
you can create classes representing deviations
from the mean value. All these techniques may
be useful in some situations, but if there exists a
clear epidemiological meaning for defining class-
es (e.g. an accepted threshold point for surveil-
lance of infectious diseases) this should be con-
sidered. Concerning the number of classes, there
is no universal accepted rule, but it is rare to see
maps showing less than four and more than elev-
en classes. In general more classes are used if you
have more geographical units. Anyway, the meth-
od used to generate data classes and the number
of classes to be displayed are critical points to be
considered because they may have strong influ-
ence on interpretation of such maps.

Small-area mapping studies have the addi-
tional problem of instability of rate estimates for
areas with small populations. In this case, the
addition or deletion of one or two events can
cause dramatic changes in the observed value,
and the most extreme estimates in a map tend to
be provided by the least reliable data™®.

One way to address this problem is to pro-

duce a probability map®. Assuming that the
number of cases of disease in each region follows
a Poisson distribution with a constant mean, a
map is created which shows those areas with
unusually high or low rates. Although useful as
an exploratory tool, the Poisson model assumes
independent observations and ignores the possi-
bility of spatial autocorrelation between neigh-
boring areas®.

A proposed solution to reveal spatial patterns
that may be hidden by noisy data is to smooth
the incidence rates using Bayesian methods™#,
The smoothed estimates represent a compromise
between the actual observed value and the mean
value of the whole region or some local value
taking into consideration the possible dependen-
cy between neighboring areas™®#2 Although
calculations might be complex the idea is simple,
that is, the technique estimates the incidence rate
in a given region as a weighted average of the
rates in this region and its neighbors. However,
one should be concerned about the degree of
smoothing to employ, because it will determine a
tradeoff between smoothing away areas with truly
high incidence (low sensitivity) or not identifying
correctly areas with low risk (low specificity)?.

Exploratory methods

Models for describing georeferenced data of-
ten decompose spatial variation into two main
components®84 data = large-scale variation +
small-scale variation.

Large-scale variation, first order effect or lack
of stationarity, is a regular variation, analogous
to secular trend in time-series, but taking place in
space®. Itis also called spatial gradient and refers
to the variation in the mean value of the process
(e.g. incidence rate) in space and can be repre-
sented as a function of geographical coordinates
or of variables that have their spatial distribu-
tion akin to the outcome®®., For point patterns
data, first order effect is often describes as the
“intensity” of the process, defined as the mean
number of events per unit of area at a spatial
location®. The so-called kernel estimation is the
usual technique employed for examining large-
scale variation in spatial point patterns®.

Explanations for large-scale variation usual-
ly rely on variables that vary slowly across large
geographical regions, such as altitude, tempera-
ture, vegetation, and some socioeconomic char-
acteristics. For instance, the decreasing north-
south gradient in prostate cancer mortality in
the United States is inversely associated to the



ultraviolet radiation gradient®. Montenegro et
al.®found a spatial gradient in the incidence rates
of leprosy in the State of Ceard, Brazil, with a
tendency of high rates to be concentrated on the
north-south axis in the middle region of the state,
which was, at least in part, attributed to the pro-
cess of urbanization and the heterogeneous dis-
tribution of underlying factors such as crowd-
ing, social inequality, access to health services or
environmental characteristics that determine the
transmission of Mycobacterium leprae.

Small-scale variation around the gradient, or
second order effect, results from clustering of high
or low values across the region and from spatial
autocorrelation®®, To study small-scale varia-
tion accurately, it is often necessary to remove
the effects of large-scale variation®. Unfortunate-
ly, this decomposition is not unique, and re-
searchers have too much flexibility to “explain”
spatial variation as almost totally due to small-
scale variation or to assume a certain degree of
large-scale variation and leave less to be explained
as local clustering®.

Once the spatial gradient has been identified
and removed by using trend surface analysis,
median polishing techniques, or other smooth-
ing techniques®, the residual spatial variation or
small-scale variation might be evaluated by us-
ing, for instance, the variogram (geostatistical
data), the Moran or Geary autocorrelation coef-
ficients (regional data), and the K-function (point
patterns)®. For example, Jones et al.®® used the K-
function in a case-control study to determine the
degree of clustering in road traffic accidents out-
comes. In Teresina, Brazil, after removing the spa-
tial gradient by using smoothing techniques, Wer-
neck et al.* employed the Moran autocorrelation
index to identify small-scale variation in the inci-
dence of visceral leishmaniasis across census tracts.

Modeling

The objective here is to describe associations
between exposure variables and some health out-
come, for instance, between incidence rates and
socioeconomic variables, using regression mod-
els that explicitly take into consideration the spa-
tial structure of data.

The ecological study is the typical epidemio-
logic design used to study such associations when
variables are measured at the group level, most
frequently defined as geographical areas. As pre-
viously stated, georeferenced data used in these
studies are usually spatially autocorrelated and
explicitly taking care of the spatial autocorrela-

tion is both a statistical necessity and an addi-
tional source of information on how the process
evolve across space. Most ecological regression
studies, however, do not include spatial autocor-
relation parameters in their analytical models. In
this sense, these are not spatial studies, since the
geographical structure of data is not being al-
lowed for in the analysis. Non-spatial ecological
analysis work as if the geographical areas are in-
dependent from each other (no spatial autocor-
relation structure), and results from this type of
analysis would be the same if you randomly re-
arrange geographical units across space. In epi-
demiologic research, one of the first approaches
to include spatial autocorrelation in the analysis
of ecological data is due to Cook and Pocock®.
They re-analyzed data from an ecological study
in Great Britain during 1969-73 based on 253
towns aiming at uncover the possible contribu-
tions of drinking water quality, climate, air pol-
lution, blood groups, and socioeconomic factors
on the regional variations of cardiovascular mor-
tality®. They showed that previous results based
on ordinary regression methods overstate the
significance of the regression coefficients®.

There are basically two major ways in which
spatial autocorrelation can be managed in regres-
sion modeling: as spatial-lag and spatial error
models®. Spatial-lagged regression models take
care of spatial autocorrelation by considering that
the dependent (outcome) variable in one area is
affected by variables in nearby areas®. For in-
stance, when studying mortality from respirato-
ry diseases in areas as a function of air pollution,
it is possible to include as exposure variables not
only the measure of pollution in that area but
also measures taken at neighborhoods. An alter-
native is to include the outcome as lagged vari-
ables. For example, the incidence of tuberculosis
in one area might be expressed in a regression
model as a function of socioeconomic variables
and the incidence of tuberculosis in nearby re-
gions. The first model is called a regression mod-
el with spatial lagged explanatory variables and
the last as a regression model with spatial lagged
response variable®.

Alternatively, when there exist some unmea-
sured spatially correlated variables that have an
effect on the outcome or when the major source
of autocorrelation in the dependent variable is
an interaction mechanism, a spatial error model
is recommended®®L. In this case, the error for
the model in one area is correlated with the error
terms in its neighboring locations®.. Okwi et
al.®? using spatial-lag response and spatial error
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models found that a variety of geographic fac-
tors, such as soil type, distance/travel time to
public resources, elevation, type of land use, and
demographic variables significantly explain spa-
tial patterns of poverty in rural Kenya.
Regression approaches for spatial point pat-
terns are less common in the epidemiologic liter-
ature, but some relatively recent developments
propose methods for analyzing georeferenced
case-control studies using nonparametric binary
regression models using kernel and generalized
additive model methods®. Webster et al.* used
similar approaches to investigate the association
between residence and breast cancer on Cape
Cod, Massachusetts (USA) using data from pop-
ulation-based case-control studies.

Facing up to the future

The vast accumulation of methods and tech-
niques for analyzing georeferenced data in the
last years is also posing many challenges to epi-
demiologists willing to use such approaches in
their studies. Beyond those problems already
mentioned above in the text, there are some oth-
er that deserve further consideration.

The concept of space

It is well recognized that there is an acritical
incorporation of “space” as a category of analy-
sis in epidemiologic research. Most of the time,
space is considered just as geometric space indi-
cating where things occur®, or just used for the
differentiation of social conditions®, or as a cir-
cumstance of spatial factors inducing risk®.
Therefore, space in many epidemiological appli-
cations is a concept with no social or historical
dimensions®. Space, however, is both the medi-
um and the outcome of social relations®, a social
construct resulting from the human action, or-
ganized in a society, over landscape®. Barcellos
and Sabroza!® used the expression “the place
behind the case” when analyzing environmental
risk conditions for leptospirosis, which | regard
as an inspired terminology to stress that the links
between risk conditions and occurrence of dis-
ease are directly determined by socioeconomic,
cultural and social factors operating in space®.
To be more useful, epidemiologic studies focus-
ing on georeferenced data should embrace the
concept of social space or, at least, explicitly indi-
cate the concepts of space they are using.

Data availability and quality

In Brazil and some other countries, national
registries of sociodemographic and health data
are important sources of information for geo-
referenced studies. However, the availability and
quality of essential information is an issue of
major concern?. For instance, missing data on
socioeconomic variables is a common problem,
as well as, the lack of coverage of the whole pop-
ulation and diagnostic errors. Reliability and va-
lidity studies of large databases are essential for
judging the possibility of bias in spatial investi-
gations based on secondary data.

Confidentiality

There are two major issues regarding confi-
dentiality?’. The first is related to the possibility
of using the address recorded in secondary regis-
try data (e.g. mortality or hospital admittance
data) to assess the location of disease cases. Since
these are personal data, the issue of whether in-
dividual consent is necessary arises. Without no
doubt the use of this type of information should
only be allowed on the basis of specific rules and
conditions, but the need for individual consent
would greatly impair the development of research
in this field. The second, is the use of very small-
area data which might permit the identification
of neighborhoods and even city blocks. If data
will be used to map environmental hazards or
clusters of disease one should be concerned about
the impact not only on community perceptions
but also on the value of properties®.

Epidemiologic design

Most analyses of georeferenced data are based
on aggregated or secondary data. It means that
there is no research planning for defining what
and how variables will be collected. In general,
these studies lack essential information for un-
derstanding disease processes and are based on
available data collected for other purposes than
the specific research. The development of spatial
sampling techniques is an important feature to be
implemented in surveys aiming at describing spa-
tial variation of health events'®*12, Case-control
studies have been used more frequently, but still
there are some issues of concern. For instance,
unmatched designs are more clearly interpreted
since the assumption of cases and controls com-
ing from the same spatial distribution leads to the



expectation that their spatial patterns will not dif-
fer, unless some social or environmental risk fac-
tor exist'®. However, the same reasoning will not
directly apply in matched case-control studies'®.

Sensitivity analysis

Since spatial data analysis involves a series of
choices (e.g. neighboring weights, issues in map-
ping, variety of data types and models), sensitiv-
ity analysis is an area that deserves more atten-
tion. Using sensitivity analysis to check whether
the results of a study are too much rooted or
dependent on specific choices is a way to incor-
porate a quantitative approach to improve the
qualitative judgments that are expected in the dis-
cussion of epidemiologic studies'®.

Space-time models

In infectious disease epidemiology, heteroge-
neities in space and time has been considered re-
sponsible for the increase in transmission. In gen-
eral, such heterogeneities have been more fre-
quently incorporated in the dynamical modeling
framework, but diffusion models based on ex-
tensions of the autorregressive models to the spa-
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