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Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic
illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe
and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of
infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular
bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction
and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to
differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we
review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria.
Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the

leukocytes and the endothelium.

1. Introduction

Malaria is the most important parasitic disease worldwide.
It is present in more than 100 countries, putting 1.2 billion
people at risk and accounting for more than 800 thou-
sand deaths each year [1, 2]. Cerebral malaria (CM) is
the most severe form of malaria and is usually found in
children under five years old [3]. Clinically, CM is defined
by the identification of P. falciparum in peripheral blood,
convulsions, and coma, after ruling out any other cause
of coma such as meningitis [4, 5]. Pathological findings
such as capillary congestion, production of proinflammatory
cytokines, and adhesion of infected red blood cells (iRBC) to
brain vasculature are responsible for cerebral complications
associated with CM [6]. In some patients, a systemic illness
called severe malaria (SM) is observed which is characterized
by one or more peripheral organ dysfunctions as acute lung
injury (ALI)/acute respiratory distress syndrome (ARDS) [7]
and acute kidney injury [8, 9] and can be combined with

cerebral malaria signals [10]. Some authors suggest that SM
is due to pathological events such as parasitized erythrocytes,
leukocyte adhesion to the organ microvasculature, systemic
production of cytokines, and cytotoxic lymphocyte activation
[11,12]. Despite systemic activation, the leukocyte/endothelial
cell interaction differs depending on the studied organ. Here,
we discuss endothelial dysfunction during severe malaria
and the mechanisms by which leukocytes adhere to the
endothelium in distinct organs during this pathology.

2. Leukocyte-Endothelium Interaction during
Cerebral Malaria

A main characteristic of brain physiology is the immune
privilege conferred by the BBB to brain tissue [13]. However,
the BBB composition, especially in the postcapillary venule,
allows leukocyte diapedesis during nonmalarial brain injury
(14, 15].



During human cerebral malaria, the importance of
infected red blood cells adhesion to brain microvasculature
is well established [5]. Necropsy of fatal cases of severe
malaria shows the adhesion of iRBC in the venules and
capillaries, causing congestion [6, 16, 17]. The mechanism of
iRBC adhesion to brain microvasculature is well described
and depends on expression of membrane proteins such
as P. falciparum erythrocyte membrane proteins (PfEMPI)
[18]. However, the leukocyte-endothelium interaction during
human cerebral malaria is not completely clarified [12, 16,
19, 20]. Indeed, it is well established that both endothelium
[21] and leukocyte [22, 23] are activated in patients diagnosed
with CM; however, how they orchestrate the brain injury to
develop CM is still not well understood.

Endothelium activation markers have been used in clini-
cal studies to predict malaria severity [24, 25]. During CM,
the endothelium can be activated by different mechanisms
as the binding of soluble proteins present in host serum
[24], direct contact with iRBC [6], and activation induced by
parasite-derived molecules as hemozoin [26] and GPI [27].
Necropsy performed in fatal cases of CM showed increased
expression of adhesion molecules on brain microvasculature
[28] supporting the idea that the endothelium is able to pro-
mote leukocyte adhesion. Some studies show the presence of
leukocyte in brain vasculature lumen [16] or in perivascular
space [29], although there are no lines of evidence of the
importance of leukocyte adhesion to brain vasculature in
development of human CM. However, it cannot be ruled out
considering the lack of knowledge in this issue [16, 20].

The interaction between leukocytes and endothelial cells
during human CM could not depend on cell-cell contact.
Instead, leukocytes and lymphocytes produce inflammatory
mediators as TNF-« which activate endothelial cells [28, 30].
Endothelial activation induced by TNF-« accounts for many
factors involved in development of CM [31] as increased iRBC
adhesion [30], expression of leukocyte chemotactic factors
[32] and, costimulated by iRBC, increases ICAM-1 expression
that improve iRBC adhesion [30].

On the other hand, the adhesion of leukocytes to brain
vasculature is often observed during experimental cerebral
malaria [33, 34]. A recent report revealed that the majority
of leucocytes accumulated in the brain during experimental
severe malaria are monocytes. These cells are responsible
for the recruitment of CD4" and CD8" T cells to the CNS
vasculature [35]. However, in the absence of monocytes, T
cells are still recruited to the brain to initiate experimental
cerebral malaria [35]. Observation of the microvessels within
the brains of live animals demonstrated the marginalization
of leukocytes and platelets aggregates in postcapillary brain
venules but not in capillaries of P. berghei-infected mice,
showing that leukocytes do not accumulate in brains tissue
but induce endothelium dysfunction, leading to vascular
leakage, neurological signs, and coma [35, 36]. The role
of adhesion molecules, especially ICAM-1, in the leuko-
cyte/endothelium interaction to promote cerebral dysfunc-
tion during experimental severe malaria is controversial. The
impairment of the ICAM-1/2-integrin complex abolishes
the development of cerebral dysfunction associated with P.
berghei infection [36-38]. However, Ramos and colleagues
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deleted ICAM-1 in different cells and showed that only
ICAM-1 expressed in leukocytes accounts for experimental
severe malaria [39]. The authors speculated that because
endothelial cells do not express ICAM-1 counter receptor,
leukocytes, platelets, and iRBC aggregates occlude brain
microvessels and promote cerebral malaria [39].

A new approach of leukocyte and endothelium inter-
action in brain during CM has been proposed through
interaction between MHC class I molecules and CD8" T lym-
phocytes. Recent studies regarding experimental CM show
that the membranes of endothelial cells and iRBC fuse by tro-
gocytosis, resulting in the expression of Plasmodium antigens
[40]. Endothelial cells preferentially phagocytize merozoites
and, via proteasome digestion, present plasmodial antigens
by MHC class I molecules to CD8" T lymphocytes, thus con-
tributing to the adaptive immune response to P. berghei infec-
tion [41]. It is noteworthy that the same results were observed
within P. falciparum phagocytosis by human endothelial cells
[41]. However, P, falciparum phagocytosis by endothelial cells
in vivo and its clinical relevance remain to be elucidated.

Overall, microvascular congestion observed in both
human and experimental CM leads to severe cerebral
endothelial damage, resulting in the breakdown of the BBB
mainly at the level of postcapillary venules [16, 29, 31, 42]. The
postcapillary venule BBB (Figure 1) is functionally distinct
from other BBB areas and is in direct contact with the perivas-
cular space [42]. In light of the new findings concerning brain
anatomy in which the authors described the presence of lym-
phatic vessels in direct contact with the perivascular space in
the central nervous system, in the next few years, the dynam-
ics of the interaction between leukocytes and the endothe-
lium during cerebral malaria will likely be unveiled [43].

3. Leukocyte-Endothelium Interaction in
the Lung during Malaria

The brain is not the only organ affected during severe malaria.
Twenty percent of patients diagnosed with severe malaria
develop acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) [7, 9]. ALI/ARDS is a syndrome derived
from pathological conditions such as sepsis and traumatic
brain injury. ALI/ARDS diagnosis includes the identification
of respiratory failure, diffuse alveolar damage, and inflamma-
tory infiltration in lung tissue [44]. Necropsy in fatal cases of
severe malaria revealed that patients present classical symp-
toms of ALI including pulmonary edema, pulmonary capil-
lary congestion, thickened alveolar septa, marked inflamma-
tory response in lung tissue, and macrophages in the lumen of
the pulmonary capillaries [11]. Murine experimental models
of severe malaria also present pulmonary pathology such as
edema, cell infiltration, tissue damage, and lung mechanical
impairment [45-48]. Furthermore, the lung appears to be a
large reservoir of metabolically active parasites, as described
in an elegant study by Lovegrove et al. who evaluated the tran-
scriptional responses to Plasmodium in different organs [49].

The lung vasculature in malaria infection is essential
to initiate the Plasmodium cycle within the host. When
merozoites leave the liver, they are located inside host-derived
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FIGURE 1: Blood barrier differences between brain and lung during malaria. (a) Cerebral microvasculature and (b) lung microvasculature
without leucocytes attached in postcapillary venules and EC expressing Ang-1, under physiological conditions. (c) During severe malaria,
we observe production of proinflammatory cytokines, increase of cellular adhesion molecules expression, release of Ang-2, decrease of NO,
and adhesion of iRBC and leukocytes (mainly mononuclear cells) to brain vasculature leading to capillary congestion, BBB dysfunction, and
edema. Such events activate the subjacent tissue (microglial cells and astrocytes). (d) Acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) associated with malaria. The augment of inflammatory cytokines and chemokines, release of Ang-2, and decrease of NO
are responsible for activation of EC that increases the expression of cellular adhesion molecules allowing the margination and infiltration
of iRBC, leucocytes, and platelets into blood vessels, interstitial tissue, and consequently alveolar air space. BBB: blood-brain barrier; BAB:
blood-air barrier; EC: endothelial cell; ROS: reactive oxygen species; SMC: smooth muscle cell.

buds named merosomes, whose membranes are disrupted
within the pulmonary capillary beds to allow merozoites to
reach the erythrocytes [50, 51]. The close contact between
infected erythrocytes and pulmonary endothelial cells trig-
gers a remarkable inflammatory response 24 h after infection,
characterized by intense inflammatory cell infiltration as
well as the production of proinflammatory cytokines and
chemokines in lung tissue that persists for at least five days
after infection [45-47]. The quantity of parasites in lung

tissue defines the extent of chemokine production in lung
tissue [52]. Chemokines such as CCL2, CXCLI1, and CCL5
are produced in lungs during experimental malaria and are
correlated with macrophage and neutrophil accumulation
in pulmonary tissue [45, 53, 54]. Intravital studies in lungs
of Plasmodium-infected mice reveled edema formation and
the migration of monocytes and neutrophils to lung tissue
[37]. However, due to the technical limitations in studying
leukocyte mobility within the lung [55], until now, there have



been no available data on the dynamics of leukocytes and
lung endothelium during malaria-triggered ALI [37]. Indeed,
lung endothelial cells are activated during malaria infection
and express adhesion molecules. P-selectin, in addition to L-
and E-selectin, is part of a family of calcium-dependent (C-
type) lectins whose activation induces the expression of 52-
integrins and consequent leukocyte arrest in the vasculature
[56, 57]. P-selectin is expressed in both lung and brain
endothelium during experimental malaria. This molecule
mediates leukocyte rolling in brain microvessels of P. berghei-
infected mice; however, it is not essential for development
of experimental cerebral malaria signals [58]. On the other
hand, the monocyte/macrophage accumulation in lungs of P.
berghei-infected mice depends on the expression of ICAM-1
[52, 59], while ICAM-1 expression in the brains of infected
mice does not account for leukocyte adhesion [60]. It is
interesting to note that while inflammatory cell infiltration in
cerebral tissue was not observed in the brain, neutrophil and
macrophage infiltration is frequently observed in pulmonary
interstitial lung tissue during malaria [45]. Indeed, differ-
ences in the blood-brain barrier and blood-air barrier tight
junction constitution of the brain and lung are responsible
for this phenomenon (Figure 1).

The morphological and biochemical differences between
lung and brain endothelial cells account for the dis-
tinct inflammatory responses in both organs. Despite both
endothelial cell types containing nonfenestrated endothe-
lium, brain endothelial cells present fewer caveolae and are
richer in tight junctions than lung endothelium [61, 62].
The lung endothelial bed is rich in adherens junctions and
P-selectins and allows leukocyte transmigration by paracel-
lular and transcellular pathways [61, 62]. Endothelial cells
from lung tissue can be activated by VEGF [4], TNEF-
« [63], LPS [64], and P. falciparum infected erythrocytes,
resulting in the reorganization of their junctional proteins
[63]. In addition to inflammatory mediators and pathogen-
associated molecular pattern (PAMP), the leukocyte contact
also contributes to endothelial cell reorganization, triggering
a dephosphorylation cascade followed by the endocytosis
of VE-cadherins, which support leukocyte transmigration
through lung endothelial cells [65]. Of note, in most organs,
leukocyte transmigration happens almost exclusively in post-
capillary venules. However, in the lung leukocyte transmigra-
tion occurs in capillaries of the blood-air barrier which are
surrounded by epithelium forming alveoli [61].

In addition to the direct interaction between leukocytes
and the endothelium described earlier, leukocytes can bind
platelets and then adhere to the endothelium. Piguet and
colleagues showed that platelet and mononuclear cell trap-
ping occurs in the lungs of P berghei-infected mice [66].
In addition, the authors observed that the impairment of
platelet activation decreased leukocyte adhesion to the lung
vasculature of P. berghei-infected mice [66]. The stimulation
of the receptor P2Y, but not P2Y,, on platelets induces
the downstream activation of the RhoA pathway, resulting
in platelet/leukocyte aggregation and migration to the lung
[67]. In addition, platelets also contribute to the leuko-
cyte/endothelium interaction by releasing microparticles.
Neutrophils stimulated with platelet-derived microparticles
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increased the expression of aM integrin and adhered to
pulmonary endothelial cells via ICAM-1 [68].

The study of leukocyte/endothelium interactions within
the lung during malaria is limited but extremely impor-
tant. Mice depleted of neutrophils showed reduced malaria
associated ALI and delayed mortality [38], suggesting that
further studies are necessary to show the mechanism of the
leukocyte/endothelial interaction in the lung during severe
malaria.

4. Leukocyte/Endothelium Interaction during
Malaria as a Target for Treatment

In accordance with the findings presented above both in
human and animals, the leukocyte/endothelium interaction
plays a role in the development of pathogenesis of severe
malaria particularly in malaria-induced ALI [9, 12, 45, 47].
In fact, lung dysfunction triggered in both human and
experimental malaria shares similarities with lung mechanics
impairment, pulmonary edema, production of inflammatory
cytokines, and inflammatory cells infiltration in lung tissue
[9, 45]. Furthermore, the inflammatory response persists
even after the host is cured of infection [10, 69, 70] (unpub-
lished data), which suggests that modulation of inflammatory
response in addition to antimalarial therapy would be helpful
to patient outcome [71]. The leukocyte-endothelium interac-
tion is not the most important factor regarding development
of human cerebral malaria pathogenesis; however, it should
not be neglected as actor in severe malaria-induced organ
dysfunction.

Recently, Frosch and John suggested that an adjunctive
therapy that impaired the inflammatory response induced
during malaria should be combined with antimalarial drugs
[72]. Several approaches have already aimed at the modula-
tion of the malaria-induced inflammatory response. Figure 2
illustrates several potential targets described in the liter-
ature. Patients diagnosed with severe malaria have been
treated with modulators of TNF-« production [73], CD36
expression [74, 75], NO precursors [70, 76], or adhesion of
iRBC to vasculature [77] and presented decreased inflam-
mation scores when compared to a placebo treated group.
Despite evidence suggesting that the modulation of leukocyte
and endothelial activation supports the outcome of severe
malaria, it is not clear whether an adjunctive therapy targeting
the leukocyte/endothelium interaction would predict patient
outcome. It is worth noting that the most important class
of antimalarial drug to treat severe malaria is artemisinin
and its derivatives [78], which also have immunomodulatory
activities in pathologies such as microbial infections, tumor
growth, and inflammatory diseases [79-82]. Our group
demonstrated that, in addition to its antimalarial properties,
artesunate exerted a protective effect against severe malaria
via its immunomodulatory properties by inhibiting endothe-
lial cell activation, NF-«B nuclear translocation, and the
subsequent expression of ICAM-1 [83].

Srinivas and colleagues studied the effect of treatment
with activated protein C on a patient with severe malaria
coinfected with leptospirosis and observed a rapid outcome
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FIGURE 2: Targets of adjuvant therapies during malaria. Scheme showing several approaches that have been investigated aiming at modulation
of malaria-induced inflammatory response. EC: endothelial cell; ROS: reactive oxygen species; SMC: smooth muscle cell. (1) Activated protein
C binds to protein C receptor in activated EC cells decreasing the expression of adhesion molecules. (2) Statins decrease the production of
chemokine and diminished the adhesion of leukocytes to brain microvasculature. (3) Sphingosine-1-phosphate (SIP) decreases the numbers
of lymphocytes in brain vasculature and stabilizes the tight junction protein ZO-1 in brains. (4) Neuregulin-1 and bone marrow mesenchymal
stromal cells induce Ang-1, which promotes stabilization of EC tight junctions, EC desensitization to TNF-«, and downregulation of ICAM-
1 and VCAM-1. (5) Lipoxin A, decreases production of proinflammatory cytokines, impairs EC activation, and inhibits the expression of
cellular adhesion molecules involved in leukocyte adhesion by stimulating the activity of HO-1, which catabolizes free heme. (6) L-Arginine
or inhaled NO (iNO) reduces pulmonary edema and, in addition, decreases cytoadherence of iRBC, hemorrhagic foci, and leukocyte and
platelets adherence to brain vasculature by inhibiting of WPB exocytosis that impairs the release of Ang-2 and inhibiting TNF-« production

and procoagulant activity of endothelial cells.

[84]. The binding of activated protein C to endothelial cell
protein C receptor in activated endothelial cells avoided
NF-«B p65 phosphorylation and induced AKT signaling,
which decreased the expression of adhesion molecules on the
endothelial cell surface [18, 85]. Thus, activated protein C in
malaria would increase endothelial barrier integrity, induce
antiapoptotic pathways, and decrease adhesion molecule
expression [86]. Other modulators of endothelial functions
have been used to evaluate malaria outcome in humans and
experimental models. Studies in which P. berghei-infected
mice were treated with statins, a class of drugs that inhibit
the rate-limiting step in cholesterol synthesis and that show
pleiotropic effects, demonstrated that statins decreased the
production of chemokines [87] and decreased the adhesion
of leukocytes to the brain microvasculature [88] probably
by inhibiting the binding site of LFA-1 on leukocytes [89].
Accordingly, in vitro treatment of human endothelial cells
with statins followed by stimulation with P falciparum-
infected erythrocytes decreased the expression of adhesion
molecules, suggesting that statins could exert an antiadhesive

role in the treatment of severe malaria [90]. Statins have
not been tested in clinical trials for malaria adjunctive
treatment. However, statins diminished the risk of sepsis-
related mortality in patients, probably by decreasing the
inflammatory response triggered during sepsis [91].

The endothelial barrier stabilizer sphingosine-1-phos-
phate (S1P) also rescued mice from severe malaria by decreas-
ing the numbers of CD8", CD4", and CD45" cells in the
brain vasculature of P. berghei-infected mice, likely decreas-
ing ICAM-1 expression and stabilizing the tight junction
protein ZO-1 in brains [36, 92]. Transfection of bone marrow
mesenchymal stromal cells and administration of SIP and
other endothelial barrier stabilizers such as neuregulin-1
induce the endogenous Ang-1 anti-inflammatory pathway,
which promotes decreased vascular permeability by stabiliz-
ing endothelial cell tight junctions, endothelial cell desensiti-
zation to TNF-a, and downregulating ICAM-1and VCAM-1.
These Ang-1actions result in decreased leukocyte/endothelial
interaction and, consequently, host outcome [4, 93-97].



Another family of lipids has been studied for its anti-
inflammatory activity during severe malaria. Lipoxins (LX)
are products of arachidonic acid metabolism and are pro-
duced through sequential lipoxygenase activity following
cell-cell interactions in the inflammatory milieu (reviewed
by [98]). The interaction of LXA, and its receptor ALX
has anti-inflammatory and proresolving activity in inflam-
matory models such as allergic airway inflammation [99]
and autoimmune diseases [100] by reducing leukocyte adhe-
sion to endothelial cells [101]. The administration of LXA,
improved survival in P. berghei-infected mice by decreasing
the production of proinflammatory cytokines but not the
accumulation of CD8"/IFN-y" cells in brain tissue [102]. In
addition to LXA, impairment of leukocyte activation, the
mechanism of action of LXA, on endothelium during severe
malaria was recently disclosed by intravital studies of the
microvasculature of P. berghei-infected mice. The authors
showed that treatment with LXA, did not modulate leukocyte
adhesion to the brain vasculature or decrease the expres-
sion of B2-integrin in leukocytes (unpublished data). On
the other hand, treatment with LXA, impaired endothelial
activation during severe malaria and restored the blood flow
in brains of P. berghei-infected mice [33]. The authors also
showed that LXA, exerted its effects by stimulating the
activity of heme oxygenase 1 (HO-1), an isoenzyme that
catabolizes free heme released under pathological conditions,
especially in pathologies such as malaria which are associ-
ated with intravascular hemolysis [33]. HO-1 upregulation
helps maintain BBB integrity under pathological conditions
(103]. During the inflammatory response, HO-1 inhibits
the expression of several adhesion molecules involved in
leukocyte adhesion to endothelial cells [104, 105]. During
experimental severe malaria, HO-1 is differentially regulated
in certain tissues at different stages of Plasmodium life cycle
[106, 107]. Furthermore, HO-1 production in brain tissue is
associated with mouse survival, decreased cerebral edema,
and decreased leukocyte adhesion to brain vasculature [106].

In hemolytic disorders such as malaria, low bioavailability
of NO is observed, as free hemoglobin is a potent scavenger
of this gaseous molecule [108]. Therefore, the administration
of L-arginine or inhaled NO (iNO) has also been tested as
adjunctive therapy in the treatment of severe malaria [4,
76]. Yeo and collaborators showed that impaired endothelial
NO production occurred in severe malaria in both children
and adults, supporting the idea that further trials of drugs
that led to increased endothelial NO bioavailability could
attenuate severe malaria symptoms [109]. Studies in which
severe malaria patients were treated with inhaled nitric oxide
demonstrated that NO reduced pulmonary edema in patients
with malaria-derived ALT and decreased pulmonary capillary
pressure through selective vasodilatory effects on postcap-
illary venules [110]. Thus, in severe malaria, nitric oxide
is hypothesized to promote vascular quiescence, decrease
cytoadherence of parasitized erythrocytes to the microvas-
cular endothelium as a critical mediator of VEGF and Ang-
1, and dampen inflammatory responses and thrombosis [4].
Nitric oxide (NO) is a short-lived free radical formed from
L-arginine conversion that is involved in many important
biological functions including neurotransmission, immune
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system, cytokine modulation platelet inhibition, vascular
homeostasis, and regulation of hematopoiesis [111]. Its pro-
duction occurs through three different NO synthase (NOS)
enzyme isoforms: neuronal NOS (nNOS or NOSI), inducible
NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3)
[111]. The constitutive isoforms (neuronal and endothelial)
are calcium/calmodulin dependent and permanently active,
generating low concentrations of NO. The inducible isoform
(iNOS) is only expressed when its transcription is activated
by a variety of cytokines, growth factors, and inflammatory
stimuli on target cells, leading to the release of high levels
of NO [112]. In experimental severe malaria, treatment with
exogenous NO (NO donor dipropylenetriamine NONOate,
DPTA-NO) showed improved pial blood flow, diminished
hemorrhagic foci, and reduced leukocyte and platelet adher-
ence to the brain vasculature [113, 114]. The authors hypoth-
esize that NO attenuates malaria symptoms by (a) inhibition
of Weibel-Palade body exocytosis and the consequent release
of Ang-2 and increase in Ang-1 expression; (b) decreasing
the endothelial expression of ICAM-1 and VCAM-1; (c)
inhibiting TNF-« production; (d) inhibiting the procoagulant
activity of endothelial cells; and (e) decreasing intravascular
platelet aggregation [108, 110, 111].

Indeed, pathophysiological phenomena experienced dur-
ing experimental severe malaria are not fully translated to
human severe malaria [115-118]. Therefore, further studies
should be performed before initiating clinical studies of
immunomodulatory drugs as adjunctive therapy for severe
malaria.
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