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Abstract: Sporotrichosis is a fungal infection caused by Sporothrix species, with Sporothrix brasiliensis
as a prevalent pathogen in Latin America. Despite its clinical importance, the virulence factors of
S. brasiliensis and their impact on the pathogenesis of sporotrichosis are still poorly understood.
This study evaluated the morphostructural plasticity of S. brasiliensis, a fungus that causes sporotri-
chosis. Three cell surface characteristics, namely cell surface hydrophobicity, Zeta potential, and
conductance, were assessed. Biofilm formation was also analyzed, with measurements taken for
biomass, extracellular matrix, and metabolic activity. In addition, other potential and poorly studied
characteristics correlated with virulence such as lipid bodies, chitin, and cell size were evaluated. The
results revealed that the major phenotsypic features associated with fungal virulence in the studied
S. brasiliensis strains were chitin, lipid bodies, and conductance. The dendrogram clustered the strains
based on their overall similarity in the production of these factors. Correlation analyses showed that
hydrophobicity was strongly linked to the production of biomass and extracellular matrix, while
there was a weaker association between Zeta potential and size, and lipid bodies and chitin. This
study provides valuable insights into the virulence factors of S. brasiliensis and their potential role in
the pathogenesis of sporotrichosis.

Keywords: biophysics; one health; virulence factors; biofilm; chitin; lipid bodies

1. Introduction

Sporotrichosis is a subcutaneous infection caused by dimorphic fungi belonging
to the genus, Sporothrix [1]. Sporothrix brasiliensis, the most virulent species within the
genus, has been identified as the major agent responsible for the zoonotic transmission of
sporotrichosis in Brazil [2]. For the establishment of sporotrichosis, a dimorphic transition is
necessary, where the Sporothrix conidia transform into yeast-like cells [3]. The host immune
system recognizes various fungal components including mannose, rhamnomannans, and
β-glucans and, if phagocytosis fails to occur, the microorganism can more easily establish
itself within the host, resulting in an intensified infectious process [4]. Phagocytosis assays
showed that macrophages were able to internalize both conidia and yeasts of S. schenckii.
Recognition of conidia involved the participation of mannose receptors and resulted in the
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development of a Th1 response. Conversely, yeast recognition involved the participation of
complement receptors [5].

Considering that S. brasiliensis can be transmitted from animals to humans, surveillance
efforts must adopt the One Health perspective, including the environment, in addition to
people and animals. This is crucial in urban areas with high population density, to prevent
and control this major zoonosis in endemic regions [1]. In fact, sporotrichosis is one of
the most common skin infections in infectious dermatology in Rio de Janeiro, Brazil, and
it is intrinsically related to animal and environmental factors. Although the incidence of
this mycosis is increasing, knowledge about the eco-epidemiology of their agents remains
limited [5,6]. According to the Brazilian Institute of Geography and Statistics (IBGE), Brazil
has the second largest pet population in the world, with 22.1 million cats and 52.2 million
dogs [7]. Hence, studies that evaluate the mechanisms by which the fungus causes disease
in these hosts are of paramount importance.

Sporotrichosis clinical presentations may vary according to the patient’s immune
status, fungal pathogenicity, thermal tolerance of the strain, among other factors [8]. Among
the fungal-related factors, which include inoculum size and virulence, some studies have
shown differences between the main human pathogenic species of the genus Sporothrix:
S. brasiliensis is widely acknowledged as the most virulent, while S. globosa is the least
virulent. S. schenckii, on the other hand, has an intermediate virulence phenotype [8,9].
One of the most studied Sporothrix virulence factors is melanin production. Pathogenic
Sporothrix species can produce melanin that guarantees protection against antifungal drugs
and phagocytosis [10]. Virulence aspects must be studied continuously because the increase
in fungal virulence poses threats to human health [11].

The cell wall (CW) is one of the main components of the fungal cell structure, with sev-
eral biological functions related to morphology, integrity, pathogenicity, and virulence [12].
It is a complex, dynamic, and multilayered structure, located outside the plasma membrane,
which participates in the initial interaction between the fungus and the environment. It
is also a permeable barrier, with functions related to nutrition and protection of the pro-
toplasm against physical or osmotic injuries [13]. In addition to chitin and β-glucans, the
fungal cell walls can also contain proteins and other carbohydrates [14]. A comparison of
the chemical composition and cell wall structure of S. schenckii and S. brasiliensis revealed
that both fungi exhibit a bilayer wall with the outermost layer containing a peptidorhamno-
mannan fibrillar component, while chitin, β-1,3, β, 1,6-glucans, and glycogen particles are
present in the innermost layer close to the plasma membrane [15]. In addition, S. brasiliensis
contains more chitin and rhamnomannan polymers [16]. The CW composition of three
strains of S. schenckii and two strains of S. brasiliensis exhibiting different levels of viru-
lence in a murine model of infection were compared, confirming previous results for the
species [15]. More recently, it was reported that culture media influence changes in cell
wall composition and structure, as well as virulence in S. schenckii and S. brasiliensis, but
not in S. globosa [17].

S. brasiliensis is known to produce trehalose, a disaccharide involved in resistance to
osmotic stress, resulting in cell wall remodeling. This factor may be related to Sporothrix
environmental adaptation, reflecting in its virulence [18]. In addition, S. brasiliensis
and S. schenckii have qualitative similarities between polysaccharide and amino acid
CW contents, with some quantitative differences depending on the culture incubation
time [16]. The composition changes depending on cell morphology, with the percentage of
N-acetylglucosamine, the basic unit of chitin, being slightly higher in similar cells the yeast
S. schenckii, when compared to the same morphotype of S. brasiliensis [19,20].

Another important fungal virulence factor is biofilm formation, which allows mi-
croorganisms to survive in hostile conditions [21,22]. Biofilms are dynamic communities
that can protect microorganisms from host defenses and increase drug tolerance. In ad-
dition, they are characterized by an extracellular matrix that can impede the penetration
and diffusion of antimicrobial substances [23]. Sporothrix species are known to form
biofilms [24], which may contribute to their pathogenicity [25]. While S. brasiliensis and
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S. globosa produce characteristic biofilms, those formed by S. schenckii appear to have less
matrix material, which is primarily composed of carbohydrates and proteins, similar to
Candida and Aspergillus biofilms [25].

Despite the existing knowledge in this area, there is a lack of studies that focus on
comparing the morphostructural aspects of the sporotrichosis agents, particularly those iso-
lated from diverse hosts. Therefore, the aim of this study was to evaluate morphostructural
aspects of S. brasiliensis strains from domestic outbreaks of cat-transmitted sporotrichosis
in Rio de Janeiro, Brazil. The study aimed to identify potential host associations and to
explore the relationships among various cellular characteristics, with insights into the
fungal virulence.

2. Materials and Methods
2.1. Fungal Strains

Twenty-four S. brasiliensis strains from human patients and their respective cats with
sporotrichosis treated at the Instituto Nacional de Infectologia Evandro Chagas (INI-Fiocruz),
previously identified by a species-specific PCR [26] were used. These well-characterized strains
are deposited at the Fungal Collection “Coleção de Fungos Patogênicos”, which is recognized
by the World Data Centre for Microorganisms (WDCM 951). All humans reported a history
of contact with the sick cat before the onset of symptoms, as reported [27]. All strains were
cultured for seven days on brain–heart infusion (BHI) agar (Difco, Franklin Lakes, NJ, USA) at
35 ◦C to obtain yeast cells and on potato dextrose agar (PDA—Difco, Franklin Lakes, NJ, USA)
at 25 ◦C to obtain conidia, then washed again in phosphate-buffered saline—pH 7.2 (25 ◦C)
(PBS) and the inoculum proposed in each of the following experiments was performed.

2.2. Evaluation of Cell Surface Hydrophobicity

Cell surface hydrophobicity (CSH) was measured by a two-phase water–octane assay.
A cell suspension (1.2 mL) containing 108 yeasts/mL was washed with PBS and stirred vig-
orously with 0.3 mL of octane (Sigma-Aldrich, St Louis, MO, USA). The two solvents were
allowed to separate for 15 min at room temperature. The absorbance at 600 nm (ABS600)
of fungal cells in PBS with no octane overlap was used as a control. The percentage of
fungal cell exclusion from the aqueous phase (% change in ABS600) corresponding to the
relative cellular hydrophobicity was calculated as follows: ([ABS600 from control—ABS600
after octane overlay]/ABS600 from control) × 100. As previously reported, high, moder-
ate, and low CSH correspond to respective changes of 80–100%, 20–80%, and 0–20% in
ABS600, respectively [28,29].

2.3. Evaluation of Cellular Electronegativity

The Zeta potential (ζ), particle mobility and shift frequency of samples were calcu-
lated in a Zeta potential analyzer (NanoBrook Omni Zeta Potential Analytical Instruments
Particle Sizer, Brookhaven Instruments Corp., Holtsville, NY, USA). This is a measurement
of charge (in millivolts) defined as the potential gradient that develops across the inter-
face between a boundary liquid in contact with a solid and the mobile diffuse layer in
the body of the liquid. The Zeta potential was evaluated with a yeast cells suspension
(1.5 mL containing 106 yeasts) in a solution of 1 mM NaCl in pure water at 25 ◦C, pH 6.0.
All measurements were performed in 10 cycles. In addition to the Zeta potential values,
conductance was evaluated, that is, the application of electrical force, which is directly
proportional to the number of ions presented by these samples [30,31].

2.4. Biofilm Formation on Polystyrene

Biofilm formation on a polystyrene substratum was performed as described previously
for Aspergillus fumigatus [32]. The experiment was performed on flat-bottom 96-well
polystyrene microtiter plates (Kasvi, São José dos Pinhais, PR, Brazil) where 100 µL of BHI
broth (Sigma-Aldrich, St Louis, MO, USA) containing approximately 1 × 106 cells/mL was
added to each well. Plates were incubated for 7 days at 35 ◦C, without agitation. Negative
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controls consisted of medium alone and were set up in parallel. Subsequently, wells were
washed three times with 200 µL of PBS to remove nonadherent cells [29,32]. The tests
below were carried out, in biological and experimental triplicate, to analyze the biomass,
extracellular matrix and viability of the biofilms.

2.4.1. Biomass Quantification

Biofilms were fixed with 200 µL of 99% methanol (Sigma Aldrich, St Louis, MO, USA)
for 15 min. Then, the supernatants were discarded, microplates were air-dried for 5 min
and 200 µL of a 0.5% crystal violet solution (stock solution diluted in PBS; Sigma Aldrich,
St Louis, MO, USA) were added to each well with a subsequent incubation for 20 min at
25 ◦C. Dye was removed by washing the material with distilled water and the biomass
was decolorized with 200 µL of 33% acetic acid (Sigma Aldrich, St Louis, MO, USA) (v/v)
for 5 min. Aliquots of 100 µL of the acetic acid solution were transferred to a 96-well plate
(Jet Biofil, Huangpu, Guangzhou, China) and the absorbance was measured at 590 nm
using a microplate reader (SpectraMax M3; Molecular Devices, SanJosé, CA, USA). Clas-
sification regarding biomass production was carried out as follows: absorbance values
lower than 0.44 correspond to low biomass production, values from 0.44 to 1.17 corre-
spond to moderate biomass production, and values higher than 1.17 correspond to high
biomass production [33].

2.4.2. Cellular Viability

Mitochondrial activity was determined with the CyQUANT™ XTT assay
(Thermo Fisher, Waltham, MA, USA). A mixture of XTT reagent and electron coupling
reagent was prepared at a ratio of 6 to 1. Seventy microliters of the mixture were added
to each well. Then, the plate was incubated at 37 ◦C for 4 h in the dark in a 5% CO2
incubator. The optical densities (OD) were determined using the SpectraMax® Plus 384
Microplate Reader (SpectraMax M3; Molecular Devices, SanJosé, CA, USA) at 450 nm and
660 nm [31,34]. Mitochondrial activity was expressed by the decrease in OD (450–660 nm),
discounting the average of the ODs of the controls [35]. The isolates were categorized into
three groups based on their metabolic activity: low metabolic activity, moderate metabolic
activity, and high metabolic activity. The classification was determined using XTT with
respective cut-offs of <0.097, 0.097–0.2, and >0.2 [33].

2.4.3. Characterization of Extracellular Matrix Production

Cells were stained with 200 µL of 0.1% safranin (dissolved in PBS; Sigma-Aldrich,
St Louis, MO, USA) for 5 min at room temperature. Then, wells were washed with PBS
to remove excess stain until supernatants became clear. The extracellular matrix was
discolored with 200 µL of 30% (v/v) acetic acid for 5 min. Aliquots of 100 µL of the super-
natants were transferred to a new 96-well plate (Jet Biofil, Huangpu, Guangzhou, China)
and the absorbance was measured at 530 nm using the SpectraMax M3 microplate reader,
as described previously [31,36].

2.5. Detection of Lipid Bodies in the Fungal Cell

Eukaryotic cells are able to produce lipid bodies, made up of neutral lipids, which have
a role in a variety of cellular functions such as ergosterol biosynthesis. In this context, fungi
(106 yeasts/mL) were fixed in paraformaldehyde (Sigma Aldrich, St Louis, MO, USA),
stained with Nile red (Sigma Aldrich, St Louis, MO, USA) at 5 µg/mL for 30 min at room
temperature. Yeasts were treated with PBS alone as an autofluorescence control. Sub-
sequently, the fungi were washed three times in PBS and analyzed in a flow cytometer
(BD Biosciences, San Jose, CA, USA). The mapped population (n = 10,000 events) was
analyzed for size and log red fluorescence using a single parameter histogram. Results
were expressed as mean of fluorescence intensity (MFI), as described [29].
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2.6. Quantification of Chitin in the Cell Wall

Yeast suspensions were prepared as described above and treated with Uvitex 2B
(Polysciences Inc., Warrington, PA, USA) to detect chitin in their cell walls. In brief, 1 µL
of 10 µg/mL Uvitex2B was added to 1 mL of the conidial suspension. This mixture was
incubated at 35 ◦C for 60 min. Then, they were washed three times in PBS, analyzed in
a flow cytometer (BD Biosciences, San Jose, CA, USA), and the results were expressed as
described previously [29,37].

2.7. Ultrastructural Analysis of the Cell Surface

Scanning electron microscopy (SEM) was conducted by washing the yeasts three times
in PBS and subsequently fixing them in 2.5% glutaraldehyde type 1, diluted in 0.1 M sodium
cacodylate buffer, for 1 h at room temperature. Then, the structures were washed in 0.1 M
sodium cacodylate buffer containing 0.2 M sucrose and 2 mM MgCl2, adhering to cover
slips coated with 0.01% poly-L-lysine (Sigma Aldrich, St Louis, MO, USA) for 20 min. With
the structures adhered, they were dehydrated in a series of freshly produced solutions of
graded ethanol (30, 50 and 70%, for 5 min/step, then 95% and twice 100%, for 10 min/step).
The samples were then subjected to critical point drying (EM CPD 300, NY, Leica) imme-
diately after dehydration, metal stumps were mounted, coated with a 15–20 nm gold
layer (Balzers Union FL-9496, Balzers, Liechtenstein), and viewed under an SEM micro-
scope (FEI Quanta 250, Hillsboro, OR, USA), operating at 10–20 kV. The SEM images
were analyzed in the ImageJ software bundled with Java 1.8.0_172 [38], where they were
converted into 8-bit, then the function Threshold was utilized. Subsequently, the cells were
segmented and measured, and a table with the area values of each cell was produced. The
SEM scale bar was measured, and its value divided by the number of pixels, allowing the
determination of the area value in square micrometers [31].

2.8. Statistical Treatment

All experiments were performed in triplicate, in three independent experimental
sets, except when strictly described before, and the results were expressed as mean or
mean ± standard deviation, whenever applicable. The results were analyzed using the
GraphPad Prism 9.5 software (La Jolla, San Diego, CA, USA), with p-values less than
0.05 to determine the significance. Non-parametric tests were used as appropriate and
necessary in the different analyzes and comparisons among the samples seized. The
overall analysis of all virulence-related phenotypes was performed through a heat map
constructed with the Heatmapper tool [39]. The correlation between the expression of
different phenotypes by the same strain was assessed using the Spearman’s correlation, in
the GraphPad Prism 9.5 software.

3. Results
3.1. Cell Surface Properties

In this set of experiments, three cell surface characteristics of the clinical isolates
comprising the S. brasiliensis were evaluated: CSH, Zeta potential (ζ), and conductance.
The partition of fungal cells in a water–octane solution revealed a strain-specific pattern
of CSH in our collection sample. In this context, among the 24 clinical isolates studied, all
exhibited low CSH (Figure 1A). In addition, the median CSH values of grouped strains
according to their host of isolation did not present significant differences (Figure 1A).
Regarding the ζ, all isolates exhibited electronegative charge, with values ranging from
−37.8 to −3.8 mV (Figure 1B), with no statistically significant differences observed among
cat- and human-derived isolates (p-value >0.05, Tukey’s multiple comparisons test). The
conductance of S. brasiliensis ranged from 1094 to 8182 µS (Figure 1C). Only case 4 did
not show a significant difference between the analyzed strains, all the other 11 cases had
<0.0001 difference between the strains (Tukey’s multiple comparisons test).
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Figure 1. Cell surface properties of cat- and human-derived cases of S. brasiliensis. The CSH was
evaluated by the two-phase partition (water-octane) method. Zeta potential and conductance was
evaluated using a Zeta potential analyzer. CSH (A), Zeta potential (B), and conductance (C). Each
dot represents the mean value of three independent experiments performed in technical triplicates.
Dot colors and numbers after dots represent the different familial outbreaks. Black lines represent the
median value of each group of strains.

3.2. Biofilm Properties

In this set of experiments, three distinct biofilm parameters were analyzed: biomass via
the incorporation of crystal violet dye (Figure 2A), extracellular matrix via the absorption
of safranin (Figure 2B), and metabolic activity via the reduction of XTT (Figure 2C). All
samples produced moderate biomass and did not show differences among human and
cat-derived cases. Regarding the production of extracellular matrix, only case 10 was
significantly different among human and cat strains (p-value < 0.0001). The viability of
cells forming the biofilm did not show a significant difference, except for cases 1, 8, and 10
(p-value: <0.0001, 0.0006, and <0.0001, respectively).

3.3. Lipid Body and Chitin Contents

The lipid body results showed that these structures were detected in a similar way
regarding MFI (means of 26,981.3 ± 1501.6) (Figure 3A). No difference was observed
between the lipid body measurements of the S. brasiliensis isolates studied (p-value > 0.05;
Tukey’s multiple comparisons test). Regarding chitin content, all isolates presented high
percentages of calcofluor-labeled cells (MFI overall mean of 6511.3 ± 52,509.6) (Figure 3B),
and no statistically significant differences were found among the cases (p-value > 0.05;
Tukey’s multiple comparisons test).
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Figure 2. Biofilm formation by S. brasiliensis on a polystyrene surface. Yeasts (106 cells in 100 µL)
were placed to interact with polystyrene for 7 days at 35 ◦C. Fungal biomass via incorporation of
crystal violet at 590 nm (A), extracellular matrix via staining the non-fixed biofilms with safranin at
530 nm (B), and viability (C) via the reduction of assay. The results are expressed as median (A,B)
and SD (C).
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Figure 3. Relative detection of lipid bodies (A) and chitin (B) produced by S. brasiliensis. For lipid
bodies detection, fungal cells were labeled with the fluorochromes, Nile red (A) and Uvitex 2B, and
evaluated via flow cytometry. The results were expressed as median of fluorescence intensity (MFI)
of S. brasiliensis fluorescent cells of three independent experiments.



J. Fungi 2023, 9, 701 8 of 15

3.4. Ultrastructural Analysis of the Cell Surface

All yeast from paired cases observed was similar of size and morphology. Figure 4
shows an SEM image of one of all the analyzed cases of S. brasiliensis.
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The strains studied were of varying sizes grown under the same conditions. Samples
from case 2 showed a significant difference between them (p-value <0.0001) (Figure 5).
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median of the measurements.

3.5. Comparative Analysis of Morphostructural Properties

As depicted in Figure 6, the major phenotypic features potentially related to fungal
virulence among the studied S. brasiliensis strains were Zeta potential, conductance, and
extracellular matrix. The dendrogram clustered the strains according to their global sim-
ilarity on the production of those studied factors (Figure 7). It is interesting to note that
human- and cat-derived strains from outbreaks 3 and 9 clustered together, while strains
from outbreaks 11 and 12 clustered very closely.
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Figure 6. Global expression of putative virulence-associated factors of S. brasiliensis strains from
12 familial outbreaks of sporotrichosis. The gray scale in the heatmap ranges from low (white)
to high virulence (black). Different strains are represented in the lines of the heatmap, and the
different virulence factors herein studied in the columns of the heat map. Strains were grouped in a
dendrogram reflecting the similarity between the virulence-related phenotypes of each strain. Colors
of the strain identification numbers represent the different familial outbreaks.
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Figure 7. Correlation analyses of the virulence-associated factors produced by the S. brasiliensis strains
from 12 familial outbreaks of sporotrichosis. The heat map represents the Spearman’s correlation
coefficients of the associations. Red color represents negative monotonic correlations, whereas the
blue color represents positive monotonic correlations. Probability values of statistically significant
correlations (p-value < 0.05) are displayed within the respective squares of the heat map.
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Figure 7 shows the correlation analyses of the morphostructural factors produced by
the S. brasiliensis strains. CSH was positively associated with the production of biomass
and extracellular matrix of biofilms. Moreover, these two biofilm characteristics were also
positively associated. Although not significant, there was also a weak association between
Zeta potential and cellular size (p = 0.37) and between lipid bodies and chitin (p = 0.77).

4. Discussion

S. brasiliensis is a good fungal model for One Health studies since it can be present in
the environment as well as infect humans and animals [40]. Differences between human
and animal isolates of S. brasiliensis can be attributed to specific host–pathogen interactions.
Variations in immune responses between species can impact the behavior and characteristics
of the fungus during infection [2,27]. Additionally, environmental factors in human and
animal hosts can influence fungal behavior and gene expression, resulting in distinct
morphostructural characteristics [41]. In addition, even if the isolate pairs derive from a
single outbreak of sporotrichosis involving humans and cats, there is a possibility that the
human became infected not by the cat, but from another source, environmental perhaps,
and then they would present differences in their phenotypes. It is important to note that
the primary objective of the study was not to investigate these differences, but rather to
explore previously unstudied morphostructural features of S. brasiliensis.

Sporothrix brasiliensis is the primary causative agent of zoonotic sporotrichosis in Brazil,
and its incidence is also increasing in Latin America [42]. This species is of great importance
as it causes a subcutaneous mycosis that affects both humans and animals [43]. Zoonotic
sporotrichosis, at least in our country, is mainly caused by S. brasiliensis and not by other
Sporothrix species [44]. Understanding the biology of S. brasiliensis is critical for enhancing
the diagnosis, treatment, and prevention of sporotrichosis in humans [8]. It possesses
morphostructural features that distinguish it from other Sporothrix species. Investigating
these unique characteristics allows us to gain insights into the fungus–host interactions
and the mechanisms of infection. There is a need to fill gaps in the scientific literature and
expand our understanding of this species. It is essential to note that our study specifically
focused on S. brasiliensis and its morphostructural characteristics [40].

In recent years, there has been an increase in the number of pets living with humans,
raising the concerns about pathogens that can be zoonotically transmitted [40]. In Brazil,
human sporotrichosis can be acquired from the environment or from bites or scratches of
naturally infected cats. Moreover, these animals can transmit the disease to dogs or other
cats [8]. In this study, we evaluated and compared S. brasiliensis strains from 12 familial
outbreaks of cat-to-human-transmitted sporotrichosis. It is plausible that cats infected their
owners in these outbreaks, although it is also possible that humans contracted sporotri-
chosis from an environmental source or from cats outside their households. The overall
analysis of our findings suggests that, in at least five familial outbreaks, the morphophysio-
logical characteristics of the strains obtained from both humans and cats residing in the
same dwelling were highly similar, supporting the evidence of their zoonotic transmission.

Species of the pathogenic clade of the Sporothrix genus have been used to investigate
differentiation/dimorphism, pathogenesis, the enzymology and molecular mechanisms of
wall glycoprotein assembly, the search of surface antigens, particularly adhesins, cell wall
biogenesis and regulation, and most recently the cell compensatory responses to damage
of the cell surface [45]. The Sporothrix species exhibit different levels of virulence, variable
forms of transmission and geographic distribution [46]. The sporotrichosis pathogenesis
depends on many essential steps, which begin with Sporothrix spp. interaction with host
cells and molecules [47,48]. This event can be influenced by physicochemical properties
of the fungal cell surface, such as hydrophobicity and electrical charge [47,48]. In fact,
fungi and bacteria can modify their shape and surface structure as adaptive mechanisms
for survival and dissemination in the environment or within the host [49]. The CSH is
one of the main nonspecific factors involved in the adhesion of microbial cells to different
biotic and abiotic substrates [50]. Our results showed, for the first time, differences in
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the CSH among clinical S. brasiliensis isolates studied, identifying the presence of low
CSH among them. Candida albicans [51] and Candida non-albicans species present high
CHS [29]. Zeta potential is a parameter that determines the electrophoretic mobility of a
charged particle in a liquid medium and represents the electrical layer around the cell [52].
The fungal surface electronegativity is important for attraction and initial interaction in
host cells [53]. All clinical isolates herein studied presented negative surface charge, ex-
hibiting ζ values between −37.8 and −3.8 mV. This is the first time that the cell surface
charge of S. brasiliensis is described. The cellular surface of fungal cells is generally nega-
tively charged, as previously described for C. albicans and several other Candida species,
Cryptococcus neoformans, A. fumigatus, and A. niger [29,53–56]. The negative charge observed
in S. brasiliensis yeast cells may be attributed to the presence of melanin, a component of
the fungal CW that has been shown to possess a negative charge [57]. The conductance
importance in fungi is not well understood, but it is known that for other cell types, it
interferes with the microenvironment [58].

Biofilms are highly dynamic cellular communities that play a crucial role in protecting
microorganisms from host defenses and enhancing their resistance to drugs, probably via
their extracellular matrix, which acts as a barrier that hinders penetration and diffusion
of antimicrobial substances [25]. All samples produced biofilms with moderate biomass
and high metabolic activity. The presence of an extracellular matrix, observed in all strains,
provides stability, integrity, and strength to the biofilm architecture [25]. Hydrophobicity
was directly and positively correlated with the production of biomass and extracellular
matrix. This observation can be attributed to the role of CSH as one of the primary
biophysical characteristics contributing to the adhesion of microbial cells to various biotic
and abiotic surfaces [50]. For A. fumigatus biofilm, a correlation between metabolism,
biomass, and hyphal development has previously been demonstrated [32].

The fungal CW is a dynamic structure, presenting continuous changes in composition
and structural organization as the cell grows or undergoes morphological changes [13]. A
comparison of the chemical composition and structure of S. schenckii and S. brasiliensis CW
revealed that both fungi exhibit a bilayer wall with the outermost layer containing a fibril-
lar peptidorhamnomannan component, while chitin, β-1,3-, β-1,6-glucans, and glycogen
particles are present in the innermost layer in the proximity of the plasma membrane [58].
Moreover, S. brasiliensis contains more chitin and rhamnomannan polymers [16]. The CW
composition of three S. schenckii and two S. brasiliensis strains exhibiting different levels of
virulence in a murine model of infection were compared, confirming previous results for the
species [15]. All isolates presented high percentages of calcofluor-labeled cells in our study,
but without differences between hosts. Neutral lipids, which can be stored inside lipid
bodies in Candida cells, act as energy reservoirs and participate in membrane-formation
and -maintenance [29]. For this reason, we investigated the presence of lipid bodies in
S. brasiliensis, these structures were detected in a similar way regarding both analyzed
parameters. Lipid bodies were directly correlated with chitin production. Possibly, the
increase in cell size induced by the presence of lipid bodies allows for more surface area on
the CW, thereby facilitating a greater deposition of chitin and other components.

Immune response mechanisms in infections are multiple due to the size and metabolic
diversity of the parasites [49]. Fungi can induce morphological transitions that con-
tribute to the evasion of the immune response, dissemination through the organism, and
tissue invasion [58].

Fungal giant cells are specialized structures found in certain fungi, resulting from
vegetative cell fusion or incomplete cell division. Their functions may include absorbing nu-
trients, defending against pathogens and predators, forming physical barriers, or releasing
antimicrobial compounds [59,60]. Cryptococcus neoformans is an example of a fungus that
forms giant cells, playing a role in host colonization and virulence [61,62]. The complete
understanding of these cells is still the subject of research. S. brasiliensis yeasts vary in sizes
when grown under the same conditions, demonstrating that S. brasiliensis isolates can adapt
their cell size according to the physiological needs encountered. Zeta potential was directly



J. Fungi 2023, 9, 701 12 of 15

correlated with the size, suggesting that cell size can change the contact surface of the cell
with the medium in which it is inserted, changing the surface charge, a factor important for
attraction and initial interaction [53].

In this study, we observed variations in morphostructural characteristics among
S. brasiliensis isolates, suggesting the plasticity of these strains in establishing infections in
humans and cats. Interestingly, these characteristics did not differ significantly between
different hosts, aligning with the “one health” perspective observed in other pathogenic
fungi [40]. While our main focus was not on establishing a direct correlation between
virulence and morphostructural characteristics, our study fills a significant gap in the
literature by exploring this previously unexplored aspect. This research represents the
first application of these methodologies within the genus. Our findings highlight the
importance of understanding the biology of S. brasiliensis for improving the diagnosis, treat-
ment, and prevention of zoonotic sporotrichosis. The unique morphostructural features of
S. brasiliensis provide valuable insights into its interactions with the host and the mecha-
nisms of infection. Further research is needed to expand our knowledge of this species and
its role in sporotrichosis. Overall, our study contributes to the broader understanding of
S. brasiliensis as the primary causative agent of zoonotic sporotrichosis in Brazil.
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