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A B S T R A C T   

Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopatho-
logical and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been asso-
ciated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence 
indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment 
by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis 
was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium 
HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was 
applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding 
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immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas 
dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte 
lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In 
contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The 
hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG 
sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, 
GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune 
markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune 
microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epi- 
immunotherapy could be an efficient alternative to treat OSCC.   

1. Introduction 

Oral cavity squamous cell carcinoma (OSCC) is a common tumor 
subtype that arises from the mucosal epithelium of oral cavity areas, 
including the anterior tongue, floor of the mouth, hard palate, and 
gingiva [1]. OSCC represents approximately 80–90% of all cases of oral 
cancer, accounting for more than half of head and neck squamous cell 
carcinomas (HNSC). It is estimated that the 2-year survival rate corre-
sponds to 50% for HNSC at stages III and IV. Tobacco smoking and 
alcohol consumption have been identified as major risk factors [2]. 
Approximately 2% of all oral cavity cancers are attributable to human 
papillomavirus (HPV), and it is well-known that infected individuals 
have better responses to chemotherapy alone or along with radiotherapy 
[3]. Surgical resection followed by adjuvant therapy has been the typical 
treatment strategy in oral cancers if resectable, while unresectable tu-
mors are generally submitted to palliative treatment with systemic 
therapy and/or radiotherapy [1,4]. 

Mounting evidence highlights the potential of harnessing immune 
response to treat patients with recurrent and metastatic disease and 
unresectable HNSC as the primary approach [5]. An immunosuppressive 
tumor microenvironment (TME) epigenetically modulates the gene 
expression program of immune cells and can promote tumor escape [6]. 
A meta-analysis study in HNSC showed that a high level of 
tumor-associated macrophages (TAMs) was related to a poor overall 
survival rate, primarily due to the secretion of immunosuppressive 
factors [7]. A recent study showcased the involvement of 
tumor-infiltrating immune cells during OSCC progression: cell pop-
ulations with anti-tumor roles, such as CD8 + T-lymphocytes, tended to 
diminish, while those with pro-tumorigenic activity, such as 
myeloid-derived suppressor cells (MDSCs), exhibited enrichment in 
advanced-stage compared to early-stage disease [8]. Tumors can be 
classified into immune hot or cold according to their T cell infiltration 
patterns. Hot tumors are characterized by enriched cytotoxic 
T-lymphocyte (CTL) infiltration and better response to immune check-
point inhibitors, while cold tumors are poorly infiltrated and usually fail 
to respond to checkpoint blockade [9]. Elucidating how tumors modu-
late an immunosuppressive TME is paramount to reprogramming the 
immunologic microenvironment towards an anti-tumor state and 
developing more efficient treatment strategies. 

The characterization of the OSCC microenvironment has been 
largely based on RNA sequencing (RNA-seq) data. Three recent studies 
utilized CIBERSORT and/or ESTIMATE algorithms to analyze OSCC 
gene expression profiles and determine immune cell abundance and 
immune infiltration scores, respectively [10–12]. Zhang et al. [11] 
assigned OSCC patients to high- or low-risk groups according to the 
expression levels of shelterin complex genes, and the low-risk group 
showed higher immune scores and better prognosis [11]. Zhao et al. 
[12] highlighted that a higher immune score was associated with better 
prognosis in OSCC patients [12]. The cells recruited to the TME are 
known to be epigenetically modulated by microenvironment factors, 
including cytokines, chemokines, and growth factors [13]. Such epige-
netic reprogramming includes changes in DNA methylation, histone 
modification, and chromatin structure. Previous evidence suggests that 
histone methyltransferase and DNA methyltransferase inhibitors may 

condition tumors from poor to rich T-cell infiltration [6]. Immune cell 
deconvolution of bulk DNA methylation data is a powerful tool to 
determine the proportion of different cell types in the TME [14]. This 
approach allows inferring the contribution of each cell population to the 
aberrantly methylated genes detected in bulk tissue specimens. Some of 
these differentially methylated genes promote reprogramming besides 
being epigenetically regulated. Long non-coding RNAs (lncRNAs), for 
example, can control the DNA methylation of other genes and serve as 
predictive and prognostic markers by presenting specific methylation 
patterns in cancer [15]. These transcripts spanning 200 nucleotides or 
more are not usually translated into proteins and have been implicated 
in regulating cellular processes at transcriptional, post-transcriptional, 
and epigenetic levels [16]. LncRNAs can also coordinate the expres-
sion of cytokine and other elements of immune cells [17]. In short, 
lncRNAs are promising candidate biomarkers for immune-mediated 
diseases and potential targets for cutting-edge therapeutic strategies 
[16]. 

Herein, we aimed to characterize the TME immune components from 
a cohort of OSCC, cross validating our findings with a larger cohort from 
The Cancer Genome Atlas (TCGA) HNSC project. We used an in-silico 
deconvolution approach to sort out the main immune cell populations 
infiltrating bulk OSCC specimens based on the DNA methylation anal-
ysis. Afterward, the transcriptome data from TCGA OSCC samples was 
assessed to evaluate the expression levels of genes encoding immune 
markers and immune-associated lncRNAs. This information allowed us 
to depict further the role of different immune cells in OSCC TME and to 
identify potential lncRNAs able to modulate the anti-tumor response. 
Once these lncRNAs were differentially methylated in both cohorts, our 
findings paved the way for a better understanding of how the immu-
nologic TME is regulated in OSCC and how these regulatory mechanisms 
can be subverted for therapeutic purposes. 

2. Material and methods 

2.1. Patients 

A cohort of 64 OSCC samples was retrospectively collected from 
patients who underwent surgery as the initial treatment at A.C. Camargo 
Cancer Center, São Paulo, Brazil, between 2006 and 2013. Patients with 
tumors resected with close or positive margins or metastatic lymph 
nodes with extracapsular spread underwent postoperative radiotherapy 
associated with platin-based chemotherapy. Patients with tumors at 
clinical stages III or IV or with primary tumors with vascular emboli-
zation, perineural infiltration, or metastatic lymph nodes without 
extracapsular spread underwent postoperative radiotherapy. Forty-six 
OSCC matched with normal adjacent tissue samples (discovery set) 
were evaluated by genome-wide DNA methylation analysis. Eighteen 
OSCC and eight adjacent normal tissues were included in the validation 
set. The study was approved by the institutional Ethics Committee 
(Protocol # 1876/14). All patients provided written informed consent 
before the sample collection. Clinical, histopathological, and therapeu-
tic data were obtained from the medical records, and the follow-up was 
updated in August 2022. 

The patients of the discovery set were diagnosed at the mean age of 
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56.7 ± 13.5 years, 72% were male, and the tongue was the main 
anatomic site affected by cancer (69.6%). The HPV genotyping was 
performed using the Linear Array HPV Genotyping Test (Roche Molec-
ular Diagnostics, Branchburg, NJ, USA). Most cases were smokers 
(70%), alcohol consumers (85%), and HPV negative (70%) (Table 1). 

A flowchart summarizing the study design and the analyses used to 
identify tumor-infiltrating immune cells and altered immune-associated 
lncRNAs in OSCCs is depicted in Fig. 1. 

2.2. DNA methylation data analysis 

Genome-wide DNA methylation analysis was performed using the 
Infinium Human Methylation450 BeadChip (Illumina, San Diego, CA, 
USA). DNA methylation data, described as beta values of continuous 
variables between 0 and 1, were recorded for each locus in each sample. 
The quality control parameters were followed, and probes were filtered, 
normalized, and adjusted using the R Bioconductor package Chip 
Analysis Methylation Pipeline (ChAMP) (v.2.24.0) [18,19]. Briefly, 
cross-reactive probes (≥49 bases), single nucleotide polymorphisms 
(Minor Allele Frequency >5%), gender-associated probes, low quality 
probes (p > 0.05), and low bead count (<3) in at least 5% of samples 
were removed. Data were normalized using the Beta-MIxture Quantile 
Normalization (BMIQ) method and the annotation was performed ac-
cording to the Illumina manifest (hg19) and HUGO Gene Nomenclature 
Committee [20]. The sample groups were compared, and the differen-
tially methylated probes (DMPs) were identified using the limma 
package (v.3.50.3) considering a Bonferroni-adjusted p-value < 0.05 
and a mean delta-beta (Δβ) ≥ 0.2 or ≤ − 0.2 [21]. 

2.3. Cross-validation analysis using DNA methylation and transcriptomic 
data 

A cross-study validation analysis was performed using genome-wide 
DNA methylation data of 344 OSCC samples and 34 adjacent normal 
samples from the TCGA-HNSC dataset [22]. The methylome data was 
retrieved using the UCSC Xena browser (https://xena.ucsc.edu/) [23]. 
DMPs were investigated using the same pipeline applied to analyze our 
internal dataset. 

Transcriptomic data (RNA-seq) of 292 OSCC and 19 normal samples 
from the TCGA-HNSC dataset was downloaded with the R Bioconductor 
package TCGAbiolinks (v.2.25.2) [24,25]. The RNA-seq count data 
(Spliced Transcripts Alignment to a Reference method) was annotated 
with the biomaRt package (v.2.50.3) [26]. The Ensembl IDs that did not 
match Entrez Gene, Gene Symbol, or Gene Biotype were excluded. Next, 
a variance stabilizing transformation was performed following the 
DESeq2 package pipeline (v.1.34.0) [27]. The differences in the global 
gene expression between tumor and normal samples were calculated 
with the limma package (v.3.50.3) for a panel of immune markers and 
selected lncRNAs associated with immune cell populations [21]. 

2.4. Distribution of differentially methylated probes per region 

The DMPs were classified into different groups in terms of their 
distributions relative to gene regions (TSS1500, TSS200, 5′UTR, first 
exon, gene body, 3′UTR, or intergenic region) and CpG island location 
(island, shore, shelf, or open sea) according to Infinium Human-
Methylation450 BeadChip annotation. DMPs in TSS1500, TSS200, 
5′UTR, and first exon regions were grouped into the promoter region 
category. The proportion of probes per region was calculated with the 
21,085 probes remaining after filtering, normalization, and differential 
methylation analysis. 

2.5. Reference-based deconvolution 

Our methylation matrix composed of 46 paired OSCC and normal 
samples data and the ten cell type-signature matrix derived by Chak-
ravarthy et al. were uploaded onto CIBERSORTx (https://cibersortx.stan 
ford.edu/, last accessed in July 2022) [28]. The analysis was run in 
relative mode using 1000 permutations without quantile normalization. 
Similar procedures were used to investigate DNA methylation data from 
the TCGA cohort. 

2.6. LncRNAs selection 

DMPs annotated by gene symbols using Illumina manifest file were 

Table 1 
Clinical and histopathological findings of OSCC patients included in this study.  

Characteristics Discovery set 
N = 46 (%) 

Validation set 
N = 18 (%) 

Age   
Mean ± SD 56.7 ± 13.5 60.5 ± 15.2 
Gender   
Female 13 (28.3) 3 (16.7) 
Male 33 (71.7) 15 (83.3) 
Tumor site   
Tongue 32 (69.6) 7 (38.9) 
Floor of mouth 4 (8.7) 3 (16.7) 
Palate 4 (8.7) 1 (5.6) 
Gingiva 5 (10.9) 6 (33.3) 
Buccal mucosa 1 (2.2) 1 (5.6) 
cT stage   
T1 1 (2.2) 2 (11.1) 
T2 18 (39.1) 7 (38.9) 
T3 14 (30.4) 4 (22.2) 
T4 13 (28.3) 5 (27.8) 
cN stage   
N0 19 (41.3) 10 (55.6) 
N1 8 (17.4) 3 (16.7) 
N2 18 (39.1) 5 (27.8) 
N3 1 (2.2) −

cM stage   
M0 45 (97.8) 18 (100) 
M1 1 (2.2) −

Tumor stage   
I 1 (2.2) 2 (11.1) 
II 15 (32.6) 5 (27.8) 
III 9 (19.6) 6 (33.3) 
IV 19 (41.3) 5 (27.8) 
NA 2 (4.3) −

HPV statusy

Positive 14 (30.4) −

Negative 32 (69.6) −

Tobacco Smoking   
Yes 32 (69.6) 13 (72.2) 
No 14 (30.4) 5 (27.8) 
Alcohol Consumption   
Yes 39 (84.8) 13 (72.2) 
No 7 (15.2) 5 (27.8) 
Postoperative radiotherapy   
Yes 40 (87.0) 14 (77.8) 
No 6 (13.0) 4 (22.2) 
Postoperative chemotherapy   
Yes 21 (45.7) 5 (27.8) 
No 25 (54.3) 13 (72.2) 
Vital status   
Alive 26 (56.5) 10 (55.6) 
Deceased 17 (37.0) 7 (38.9) 
NA 3 (6.5) 1 (5.6) 
Local recurrence   
Yes 9 (19.6) 2 (11.1) 
No 35 (76.1) 16 (88.9) 
NA 2 (4.3) −

Second primary tumor   
Yes 3 (6.5) 2 (11.1) 
No 43 (93.5) 16 (88.9) 
Distant metastasis   
Yes 8 (17.4) 2 (11.1) 
No 36 (78.3) 16 (88.9) 
NA 2 (4.3) −

Follow-up: median months 62.4 (IQR = 86.3) 57.8 (IQR = 46.4) 

SD: standard deviation; NA: information not available; IQR: interquartile range. 
y All the positive cases were infected by HPV 16. 
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investigated to select those related to protein-coding genes and lncRNAs 
using biomaRt (v.2.50.3) and org.Hs.eg.db (v.3.14.0) packages, and 
long non-coding RNA Knowledgebase (lncRNAKB) (http://www.lncr 
nakb.org/, last accessed 16 Aug 2022) [26,29]. All probes ambigu-
ously annotated were checked in the literature. Unsupervised k-means 
clustering was conducted to analyze the methylation patterns of 
protein-coding genes (N = 13,239) and lncRNAs (N = 263). The heat-
maps were plotted using the ComplexHeatmap package (v.2.10.0) [30]. 

The 263 differentially methylated lncRNAs from our internal dataset 
were then compared to a list of 72 immune-related lncRNAs reported by 
Khan et al. [31]. A Pearson correlation analysis of RNA-seq and 
methylation data (R values with p < 0.05) for TCGA OSCC samples 
(N = 254) was performed. All probes for each immune-related lncRNA 
found in both datasets showed a significant difference in methylation 
between normal and cancer tissue samples (p < 0.05). Eight probes 
showing concordance with our internal dataset were observed for four 
lncRNAs (HOTAIR, MEG3, MIR155HG, and WFDC21P). The lncRNAs 
WFDC21P (also known as lnc-DC) (cg12320164), MEG3 (cg08294662, 
cg09285543), and MIR155HG (cg13309012) were selected for further 
investigation (bisulfite-pyrosequencing). Although the dendritic cell 
(DC) population is not covered in our deconvolution analysis, the lnc-DC 
was selected due to the role of these cells in the cellular antitumor 
response. 

2.7. Site-specific DNA methylation evaluated by bisulfite pyrosequencing 

Bisulfite (BS)-pyrosequencing was used to assess the DNA methyl-
ation levels of four selected CpGs mapped to three lncRNAs in 49 OSCC 
(31 from the discovery set and 18 from the validation set) and 34 
adjacent normal samples. Primer sequences and polymerase chain re-
action (PCR) conditions used in the BS-pyrosequencing for each CpG site 
are described in Supplementary Table 1. After bisulfite conversion, 
30 ng of DNA were amplified using the PyroMark PCR kit (Qiagen, 
Redwood, CA, USA), according to the manufacturer’s protocol. The PCR 
products were sequenced on the PyroMark Q24 system (Qiagen). 

2.8. Expression profile of immune markers in the TCGA-OSCC dataset 

We selected 26 immune markers whose expression levels could 
impact the function of the immune cell populations. This selection was 
based on the literature data and the relevance of these cell populations 
(enriched or diminished in OSCC compared to normal samples) in the 
deconvolution analysis. RNA-seq data of 292 TCGA-OSCC and 19 
normal samples were analyzed to evaluate the differences in the gene 
expression levels of these 26 immune cell markers: CD4, CD8A, CD8B, 
protein tyrosine phosphatase receptor type C (PTPRC), interferon 
gamma (IFNG), granzyme A (GZMA), granzyme B (GZMB), perforin 1 
(PRF1), interleukin 2 receptor subunit alpha (IL2RA), forkhead box P3 
(FOXP3), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxy-
genase (TDO2), interleukins 6 (IL6), 10 (IL10), and 1 beta (IL1B), tumor 
necrosis factor (TNF), transforming growth factor beta 1 (TGFB1), pro-
grammed cell death 1 (PDCD1), CD274 (or PD-L1 - programmed death- 
ligand 1), arginase 1 (ARG1), prostaglandin-endoperoxide synthase 2 
(PTGS2), killer cell lectin like receptor K1 (KLRK1), nitric oxide synthase 
2 (NOS2), signal transducer and activator of transcription 3 (STAT3), 

and hypoxia inducible factor 1 subunit alpha (HIF1A). 

2.9. Statistical analysis 

Statistical analyses and graphical representations were performed 
using Prism 9.0 (GraphPad Software Inc., San Diego, CA, USA) and R 
software v.4.2.1 (https://www.r-project.org/). Non-parametric t 
(Mann-Whitney) test was used for all analyses comparing normal versus 
tumor samples or immune hot versus immune cold groups. The corre-
lation between the cell fractions estimated by CIBERSORTx and clini-
copathological information was evaluated in the discovery set using 
simple logistic regression. Log-rank (Mantel–Cox) test was used for 
survival analysis. The score cutoffs for survival-associated immune cell 
populations were calculated with the easyROC web tool (v.1.3.1) [32]. 
The null hypothesis was rejected when the two-tailed p-value was 
< 0.05. 

3. Results 

3.1. DNA methylation profile 

The DNA methylation profile of 46 OSCC samples of the internal 
dataset was compared to normal samples and the data generated is 
available in the Gene Expression Omnibus (GEO) database (GSE234379, 
https://www.ncbi.nlm.nih.gov/geo/). 

We found 21,085 DMPs (13,342 hypo- and 7743 hypermethylated 
probes), most of them (63%) hypomethylated. Unsupervised clustering 
analysis using DMPs mapped to lncRNAs and protein-coding genes 
showed two groups comprising normal and tumor samples, except for 
one normal sample (Fig. 2A and B). In parallel, the TCGA-OSCC dataset 
analysis resulted in 39,245 DMPs (19,932 hypo- and 19,313 hyper-
methylated probes). A total of 16,500 DMPs (37.6%) from our dataset 
presented methylation patterns similar to those from TCGA-OSCC 
samples, including 9816 hypomethylated and 6684 hypermethylated 
CpGs (Fig. 2C). 

An enrichment of hypermethylated CpGs was detected in gene pro-
moters, whereas hypomethylated CpGs were mainly located in inter-
genic regions (Fig. 2D). Hypermethylated CpGs were frequently 
detected in CpG islands (47.72%), while hypomethylated were pre-
dominantly located in open sea regions (70.20%) (Fig. 2E). 

3.2. DNA methylation-based deconvolution reveals distinct immune cell 
populations in OSCC 

DNA methylation data from internal and TCGA datasets were 
explored using digital cytometry to characterize the immune cell pop-
ulations in OSCC (Fig. 3). Tumor samples from the internal dataset 
presented a significantly increased proportion of monocyte lineage cells 
(monocytes, macrophages, MDSCs), natural killer (NK) cells, CTLs, 
neutrophils, and regulatory T-lymphocytes (Tregs). A significantly 
decreased proportion of B-lymphocytes, effector T-lymphocytes, eosin-
ophils, and fibroblasts was detected in tumor samples compared to 
normal specimens. Similarly, the scores derived from the TCGA cases 
revealed that the monocyte lineage cells, NK cells, and neutrophils were 
significantly enhanced in tumors, while the composition of B- 

Fig. 1. Flowchart describing the methodology used to identify tumor-infiltrating immune cells and altered immune-associated lncRNAs in OSCC. A) Bulk DNA 
methylation data obtained from 46 matched OSCC and normal samples (discovery set) and the TCGA dataset (344 OSCC and 34 normal samples) was analyzed by 
two different approaches. In silico deconvolution was applied to infer the immune cell composition of the tumor microenvironment using ten cell types-reference 
derived from Chakravarthy et al. [28]. The second approach used differential methylation analysis that revealed DMPs common to both datasets. DMPs mapped 
to lncRNAs implicated in immune cell functions, as reported by Khan et al. [31], were selected for further analysis. B) The expression levels of genes encoding 
immune markers (26 genes) and differentially methylated lncRNAs were investigated using RNA-seq data of 292 OSCC and 19 normal samples from the TCGA 
dataset. Three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) were differentially expressed in the OSCCs samples from TCGA. The methylation 
status of these lncRNAs was validated at individual CpG sites by BS-pyrosequencing in 49 OSCC and 39 normal samples. These analyses allowed us to depict the 
immune cell infiltration in OSCC and identify altered lncRNAs that potentially modulate the anti-tumor response. OSCC: oral squamous cell carcinoma; N: normal 
samples; TCGA: The Cancer Genome Atlas; RNA-seq: RNA sequencing; lncRNAs: long non-coding RNAs; DMPs: differentially methylated probes; BS: bisulfite. 
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lymphocytes and fibroblasts was also distinct in normal samples. Inter-
estingly, although not significant, the TCGA-OSCC samples presented a 
trend to decreased proportions of effector T-lymphocytes and increased 
Tregs infiltration, as observed in the internal dataset (Fig. 3). 

Among the tumor samples from the internal cohort, we derived two 
immune clusters by performing unsupervised hierarchical clustering on 
the cell fractions estimated by CIBERSORTx. The two clusters showed 
distinct infiltrating cell types: B-lymphocytes, NK cells, CTLs, eosino-
phils, and neutrophils (Fig. 4A and B). Eight OSCC cases displaying 
significantly higher B-lymphocytes, CTLs, and eosinophils proportion 
and higher average scores (the average score of nine cell types calcu-
lated for each sample) were classified as immune hot tumors. However, 
no significant survival benefits for patients included in any of the clus-
ters were observed (Fig. 4C). Once we detected an increased proportion 
of the abovementioned cell types, we also investigated their association 

with overall survival. The calculated score cutoffs for B-lymphocytes, 
CTLs, and eosinophils were 0.06548577, 0.1211135, and zero, respec-
tively. Values above these cutoffs were defined as high. We found a 
marginal significance in patients with higher B-lymphocyte scores 
(N = 17) and longer overall survival (p = 0.0584; log-rank test) 
(Fig. 4C). 

3.3. Cellular infiltration patterns according to clinical information 

The infiltration patterns of 10 cell populations of our OSCC cohort 
showed no statistical difference when comparing HPV-positive and 
-negative tumors (Supplementary Figure 1). A similar comparison with 
the TCGA cohort revealed that HPV-positive tumors exhibited increased 
proportions of neutrophils and fibroblasts. The HPV-negative specimens 
presented enhanced monocyte lineage cells infiltration and a trend to 

Fig. 2. Differentially methylated probes (DMPs) in oral squamous cell carcinomas (OSCC). The heatmaps depict the DNA methylation profile of differentially 
methylated (A) lncRNAs and (B) protein-coding genes in samples from the internal cohort considering Bonferroni-adjusted p-value < 0.05 and Δβ ≥ 0.2 or ≤ − 0.2. 
The clustering analysis was performed using the k-means algorithm (K = 2). C) Comparison between DMPs identified in the internal and TCGA-OSCC datasets and 
proportion of hypo- and hypermethylated probes detected in each project. The histograms show the relative frequency distribution of DMPs according to (D) gene 
region and (E) CpG island (CGI) region in our internal OSCC samples. Illumina’s field guide to methylation methods defines CGIs as regions with length > 500 bp, GC 
content > 55% and expected/observed CpG ratio of > 0.65, CpG shores as 0–2 kb from islands and CpG shelves as 2–4 kb from islands. Open sea consists of regions 
not located in any regions relating to CGIs. The hypermethylated DMPs are represented in pink, and the hypomethylated DMPs in green. 
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increased infiltration of Tregs. 
The immune cell infiltration pattern and other clinicopathological 

variables of our dataset were compared using association analysis 
(Fig. 4, Supplementary Figure 2). Higher levels of NK cells were asso-
ciated with lymph node metastasis, while reduced infiltration of fibro-
blasts and monocyte lineage cells was associated with alcohol 
consumption and young-OSCC onset (≤ 49 years), respectively. Addi-
tionally, considering the immune hot and cold clusters we derived in the 

previous subsection, higher B-cells levels and lower levels of neutrophils 
and NK cells were associated with the immune hot pattern (Fig. 5). 

3.4. Differentially methylated and expressed immune cell-associated 
lncRNAs 

To better characterize the immune infiltration in OSCC, we further 
investigated the DNA methylation status and expression of lncRNAs with 

Fig. 3. Immune profile characterization of oral squamous cell carcinoma (OSCC) samples using the CIBERSORTx deconvolution analysis. Boxplots of estimated 
fractions of nine cell types for OSCC and normal samples from the internal and external cohorts by sample status. The statistical difference was determined with the 
Mann–Whitney test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. The boxplots’ edges and middle lines represent the lower and upper quartiles and the 
medians, respectively. The whiskers extend from the minimum to the maximum value. 
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experimentally demonstrated activities in immune cells. We analyzed 
the DNA methylation status of 72 immune cell-associated lncRNAs re-
ported by Khan et al. [31] in 344 OSCC and 34 adjacent normal samples 
of the TCGA dataset. We compared the differentially methylated 
lncRNAs detected in the TCGA with our cohort and found six lncRNAs 
altered in both cohorts; four of them were also differentially expressed in 
the TCGA dataset (HOX transcription antisense RNA - HOTAIR, H19 
imprinted maternally expressed transcript - H19, maternally expressed 3 
- MEG3, and MIR155 host gene - MIR155HG) (Fig. 6A and B, Supple-
mentary Figure 3). 

Two lncRNAs (MEG3 and MIR155HG; DMPs mapped in gene bodies) 
showing hypomethylation in tumor samples (internal and TCGA data-
sets) and presenting differential expression in the TCGA cohort (Fig. 6A 
and B) were evaluated by bisulfite (BS)-pyrosequencing. Pearson cor-
relation analysis between the DNA methylation and gene expression 
levels was significantly positive for all the probes mapped to HOTAIR 
and MEG3. In contrast, the DMP mapped to the MIR155HG exhibited a 
negative correlation (Supplementary Figure 4). One DMP (cg12320164) 

located in the promoter region of the WAP four-disulfide core domain 
21, pseudogene (WFDC21P, also known as lnc-DC), expressed explicitly 
in human DCs, was also selected for validation. WFDC21P was hypo-
methylated and downregulated in TCGA-OSCC samples. These findings 
are detailed in Fig. 6C. 

3.5. DNA methylation status of immune-related lncRNAs in OSCC 
samples 

BS-pyrosequencing was performed in two DMPs (cg08294662 and 
cg09285543) associated with MEG3, one (cg13309012) with 
MIR155HG, and one (cg12320164) with WFDC21P to confirm their DNA 
methylation status. We used adjacent normal and OSCC specimens from 
the validation set (18 cases) and 31 cases from the discovery set. By 
comparing the CpG methylation levels between tumor and normal 
samples, we observed that all three lncRNAs were hypomethylated in 
OSCC, as previously detected with the differential DNA methylation 
analysis performed in the internal and TCGA datasets (Fig. 6A-C). 

Fig. 4. Classification of oral squamous cell carcinoma (OSCC) samples as immune hot or cold. A) Heatmap representative of immune cells and fibroblast fractions of 
OSCC samples from the internal dataset using CIBERSORTx analysis. Rows and columns were clustered using the Euclidean distance of the estimated fraction values. 
The average score was calculated for each sample considering the estimated fraction of nine cell types. B) Boxplots of cell types based on the two clusters (referred to 
as hot and cold) derived from OSCC samples (Fig. 3A). The estimated fraction of each cell type in hot versus cold tumors was represented only for significant 
differences (p < 0.05, Mann-Whitney or unpaired t-test). * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. C) Kaplan–Meier curves showing the impact of 
immune hot and cold clusters, B-lymphocytes, cytotoxic T-lymphocytes (CTLs), and eosinophils on survival of OSCC patients (p-values from Log-rank Test). The score 
cutoffs for survival analysis were determined with the easyROC web tool. The boxplots’ edges and middle lines represent the lower and upper quartiles and the 
medians, respectively. The whiskers extend from the minimum to the maximum value. 
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3.6. mRNA expression of immune markers 

The gene expression levels of 26 immune cell markers in 292 OSCC 
and 19 normal samples from TCGA revealed that tumor specimens dis-
played significant upregulation of IFNG, GZMB, IL2RA, FOXP3, IDO1, 
TDO2, IL10, TGFB1, and HIF1A, and downregulation of ARG1 (Fig. 7). 
Albeit the difference was not statistically significant for the other 
markers, tumor samples presented trends to increased levels of CD4, 
CD274, GZMA, PRF1, PTGS2, IL1B, and KLRK1, and decreased levels of 
CD8A, CD8B, PDCD1, TNF, IL6, and STAT3. 

Supplementary Figure 5 summarizes the main findings of the 
deconvolution using DNA methylation of our cohort of OSCC. 

4. Discussion 

Previous epigenetic studies in OSCC have demonstrated that altered 
DNA methylation is linked with cancer development and progression 
[33,34]. We found a distinct profile of DMPs associated with lncRNAs 
and protein-coding genes in tumor samples compared to paired normal 
adjacent oral mucosa, except for one normal sample. As expected for 
malignant cells, we detected an enrichment of hypermethylated DMPs in 
CpG islands and promoter regions [35]. Comparison between the global 
methylation profile of the internal discovery (46 OSCC) and TCGA (344 
OSCC) cohorts revealed 37.6% of overlapping DMPs. A plausible 
explanation is that, unlike the internal cohort, OSCC and normal sam-
ples from the TCGA cohort are not paired. This is a limiting feature to the 
differential methylation analysis due to uncontrolled variables such as 

age, genetic background, and exposure to risk factors of different in-
dividuals. However, the DMPs common to both datasets showed the 
same methylation pattern (hyper- or hypomethylation), reinforcing 
their relevance to the disease. 

To estimate the extent of the immune infiltration in OSCC samples, 
we determined the relative abundance of eight immune cell populations 
using the methylome data from internal and TCGA cohorts with Meth-
ylCIBERSORT [28]. We also assessed the correlation between the im-
mune cell infiltration pattern and clinicopathological variables in OSCC 
samples from the discovery set. We detected increased tumor infiltrating 
CTLs in the internal cohort. When comparing tumor and normal samples 
from TCGA, there was no significant difference in CD8A and CD8B 
expression levels, genes encoding cell surface glycoproteins commonly 
found on these lymphocytes. The CTL effector genes IFNG and GZMB 
presented an increased expression. IFNγ is a cytokine that participates in 
multiple processes of antitumor immunity, including inhibition of tumor 
cells proliferation, activation of myeloid cells, antigen presentation, and 
maturation of CTLs, while granzyme B is a potent protease that rapidly 
induces target cell apoptosis [36,37]. IFNγ signaling in CD8 + T cells 
leads to the upregulation of granzyme [36]. NK cells can also produce 
these effector molecules and their infiltration was increased in OSCC 
from both internal and TCGA cohorts. Moreover, NK cells were modestly 
associated with lymph node metastasis in our OSCC samples 
(p = 0.0437). The reduced size of the internal cohort was a limitation in 
finding a strong association between tumor-infiltrating immune cells 
and clinical data. IL2RA is expressed in activated NK cells and promotes 
their affinity for IL-2 (interleukin 2), driving T cell proliferation and the 

Fig. 5. Correlation analysis among estimated cell fractions and clinical variables of 46 oral squamous cell carcinoma (OSCC) patients from the discovery set. The 
forest plots show unadjusted Odds Ratios (with their 95% confidence intervals) of the absolute percentage of five cell populations compared to each clinicopath-
ological variable (presence versus absence). Only cell populations showing significant differences between tumor and normal samples in internal and TCGA datasets 
were considered for this analysis. * p ≤ 0.05. 
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production of cytolytic molecules, such as granzyme B [38]. The IL2RA 
expression was enhanced in TCGA-OSCC cohort. 

A set of tumor samples showed increased CTLs and B-lymphocyte 
proportions, as well as a higher average score of immune cells and fi-
broblasts, i.e., immune hot phenotype. Chakravarthy et al., who devel-
oped MethylCIBERSORT, used this deconvolution pipeline for the first 
time to evaluate the tumor composition of TCGA pan-cancer, including 
HNSC samples [28]. Consistently with our results, they found that HNSC 
hot and cold tumors presented significant differences in the distribution 
of CTLs, B-cells, NK cells, and neutrophils. Herein, we used the publicly 
available methylation signature generated by these authors focusing 
exclusively on OSCC cases. CTLs possess antitumoral activity through 
recognition and lysis of tumor cells; therefore, they have antitumoral 
activity and are related to a favorable prognosis [7]. The high preva-
lence of CTLs has been correlated with improved survival in OSCC [39, 
40]. In our internal cohort, higher CTL scores and immune hot context 
did not provide statistically significant survival benefits possibly due the 

small sample size evaluated. However, patients with higher B-lympho-
cyte scores tended to present better survival. Previously, Lao et al. [41] 
reported a positive correlation between the density of CD19 + stro-
ma-infiltrating B cells and overall survival in tongue squamous cell 
carcinomas [41]. B-lymphocytes, which can secrete cytokines such as 
IL-2 and act as antigen presenting cells, are key components of the TME, 
and most subtypes of tumor-infiltrating B cells, except for regulatory B 
cells, have been associated with favorable prognoses for different cancer 
types, including HNSC [42,43]. 

We also found an enrichment of Tregs in our OSCC samples. Tregs 
have immunosuppressive effects and can inhibit the CTLs functions [7]. 
The expression levels of FOXP3, which is a marker of Tregs and de-
termines their fate, were enhanced among the TCGA-OSCC samples. 
This finding agrees with previous results from whole blood of HNSC 
patients showing augmented FOXP3 expression [44]. Recent studies 
reported that besides modulating the differentiation and function of 
Tregs, FOXP3 is expressed in various cancer types [45]. Additionally, 

Fig. 6. DNA methylation and expression profile of immune-related lncRNAs in oral squamous cell carcinomas (OSCC). The boxplots on the left panel show the DNA 
methylation levels of differentially methylated probes (DMPs) mapped to lncRNAs MEG3 (A), MIR155HG (B), and WFDC21P (also known as lnc-DC) (C) validated by 
BS-pyrosequencing (discovery and validation sets). The boxplots on the middle and right panels represent the DNA methylation (beta-value) and expression (log2) 
levels of the same lncRNAs in OSCC compared to normal samples retrieved from TCGA cohort. The statistical difference was determined with the Mann–Whitney test. 
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. The boxplots’ edges and middle lines represent the lower and upper quartiles and the medians, respectively. 
The whiskers extend from the minimum to the maximum value. 
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cancer cells can express two other factors with immunosuppressive ef-
fects, IDO1 and TDO2, which are enzymes involved in the catabolism of 
amino acid tryptophan (Trp) [46]. These molecules were shown to be 
upregulated in OSCC samples. IDO1 can either be expressed constitu-
tively or induced by tumor-infiltrating immune cells that secrete in-
flammatory cytokines, such as IFNγ [46]. Through Trp depletion and 
generation of Trp catabolites, IDO1 induces Tregs and MDSCs and sup-
presses the proliferation and function of effector T and NK cells [46,47]. 
TDO2 has been shown to favor a pro-tumoral environment through 
similar mechanisms. Additionally, different cell types, including certain 
myeloid-lineage cells such as DCs, express IDO1 in response to IFNγ 
stimulation [48]. 

We observed augmented tumor infiltrating CD14 + immune cells 
(internal and TCGA cohorts). CD14 antigen is highly expressed in 
monocytes, macrophages, and other myeloid cells. Activating CD14 in 
tumor infiltrating immune cells can enhance cancer-related inflamma-
tion and immunosurveillance or promote an immunosuppressive envi-
ronment that facilitates tumor progression [49]. MDSCs suppress NK cell 
activity, undermining the efficacy of NK cell-based immunotherapy in 
HNSC. TAMs, frequently detected in HNSC, are recruited into tumors 
with a hypoxic environment. A higher rate of infiltrated neutrophils was 
found in tumor samples from both cohorts. Myeloid cells, including 
macrophages, MDSCs, DCs, and neutrophils, promote an immunosup-
pressive TME by secreting multiple factors, such as IL-10, TGFβ1, PD-L1, 

ARG1 [50]. The IL10 and TGFB1 genes were upregulated in TCGA-OSCC 
samples, CD274 (PD-L1) was not differentially expressed, and ARG1 was 
downregulated. IL-10 inhibits antigen presentation by 
antigen-presenting cells, such as macrophages and DCs, regulating the 
differentiation of Tregs and leading to the resistance to cytotoxic T-cell 
action upon tumor cells [51]. Hypoxic stress induces immunosuppres-
sive molecules like IL-10 and TGFβ1. This might be the case with the 
TCGA-OSCC samples, in which we verified the upregulation of HIF1A, a 
subunit of the transcription factor HIF-1. 

On top of favoring OSCC tumorigenesis by dysregulating the 
expression of oncogenes and tumor suppressor genes, aberrant DNA 
methylation affects immune response-related genes, which have been 
associated with OSCC prognosis and response to therapy [52–54]. Basu 
and colleagues reported a set of hypomethylated and overexpressed 
genes implicated in immune response and associated with better sur-
vival in OSCC [55]. Herein, we detected the differential methylation of 
MALAT1 (metastasis associated lung adenocarcinoma transcript 1), 
HOTAIR, H19, MIR155HG, MEG3, and HULC, which were previously 
associated with immune cells functions [31]. 

A cross-validation analysis comparing the results of the internal 
cohort with TCGA-OSCC DNA methylation and RNA-seq data was per-
formed. All the lncRNAs, except MALAT1 and HULC were differentially 
expressed in TCGA-OSCC. The remaining four lncRNAs (HOTAIR, H19, 
MIR155HG, and MEG3) exhibited the same trend in the methylation 

Fig. 7. Expression profile of immune cell markers in oral squamous cell carcinomas (OSCC) from TCGA. A-Z) Boxplots representative of expression levels (log2) of 
genes encoding immune markers in OSCC compared to normal samples from the TCGA cohort. The statistical difference was determined with the Mann–Whitney test. 
ns: not significant, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. The boxplots’ edges and middle lines represent the lower and upper quartiles and the 
medians, respectively. The whiskers extend from the minimum to the maximum value. 
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status of tumor samples in both cohorts. Three selected lncRNAs 
(MIR155HG, MEG3, and WFDC21P) were evaluated by BS- 
pyrosequencing, and the hypomethylation was confirmed in the inter-
nal and external OSCC cohorts. Earlier evidence showed that MEG3 
expression was modulated by DNA methylation in OSCC [56]. MEG3 
sponges the microRNA-17 and indirectly upregulates the transcription 
factor retinoid acid receptor-related orphan receptor gamma t (RORγt), 
encoded by RAR related orphan receptor C (RORC) [57]. RORγt regu-
lates the differentiation of CD4 + T cells into T helper 17 suggesting that 
MEG3 is a promising immunological target [58]. Previous evidence links 
MEG3 to the regulation of TGF-β pathway genes by interacting with 
EZH2 (histone methyltransferase enhancer of zeste 2 polycomb repres-
sive complex 2 subunit), the catalytic subunit of polycomb repressive 
complex 2 [59]. Through this interaction, MEG3 induces the deposition 
of repressive histone marks and inhibits the transcription of TGFBR1 
(transforming growth factor beta receptor 1), TGFB2 (transforming 
growth factor beta 2), and SMAD2 (SMAD family member 2) [60]. 

The second lncRNA confirmed as altered in our dataset, MIR155HG, 
showed a negative correlation between DNA methylation and expression 
levels in gliomas [61]. The authors showed an association between 
MIR155HG expression and immunosuppressive factors secreted by 
TAMs, MDSCs, and TANs (tumor-associated neutrophils), stromal cell 
infiltration, inflammatory activities, and immune checkpoints (such as 
TIM-3, PD-1, B7-H3, PD-L1, CTLA4, and PD-L2). MALAT1, HOTAIR, 
H19, and MIR155HG have been related to several 
macrophage-associated functions. MALAT1 and HULC participate in 
Treg differentiation, and MEG3 contributes to the modulation of Treg/T 
helper 17 balance [57,62–67]. Considering that lncRNAs are involved in 
several immune functions and their regulatory interaction with 
protein-coding genes are involved in OSCC hallmarks, including im-
mune evasion, it seems reasonable to suppose that the aberrantly 
methylated lncRNAs that we detected herein contribute to shaping the 
TME immune component in OSCC and are potential immunotherapeutic 
targets. 

Tumor-associated myeloid cells, namely TAMs and TANs, can play 
tumor-promoting and anti-tumor roles depending on their state of 
functional activation [68]. Macrophages are generally classified into M1 
and M2 subtypes, according to these functions. Certain molecular 
stimuli can shift TAM polarization from an M1-like, anti-tumor state to 
an M2-like, immunosuppressive state. TAN activity can also switch be-
tween N1 and N2, anti-tumor and protumor states, respectively. 
Although the methylation signature that we used for in silico deconvo-
lution does not allow us to distinguish macrophages from other 
monocyte-lineage cells or between their activation states, TAMs are 
recognized as the major immune cell population in OSCC [69]. Inter-
estingly, previous studies described the lncRNAs MIR155HG and 
HOTAIR associated with macrophage polarization and inflammatory 
response regulation [62,65]. Both lncRNAs were upregulated and 
correlated with DNA methylation in OSCC samples. MIR155HG was 
previously implicated in macrophage polarization by regulating TNF, 
IL1B, IL10, and IL12 (interleukin 12) [65]. HOTAIR is required for 
pathogen-induced activation of cytokine expression and 
pro-inflammatory response in macrophages [62]. Thus, the overex-
pressed lncRNAs might be active players in regulating the immune 
response in the complex OSCC TME herein described. MIR155HG and 
HOTAIR seem to harness TAMs infiltration to promote anti-tumor re-
sponses. On the other hand, H19, which is involved in macrophage 
activation, was also found to be hypermethylated and downregulated in 
OSCC samples; therefore, could serve as a target to enhance M1 polar-
ization [64]. 

Epigenetic and tumor immune microenvironment abnormalities 
might concur in promoting OSCC heterogeneity at molecular and clin-
ical levels and be explored for epi-immunotherapy. Growing evidence 
shows that epigenetic drugs can be synergistically combined with im-
mune therapy to improve response to cancer treatment [70]. Our study 
revealed immune factors (Supplementary Figure 5) with potential 

relevance in OSCC treatment. 

5. Conclusions 

Using DNA methylation data, we demonstrated that the immune 
component in OSCC is highly intricate and complex. The dominant cell 
infiltrates show a functional plasticity with transitions between anti- 
tumor and immunosuppressive states in response to multiple molecu-
lar stimuli. We detected differentially methylated and expressed 
lncRNAs that could tilt this delicate balance in favor of anti-tumor 
response. This set of lncRNAs was previously associated with diverse 
functions in macrophages, Tregs, and DCs. The aberrant DNA methyl-
ation in OSCC contributed to the tumor immune microenvironment 
characterization and might be harnessed to fine-tune TME regulatory 
factors, such as immune-related lncRNAs, for prognostic and therapeutic 
purposes. 
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de São Paulo - FAPESP 2008/57887–9 and Conselho Nacional de 
Desenvolvimento Científico e Tecnológico - CNPq 573589/08–9). NC 
was granted with scholarship from the Brazilian Federal Agency for 
Support and Evaluation of Graduate Education (CAPES), within the 
scope of the Program CAPES-PrInt (process number 88887.310463/ 
2018-00, mobility number 88887.570391/2020-00). 

CRediT authorship contribution statement 

Naiade Calanca: Methodology, Validation, Formal analysis, Writing 
– original draft, Writing – review & editing. Ana Lucia Noronha 
Francisco: Conceptualization, Investigation, Methodology, Writing – 
review & editing. Daniela Bizinelli: Formal analysis, Validation, 
Writing – review & editing. Hellen Kuasne: Methodology, Formal 
analysis, Writing – review & editing. Mateus Camargo Barros Filho: 
Formal analysis, Writing – review & editing. Bianca Campos Tron-
carelli Flores: Validation, Writing – review & editing. Clóvis Antonio 
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