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Abstract

The SARS‐CoV‐2 omicron variant (B.1.1.529) was first identified in Botswana and

South Africa, and its emergence has been associated with a steep increase in the

number of SARS‐CoV‐2 infections. The omicron variant has subsequently spread very
rapidly across theworld, resulting in theWorldHealthOrganization classification as a

variant of concernon26November2021. Since its emergence, great efforts havebeen

madeby research groups around theworld that have rapidly responded to fill our gaps

in knowledge for this novel variant. A growing body of data has demonstrated that the

omicron variant shows high transmissibility, robust binding to human angiotensin‐
converting enzyme 2 receptor, attenuated viral replication, and causes less severe

disease in COVID‐19 patients. Further, the variant has high environmental stability,
high resistance against most therapeutic antibodies, and partial escape neutralisation

by antibodies from convalescent patients or vaccinated individuals. With the

pandemic ongoing, there is a need for the distillation of literature from primary

research into an accessible format for the community. In this review, we summarise

the key discoveries related to the SARS‐CoV‐2 omicron variant, highlighting the gaps
in knowledge that guide the field's ongoing and future work.
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1 | INTRODUCTION

Over the last 2 decades, three highly pathogenic coronaviruses

have emerged in the human population. The severe acute respira-

tory coronavirus 2 (SARS‐CoV‐2), the etiological agent of the

coronavirus disease 2019 (COVID‐19), has been the latest coro-

navirus known to emerge from animal reservoirs and cause severe

respiratory disease in humans, and was preceded by the severe

acute respiratory syndrome coronavirus (SARS‐CoV) and Middle

East respiratory syndrome coronavirus (MERS‐CoV) in 2003 and

2012, respectively.1–4 Since its emergence in the human population,

SARS‐CoV‐2 has had a catastrophic and unprecedented impact on

public health services and the global economy. The rapidly

increasing numbers of COVID‐19 prompted World Health Organi-

zation (WHO) to declare a pandemic on 11 March 20205 and

mobilised public health authorities and scientists around the world

to fill the knowledge gaps in clinical practice and basic biology for

this unknown virus.

Abbreviations: ACE2, angiotensin‐converting enzyme 2; CDC, centres for disease control and prevention; COVID‐19, coronavirus disease 2019; ED, emergency departments; EM, electron

microscopy; FDA, food and drug administration; MERS‐CoV, Middle East respiratory coronavirus; mAbs, monoclonal antibodies; NTD, N‐terminal domain; NT50, 50% neutralisation titer;

RBD, receptor‐binding domain; S, Spike; SARS‐CoV, severe acute respiratory coronavirus; SARS‐CoV‐2, severe acute respiratory coronavirus‐2; SGTF, spike gene target failure; TMPRSS2,

transmembrane serine protease 2; VSV, vesicular stomatitis virus; VOCs, variants of concern; WHO, world health organization.
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As the COVID‐19 pandemic progressed, SARS‐CoV‐2 has been

characterised by the repeated identification of different variants over

time and geography: alpha (B.1.1.7) in the United Kingdom, beta

(B.1.351) in South Africa, gamma (P.1) in Brazil, and delta in India

(B.1.617.2),6–12 which were later designated as variants of concern

(VOCs) by the WHO and ushered in a new stage of the pandemic.

These emerging variants are the result of natural selection of SARS‐
CoV‐2 during serial passage in the host and contain multiple muta-

tions in the receptor‐binding motif, a small 25 amino acid patch at the
tip of spike protein that mediates interaction with the human

angiotensin‐converting enzyme 2 (ACE2) receptor.13,14 Collectively,

these mutations in the SARS‐CoV‐2 genome confer fitness advan-

tages, such as increased transmissibility, infectivity, different tropism,

modulated virulence, and escape from host immune response

induced by vaccination or previous infection.6

Approximately 23 months since the first reported case of COVID‐
19, the omicron variant (B.1.1.529) was first identified in Botswana

and South Africa on 24 November 2021, and then classified as VOC by

the WHO on 26 November 2021.15–17 Since its initial discovery, the

omicron variant has outcompeted the delta variant and become the

dominant lineage globally with 3,300,603 confirmed cases as of 25

April 2022, thus a clear threat to public health (https://www.gisaid.

org/hcov19‐variants/). A growing body of data has demonstrated that

the omicron variant is characterised by high transmissibility, robust

binding to human ACE2 receptor,18–20 attenuated viral replication,21–

24 causes less severe disease in COVID‐19 patients,25,26 and has high
environmental stability.27 Importantly, the mutations also impart

resistance against most therapeutic antibodies,28–31 reduce the ability

to induce the immune response in animal models,32 and may escape

neutralisation by antibodies from convalescent patients or vaccinated

individuals.29,33–38 The rapid spread of the omicron variant has been

associated with an abrupt increase in the number of SARS‐CoV‐2 in-
fections, catalysing the fourth wave of the pandemic inmany countries

worldwide.15 With the widespread effort to understand the impact of

the SARS‐CoV‐2 omicron variant on COVID‐19 disease, there is a

need for the distillation of literature from original research sources

into an accessible format for the community.

Based on the scientific knowledge published to date, here, we

summarise the latest discoveries of the SARS‐CoV‐2 omicron variant
and highlight gaps of knowledge for future investigations. We hope to

provide scientific reference for the surveillance and public health

measures to counter the SARS‐CoV‐2 omicron variant as the

pandemic evolves.

2 | MUTATIONS IN THE SPIKE PROTEIN OF THE
SARS‐CoV‐2 OMICRON VARIANT AND EMERGING
SUBVARIANTS

The SARS‐CoV‐2 omicron variant contains a considerable number of
mutations in the spike protein compared with previous SARS‐CoV‐2
variants. Mostly concentrated around the receptor‐binding motif, the
mutations include 30 amino acid substitutions, deletion of six residues,

and insertion of three residues (Figure 1).19 Omicron N‐terminal
domain of the spike protein harbours 11 mutations, some of which

overlap with previously studied SARS‐CoV‐2 lineages, there are mu-

tations (e.g. N211Δ and ins214EPE) that, to date, have only been re-

ported in the SARS‐CoV‐2 omicron variant.18,19 Fifteen additional

mutations were found in the receptor‐binding domain (RBD) of the

spike protein, of which S373P, S371L, S375F and G339D are unique,

and nine (map to the ACE2 binding footprint: K417N, G446S, S477N,

E484A, Q493R, G496S, Q498R, N501Y and Y505H) were previously

known to modulate ACE2 binding and/or immune response.6,19 In

addition, five mutations were located between the RBD and the S1/S2

site, including the unique mutation T547K and the mutation P681H,

which might modulate cleavage at the S1/S2 site.39 Within the S2

subunit, six mutations were described.40 These changes found in om-

icron corroborate with the Pango classification, which places the om-

icronVOC at a substantial distance from all other previous SARS‐CoV‐
2 variants.19,41

Since its first identification, several subvariants (BA.1.1, BA.2,

and BA.3) with strikingly different genetic characteristics have been

reported within the omicron variant (https://outbreak.info/). Among

them, BA.2 has recently increased in frequency in several regions of

the world, suggesting that this subvariant has a selective advantage

when compared to other omicron subvariants.42 Unlike BA.1, BA.2

contains 8 unique spike alterations and lacks 13 spike alterations

found in the original omicron variant (BA.1) and recent findings

indicated that this subvariant is antigenically equidistant from the

SARS‐CoV‐2 Wuhan virus.43,44 Given the current scenario, further

studies are needed to understand the consequence of each major

emerging subvariant on COVID‐19 disease.

3 | TRANSMISSION, VIRAL REPLICATION, AND
ROBUST INTERACTION WITH ANGIOTENSIN‐
CONVERTING ENZYME 2 RECEPTOR

According to the US Centres for Disease Control and Prevention

(CDC), omicron is more transmissible (e.g., more easily spread from

individual to individual) compared to other SARS‐CoV‐2 variants,

including delta.45 This was supported by the rapid spread worldwide

of the omicron variant in a short time. To confirm this hypothesis,

recent reports have investigated the transmission dynamics of the

SARS‐CoV‐2 omicron variant through different approaches. Using an
artificial intelligence model, it has been suggested that the omicron

variant may be over 10 times more contagious than SARS‐CoV‐2
Wuhan virus or about 2.8 times more infectious when compared to

the delta variant,46 which matched with molecular and epidemio-

logical findings reported by other research teams across the

world.47,48 Similarly, in vitro infection experiments demonstrated that

the omicron pseudovirus exhibited higher infection rates that were

4‐fold higher than SARS‐CoV‐2 Wuhan virus and 2‐fold higher than

delta variant using 293T‐ACE2 cells or parental 293T cells (without

ACE2 receptor).33 Taken together, these data strongly suggest dif-

ferences in transmissibility regarding the omicron variant in
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comparison with SARS‐CoV‐2 Wuhan virus or other SARS‐CoV‐2
variants.23 Despite these early studies, many of the mechanistic de-

tails behind the high transmissibility remain to be clarified, along with

the real impact of omicron on public health. Comparative trans-

mission studies in relevant animal models such as hamsters and

ferrets are warranted.

Virological characteristics of the omicron variant have been also

investigated. Two of the most studied factors are the replication

competence and cellular tropism of the omicron variant using in vitro

and in vivomodels. For instance, Zhao and colleagues investigated the

viral replication of the omicron variant and compared it with the

delta variant.22 This work showed that the omicron variant replicated

more slowly than the delta variant in transmembrane serine protease

2 (TMPRSS2)‐overexpressing VeroE6 (VeroE6/TMPRSS2) cells,

which provides an interesting way to evaluate the pathway of omi-

cron entry into the host cell.22 Moreover, it was found that the

omicron variant replicated poorly in the Calu‐3 lung cell line,22 which

has robust expression of TMPRSS2, a serine protease that has been

responsible for S protein priming during SARS‐CoV‐2 entry.14 Simi-

larly, a recent report evaluated the replication of the omicron variant

using Calu‐3 and the colorectal Caco‐2 cells.21 These results revealed
that growth of the omicron variant was dramatically attenuated in

both cell lineages and was inefficient in TMPRSS2 usage, in com-

parison to SARS‐CoV‐2 Wuhan virus and other previous variants.21

In mice (K18‐hACE2), omicron replication in both the upper and

lower respiratory tract of infected animals was considerably lower in

comparison to the delta variant.21 Taken together, these findings

highlight that the omicron variant shows attenuated replication using

in vitro and in vivo models in comparison with SARS‐CoV‐2 Wuhan

virus and previous SARS‐CoV‐2 variants.

In a rapidly moving field of study, reported findings do not always

align. Other reports have shown opposite outcomes. Hui and col-

leagues investigated the replication competence and cellular tropism

of the Wuhan virus, D614G, alpha, beta, delta and omicron SARS‐

F I GUR E 1 SARS‐CoV‐2 omicron variant and several characteristics related to this novel variant. (a) SARS‐CoV‐2 virion and spike
protein; (b) the mutations of omicron variant found in the spike protein; (c) the main findings and recent advances related to the omicron

variant. The figure was created using Biorender.com
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CoV‐2 variants in ex vivo explant cultures of human bronchus and

lung.49 The results showed that the omicron variant was able to

replicate faster than all other SARS‐CoV‐2 variants in the bronchus

but less efficiently in the lung parenchyma,49 which the authors

suggest likely contributes to higher transmissibility of the omicron

variant. In a similar report, Peacock and colleagues showed that the

omicron variant replicated faster in human primary nasal epithelial

cultures and efficiently uses the endosomal route of entry, more so

even than the delta variant.50 Moreover, they demonstrated that the

omicron variant is capable of efficiently entering cells in a TMPRSS2‐
independent route.50 This leads to the question of what factors lead

to conflicting reports on replication competence? There are a few

factors that may be contributing to the differences in phenotypes

observed, especially in relation to the selected in vitro and in vivo

models.

Binding affinity of variant spike proteins to the ACE2 from

different cell types has been shown to be an important consideration in

the infection process. Recent advances using in silico and experimental

tools have shown that the omicron spike continues to use humanACE2

as its primary receptor, to which it binds more strongly than the

original strain from Wuhan and other SARS‐CoV‐2 previous vari-

ants.18,20,50–54 In one of the earliest studies, Hoffmann and colleagues

employed vesicular stomatitis virus (VSV) particles pseudotyped with

SARS‐CoV‐2 spike proteins to adequately mimic key characteristics of
SARS‐CoV‐2 entry into target cells.18 For the analysis of cell tropism,
they used the following cell lines: Vero (African greenmonkey, kidney),

293T (human kidney), A549 (human lung), ACE2 (A549‐ACE2) engi-
neered, Huh‐7 (human liver), Caco‐2 (human colon), and Calu‐3 (hu-

man lung) cells.18 While subtle differences were observed, these data

demonstrated that all cell lines were susceptible to entry driven by all

VOCs spike proteins.18 Particularly, the omicron spike mediated

increased entry into Vero, Huh‐7, and 293T cells.18

Supporting this perspective, a recent cryo‐EM structural analysis

of the omicron variant spike protein in a complex with human ACE2

revealed new salt bridges and hydrogen bonds formed by mutated

residues R493, S496 and R498 in the RBD with ACE2 receptor,

suggesting that these alterations appear to compensate other omi-

cron mutations like K417N known to decrease ACE2 binding affinity.

The result is a similar biochemical ACE2 binding affinities in com-

parison to the delta variant.55 These findings highlighted that omi-

cron spike bound efficiently to human ACE2 and used it for host‐cell
entry, indicating that the mutations in the RBD do not affect ACE2

affinity. Future reverse genetic studies will be key to dissect the

impact of these point mutations into SARS‐CoV‐2 biology.

Using cell culture experiments, a recent study showed that the

omicron demonstrates attenuated fusogenicity (e.g. multistep process,

in which the virus binds to the cell membrane) in comparison to delta

and an ancestral SARS‐CoV‐2 virus.23 Furthermore, it was found that
the S protein of omicron is less efficient when cleaved into two sub-

units,23,24 which has been known to facilitate cell‐cell fusion.56,57

Recent findings have shown that the omicron variant is more depen-

dent on cathepsins than other previous variants, suggesting that this

variant enters cells by a different route.49 To explore this relevant

question, Meng and colleagues used in vitro experiments to demon-

strate differential usage of TMPRSS2 as a cofactor for virus entry.24 It

was found that the omicron spike inefficiently utilises theTMPRSS2 for

cell entry via plasma membrane fusion, while demonstrate a greater

dependency on cell entry via the endocytic pathway (Figure 2).24

4 | IS THE OMICRON VARIANT LESS VIRULENT
THAN PREVIOUS SARS‐CoV‐2 VARIANTS?

Preliminary human clinical data has suggested that the omicron

variant was associated with significantly less severe outcomes among

infected individuals.25,26,58 In one of the earliest reports, the CDC

characterised the initial 43 cases attributed to the omicron variant in

the US.59,60 Among 43 cases with initial follow‐up, only one hospital-
isation was reported, which did not prove to be lethal.59 In another

retrospective cohort study including 14,054 infected patients with the

omicron variant from a multicenter, nationwide database in the US

from December 2021 until January 2022, the authors compared the

outcomes of COVID‐19 disease in paediatric and adult patients before
and after the emergence of the omicron variant. It was found that the

omicron cohort was associatedwith significantly less severe outcomes

for first‐time infections compared to when the delta variant was

predominant in the US.60 Interestingly, it was found that the omicron

cohort was significantly different when compared to the delta cohort

in terms of comorbidities, demographics, and socio‐economic de-

terminants of health.60 In children under 5 years old, the overall risks

of emergency departments visits and hospitalizations in the omicron

cohort were 3.89% and 0.96% respectively, significantly lower than

21.01% and 2.65% for the delta cohort.60 Using multivariable logistic

regression models, Wolter and colleagues evaluated the clinical

severity of the SARS‐CoV‐2 omicron variant in South Africa.61 In that
study, the authors assessed the disease severity and hospitalizations

by comparing individuals with S gene target failure (SGTF), amolecular

approach usually applied to detect SARS‐CoV‐2VOCs such as omicron
while awaiting sequencing results, due to the presence of a mutation

(69‐70del) in the spike protein of SARS‐CoV‐2 resulting in a deletion
of two amino acids at sites 69 (histidine) and 70 (valine).62,63 For data

analysis, the authors compared SGTF versus non‐SGTF infections

diagnosed between 1October and 30 November 2021. Following this,

they evaluated the disease severity by comparing SGTF‐infected in-

dividuals diagnosed between 1 October and 30 November 2021, with

delta variant‐infected persons diagnosed between 1 April and 9

November 2021.61 The study found a significantly reduced odds of

hospitalisation among individuals with SGTF versus non‐SGTF in-

fections (delta), while SGTF‐infected individuals had significantly

reduced odds of severe illness compared with persons infected pre-

viously with the SARS‐CoV‐2 delta variant.61 Together, these findings
highlight that omicron variant SARS‐CoV‐2 cases with the omicron

variant are associated with less severe disease in the human

population.

Using ex vivo and in vivo models, some reports have provided

relevant insights into the pathogenicity of the omicron variant.49,64
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Hui and colleagues compared the replication competence and cellular

tropism in ex vivo explant cultures of human bronchus and lung.49 They

showed that the omicron variant replicated faster than Wuhan virus

and all other SARS‐CoV‐2 variants (D614G, alpha, beta and delta) in

the bronchus but less efficiently in the lung parenchyma.49 The authors

highlighted that the lower replication competence of omicron variant

in human lung may be compatible with reduced severity, although the

determinants of severe disease are multifactorial.49 Shuai and col-

leagues investigated the pathogenicity of the omicron variant in K18‐
hACE2 mices.21 It was found that the replication and pathogenicity of

the omicron variant were attenuated in both the upper and lower

respiratory tract of infected mice.21 In comparison with Wuhan virus

and previous SARS‐CoV‐2 variants, the infection by the omicron

variant was associated with the least body weight loss and mortality

rate.21 In another independent in vivo study using several mouse lin-

eages (129, C57BL/6, BALB/c and K18‐hACE2 transgenic) and ham-

sters (wild‐type and hACE2 transgenic), it was found that the omicron
variant was linked to a less severe infection in 129, C57BL/6, BALB/c,

and K18‐hACE2 transgenic mice when compared with other SARS‐
CoV‐2 variants, with limited weight loss and lower viral burden in

the upper and lower respiratory tracts.64 Similarly, it has been shown

that the omicron was also milder in wild‐type and hACE2 transgenic

hamsters, demonstrating that this VOC is less virulent to rodents than

previous SARS‐CoV‐2 strains.64

As the COVID‐19 pandemic evolved, recent insights have sug-

gested that emergent novel omicron subvariants may cause more se-

vere disease than the original omicron variant (BA.1). To assess this

question, several research groups have investigated the pathogenicity

F I GUR E 2 A schematic illustration of two cell entry pathways that are known to be used by SARS‐CoV‐2. Recent insights demonstrated
that the SARS‐CoV‐2 omicron variant spike enters cells less efficiently by TMPRSS2‐dependent plasma membrane fusion (right) and
demonstrates a greater dependency on cell entry via the endocytic pathway (left).22,24 ACE2: angiotensin‐converting enzyme 2; TMPRSS2:

transmembrane serine protease 2. The figure was created using Biorender.com
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of emerging omicron subvariants (BA.1.1, BA.2, andBA.3). In one of the

earliest reports, an in vivo study using Syrian hamsters evaluated the

pathogenicity of SARS‐CoV‐2 omicron (R346K, BA.1.1 subvariant) and
thencompared its cross‐neutralisationanddiseasecharacteristicswith
that of delta variant infection.65 Interestingly, the authors showed that

the illness characteristics of the BA.1.1 subvariant were found to be

similar in comparison with the infection caused by the delta variant in

hamsters such as viral replication in the respiratory tract and inter-

stitial pneumonia, indicating that the infectionwith this subvariantmay

produce moderate to severe lung disease.65 In terms of immunological

response, it was also found that the neutralising antibody response

against BA.1.1 subvariant could be detected from day 5 and that these

antibodies only poorly neutralised previous SARS‐CoV‐2 variants.65

The realistic impact of omicron on virulence and mortality in

non‐rodent animal models and humans is yet to be answered. A

recent mathematical modelling analysis using data from England

suggested that omicron does have the potential to cause substantial

surges in hospital admissions and deaths in populations with high

levels of immunity.66 However, observational studies will be useful to

confirm this hypothesis over time. Despite omicron appearing to

cause less severe infection, there is a fundamental need to under-

stand the mechanisms and pathways by which the omicron variant

can impact the COVID‐19 disease severity, especially after the

emergence of new omicron subvariants.

5 | OMICRON FOUND TO HAVE HIGHER
ENVIRONMENTAL STABILITY THAN PREVIOUS
SARS‐CoV‐2 VARIANTS

Recent advances have been made towards understanding the dif-

ferences in environmental stability among SARS‐CoV‐2 VOCs. One

study investigated the difference in viral environmental stability on

plastic and skin surfaces between the SARS‐CoV‐2 Wuhan virus and

SARS‐CoV‐2 variants (alpha, beta, delta, and omicron).27 It was

shown that all SARS‐CoV‐2 variants included in this study exhibited

more than two‐fold longer survival than the Wuhan virus and

maintained infectivity for more than 16 h on skin surfaces,27 with the

omicron variant having the highest stability. Thus, these results

indicate that the high environmental stability of these SARS‐CoV‐2
variants could increase the risk of contact transmission and

contribute to their spread. However, the clinical impact of these data

should be taken with caution since the virus spreads from person to

person mainly through direct contact or airborne transmission.67–69

6 | IMMUNE ESCAPE FROM THE
NEUTRALISATION ACTIVITY OF THERAPEUTIC
ANTIBODIES

While vaccines remain the most effective approach to prevent SARS‐
CoV‐2 infection and disease, the use of therapeutic monoclonal

antibodies (mAbs) could potentially benefit certain vulnerable

populations before or after exposure to the virus, such as the un-

vaccinated or recently vaccinated high‐risk persons.70 With the

emergence of new SARS‐CoV‐2 variants there is an urgent need to

investigate the impact of the corresponding mutations on established

mAbs and therapeutic antibody products in order to confirm effec-

tive strategies for clinical practice. Accordingly, many neutralising

mAbs or therapeutics antibody products previously developed for

SARS‐CoV‐2 infection are now under evaluation against the omicron

variant.18,28–31,71–73

To date, this cumulative body of data suggests that the omicron

variant is totally or partially resistant against most mAbs or thera-

peutic antibody products (individually or in combination) under

clinical use, or in late stages of clinical development including:

casirivimab, bamlanivimab, etesevimab, imdevimab, regdanvimab, etc.

This indicates that many of these available mAbs or therapeutic

antibody products approved by the Food and Drug Administration

(FDA) may be less effective in patients with the omicron SARS‐CoV‐2
variant.18,28–30,71,72 In contrast, a small proportion of these mAbs or

therapeutic antibody products currently available have retained their

total or partial potency against the omicron variant. In light of these

data, the FDA has revised the authorisations for two monoclonal

antibody‐based antivirals (bamlanivimab/etesevimab and casir-

ivimab/imdevimab) to limit their use to only to patients infected with

a susceptible strain.74 Preliminary experimental data has identified

some mAb candidates have retained the potential to effectively

neutralise the omicron variant, these include sotrovimab,18,29

S2K146,28 S2X324,28 S2N28,28 S2X259,28 S2H97,28 S309,30,72,75

JMB2002,76 COV2‐2196 (marketed as tixagevimab),72 and COV2‐
2130 (marketed as cilgavimab).72

7 | ANTIVIRAL DRUGS FOR TREATMENT OF
PATIENTS INFECTED WITH OMICRON VARIANT

In terms of antiviral therapies, recent studies have demonstrated

that remdesivir,24,72,77 molnupiravir,24,72,77,78 nirmatrelvir77,78 and

PF‐0730481472 are effective against infection with the omicron

variant, suggesting that these antiviral drugs may be suitable for the

treatment of patients with this novel SARS‐CoV‐2 variant. Despite

these antiviral options, the therapeutic arsenal available to physi-

cians does appear to be reduced for patients with the omicron

variant. To address this gap, in vitro, in vivo and clinical trials aimed

at determining the efficacy of different antiviral drugs against the

omicron variant will be of paramount importance to maintain suf-

ficient options for clinical practice.

8 | IMMUNE ESCAPE FROM THE
NEUTRALISATION ACTIVITY AGAINST
CONVALESCENT PLASMA

Analysis of convalescent sera from COVID‐19 patients provides

relevant insights into antibody longevity and cross‐neutralising
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activity induced by the SARS‐CoV‐2 spike protein.79 A durable

neutralising antibody response that provides protection against

emerging SARS‐CoV‐2 variants is the best tool in our public health

toolbox.79 Seeking to understand the consequence of the omicron

variant for patients with prior infection, the efficacy of neutralising

antibodies from convalescent patients has been analysed in several

studies from different parts of the world using selected samples

(sera/plasma).18,80,81

Using sera/plasma obtained within two months of convalescence

from mild or severe COVID‐19 disease collected in Germany during

the first wave of the pandemic, it was found that the neutralisation by

the omicron spike was 80‐fold less efficiently as compared with the

Wuhan virus spike and 44‐fold less efficiently as compared with delta
spike.18 In another similar study using specimens obtained at

approximately 1 month and 6 months after infection, or 1 year after

infection from individuals who had recovered from COVID‐19,
Schmidt and colleagues demonstrated that the 50% neutralisation

titer values were significantly lower when compared to the Wuhan

virus,80 suggesting that the omicron variant brings a significant risk of

neutralising antibody escape from convalescent patients. This

concern is supported by the findings reported from other research

groups around the world.81–84

9 | VACCINE EFFICACY AGAINST THE SARS‐CoV‐
2 OMICRON VARIANT

Given that omicron variant has numerous spike mutations that are

known to be involved in the immune escape, several studies have

been conducted using serum samples obtained from individuals who

had been vaccinated (fully or fully with an additional “booster” dose)

against SARS‐CoV‐2 to assess whether they would be able to

neutralise the SARS‐CoV‐2 omicron variant.18,33–35,73,85–92 A

growing body of data has shown that the omicron variant is associ-

ated with immune escape from vaccines‐induced immunity, causing a
large number of breakthrough SARS‐CoV‐2 infections in vaccinated

populations.89,90 Meanwhile, a booster using mRNA vaccines

elevated virus‐specific antibody levels and potent neutralisation ac-

tivity against the omicron variant.33,36 In the section below, we

summarise the key findings from these studies on the effectiveness of

COVID‐19 vaccines for the omicron variant. We also discuss the

main immunological characteristics against the omicron variant in

vaccinated populations.

Evaluating the effects of a heterologous BNT162b2 mRNA

vaccine booster on the humoral immunity of individuals that had

received two doses of CoronaVac vaccine, Pérez‐Then and col-

leagues showed that heterologous CoronaVac prime followed by

BNT162b2 booster regimen induced elevated virus‐specific antibody
levels and potent neutralisation activity against the SARS‐CoV‐2
Wuhan virus and delta variant, while neutralisation of omicron was

undetectable in individuals that had received two‐dose doses of

CoronaVac vaccine.36 Following the BNT162b2 booster, the results

revealed a 1.4‐fold increase in neutralisation activity against omicron

variant, compared to two doses of mRNA vaccine.36 Interestingly,

the neutralising antibody titers were reduced by 7.1‐fold and 3.6‐
fold for omicron VOC compared to SARS‐CoV‐2 Wuhan virus and

delta VOC, respectively.36 Similarly, other reports have found a

reduction or no detectable neutralising antibody titer against omi-

cron variant when using the Coronavac vaccine.35,93 In summary,

these findings suggest that countries primarily using CoronaVac

vaccines should consider mRNA vaccine boosters in response to the

spread of omicron variant and to combat the impact of further

emerging variants.

Recently, Rössler and colleagues evaluated the effectiveness of

some COVID‐19 vaccines (mRNA‐1273, ChAdOx1‐S and BNT162b2)
against the omicron variant.94 They used serum samples collected

from individuals who had been infected with the B.1.1.7 (alpha),

B.1.351 (beta), or B.1.617.2 (delta) variant of SARS‐CoV‐2 and from

individuals who had received two doses of the mRNA‐1273 vaccine

(Moderna), the ChAdOx1‐S vaccine (AstraZeneca), or the BNT162b2
vaccine (Pfizer–BioNTech) or had received heterologous vaccination

(i.e., one dose each) with the ChAdOx1‐S and BNT162b2 vaccines.94

The results revealed that vaccinated individuals neutralised the

omicron variant to a much lesser extent than any other SARS‐CoV‐2
variants (alpha, beta, or delta). It was found that some cross‐
neutralisation of the omicron variant persists in specimens ob-

tained from individuals who had received either homologous

BNT162b2 vaccination or heterologous ChAdOx1‐S–BNT162b2
vaccination but not in specimens from individuals who had received

homologous ChAdOx1‐S vaccination.94 In that study, the authors

found no neutralising antibodies against the omicron variant in serum

samples obtained 4–6 months after receipt of the second dose of the

mRNA‐1273 vaccine. However, they pointed out that the interval

between receipt of the second dose and sample collection in this

specific group of vaccinated individuals was longer than for the other

vaccination‐regimen groups.94

A test‐negative case‐control study evaluated the association be-
tween three doses of mRNA COVID‐19 vaccine and symptomatic

infection caused by the SARS‐CoV‐2 omicron and delta variants.86

Analysing 70,155 tests from symptomatic adults, it was found that

individuals who had received three doses of mRNACOVID‐19 vaccine
were associated with protection against both the omicron and delta

VOCs.86 These data suggest that a third dose of the mRNA vaccine

increases the vaccine's protective efficacy associated with protection

against both the omicron and delta SARS‐CoV‐2 variants.86 In a similar
report, Lee and colleagues showed that previous infection in octoge-

narians followed by two doses of BNT162b2 about 1.5 years later

resulted in a strong neutralisation based on an ACE2 binding inhibition

assayagainstomicronvariant,whencompared topersonswhohadonly

received two BNT162b2 doses.95 In support of these findings, another

report measured the neutralisation potency of the serum from 88

mRNA‐1273 (two doses), 111 BNT162b (two doses), and 40 Ad26.

COV2.S (one dose) vaccine recipients against SARS‐CoV‐2‐Wuhan

virus, delta, and omicron SARS‐CoV‐2 pseudoviruses.33 The results

demonstrated that neutralising antibodies against the omicron variant

were undetectable in most vaccinees.33 However, individuals boosted
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(third dose) with mRNA vaccines demonstrated potent neutralisation

of the omicron variant, suggesting that an additional “booster” dose of

mRNA vaccine increases breadth and cross‐reactivity of neutralising
antibody response among COVID‐19 patients.33 These data and the

results reported by other research groups underscore the importance

of continuing to administer an additional booster dose in the human

population.33,86,88,96–105 Despite the improved neutralisation of omi-

cron with additional booster doses, the development of omicron‐
specific vaccines should be considered as the variant has become

prevalent in most countries.

Another important gap in omicron research is in the assessment

of the impact of vaccines on immunocompromised patients. Since the

beginning of the pandemic, several studies have shown that immu-

nocompromised patients with COVID‐19 have higher comorbidities,

higher risk for prolonged infection, greater levels of inflammatory

markers at diagnosis, and higher rates of intensive care admission,

and mortality, especially individuals with cancer and who did organ

transplants.106,107 A recent report provided important insights about

the response to omicron in vaccinated individuals with cancer.108

Analysing 199 patients with cancer, 115 (58%) of whom had solid

tumours and 84 (42%) with blood cancers, all of whom received a

third dose of BNT162b2 or two doses of either BNT162b2 (33%) or

ChAdOx1 (67%), it was found that most of the individuals with

cancer lacked detectable neutralising antibodies against omicron

following two vaccine doses, independent of the vaccine type.

Meanwhile, with a third dose of BNT162b2, the results revealed a

significant increase in neutralising antibodies titers against omi-

cron.108 With the possibility that SARS‐CoV‐2 may become

endemic,109 it will be important to understand the potential risk that

VOCs pose to immunocompromised patients.

In the context of COVID‐19 vaccination and the emergence of

numerous SARS‐CoV‐2 variants, several knowledge gaps remain to

be addressed in terms of our understanding in relation to T (CD4+
and CD8+) and B cell immune reactivity. In response, recent studies

have been focussed on elucidating immunological features against

the omicron variant in vaccinated populations.100,110–113 In one of

the earliest reports, Tarke and colleagues evaluated the immune

response induced by different vaccine platforms currently used in the

human population (mRNA‐1273, BNT162b2, Ad26.COV2.S and NVX‐
CoV2373) against several SARS‐CoV‐2 variants including: alpha

(B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), omicron

(B.1.1.529), kappa (B.1.617.1), lambda (C.37), mu (B.1.621), B.1.1.519,

and R.1.114 In individuals ~6 months post‐vaccination with two doses,
it was found that T cell responses (84% ‐ CD4+ and 85% ‐ CD8+)
were preserved across all COVID‐19 vaccine platforms against the

omicron variant. In contrast, significant overall decreases were

observed for memory B cell response (42%) when compared to other

previous variants, suggesting a preservation of the majority of T cell

responses, which may play an important role as second‐level de-
fenses against the omicron and other SARS‐CoV‐2 variants

(Figure 3).114 Similarly, these outcomes corroborate with recent

findings reported by other research teams, suggesting that current

COVID‐19 vaccines demonstrate robust protection and most

vaccinated individuals retain T‐cell immunity to the SARS‐CoV‐2
omicron variant. This has the potential of balancing the lack of neu-

tralising antibodies, and importantly, preventing or limiting the risk of

more severe disease or even death in COVID‐19 patients.85,100,111

Within the same perspective, a recent report investigated the

memory B cell repertoire in a longitudinal cohort of 42 individuals

who had received 3 mRNA vaccine (mRNA‐1273 or BNT162b2)

doses.115 Following one month after the third dose, the authors

revealed that a booster with an mRNA vaccine was accompanied by

an increase and evolution of anti‐receptor binding domain‐specific
memory B cells, suggesting that these individuals have a diverse

memory B cell repertoire that can respond rapidly and produce an-

tibodies capable of clearing VOCs infection such as omicron.115

With the emergence of new subvariants of omicron (BA.1.1,

BA.2, and BA.3.), recent studies have evaluated the sensitivity to

neutralisation by antibodies induced by infection and vaccination

using pseudoviruses as a model study. It was found that all

currently circulating omicron subvariants evade neutralisation by

vaccine‐induced antibodies with comparable high efficiency, sug-

gesting that increased antibody evasion does not represent the

main reason for the current dissemination of BA.2 in many coun-

tries around the world.116

10 | FINAL CONSIDERATIONS AND PUBLIC
HEALTH PERSPECTIVES

The widespread transmission of the SARS‐CoV‐2 omicron variant has
been a tremendous challenge for pandemic control, suggesting that

we need to reconsider aspects of the virus and disease that had been

previously thought to be established. Similarly, our once potent

vaccines need to be re‐positioned to address the high mutation rates
observed in omicron.117 A glimpse of life with endemic SARS‐CoV‐2
may be gained if we examine the well‐known infection characteristics
of other respiratory viruses, such as influenza, under conditions in

and outside pandemics.117 The revaccination of the influenza vaccine

has become a recommended annual practice to combat both waning

immunity and the appearance of new variants of the virus. After

approximately 2 years of the pandemic, two relevant questions arise

and remain to be answered. These questions are: (1) Like the flu, will

COVID‐19 become a seasonal disease?109 and (2) As with influenza,

should COVID‐19 vaccines be constantly monitored and vaccine

composition updated globally?

The answers appear to be yes to both questions. We will likely

require the continued use of vaccines to reduce the incidence of

severe illness, hospitalisation and death, even if milder cases still

occur at a low frequency. The future timing and composition of

booster vaccine doses will need to be determined through experi-

mental, observational and clinical trials as the COVID‐19 pandemic

evolves.117 Moreover, the non‐pharmaceutical interventions estab-
lished by the CDC and WHO, such the use of masks, social distancing

and avoiding closed spaces, will need to be maintained worldwide, at

least for now. Clinical practices like mass testing to detect SARS‐

8 of 14 - SILVA ET AL.



CoV‐2, and isolation of laboratory‐confirmed patients will also likely
be required to stay in place. We will need to learn to live with

COVID‐19, just as we have learnt to live with flu, with the hope that
SARS‐CoV‐2 infection will pose less danger over time.
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