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Protein tyrosine kinases in Schistosoma mansoni
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The identification and description of signal transduction molecules and mechanisms are essential to elucidate
Schistosoma mansoni /ost-parasite interactions and parasite biology. This mini review focuses on recent advance-
ments in the study of signalling molecules and transduction mechanisms in S. mansoni, drawing special attention to
the recently identified and characterised protein tyrosine kinases of S. mansoni.
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The identification and characterisation of signal trans-
duction molecules and mechanisms are essential to eluci-
date Schistosoma mansoni host-parasite interactions and
parasite biology. Protein tyrosine kinases (PTKs) are im-
portant molecules for intra- and inter-cellular communica-
tion as well as for survival in eukaryotes, playing a major
role in signal transduction processes (Hanks et al. 1988).
PTKs also participate in cellular mechanisms that control
several biological processes such as adhesion, cytoskel-
eton reorganisation, and migration. These proteins are
also known to be involved in developmental and differen-
tiation processes of cells. Therefore, the study of PTKs
may unveil strategies that can be used for identifying new
candidate drug targets.

Phosphorylation of protein substrates catalysed by
kinases is an essential mechanism by which important
intracellular and extracellular signals are transmitted
throughout the cell and to the nucleus (Cheetham 2004).
During kinase catalysis, the y-phosphate group from ATP
is transferred to the protein substrate, thereby changing
the substrate properties (e.g. its structure, location or its
activity as enzyme) (Manning et al. 2002a).

The recent success in cancer treatment that includes
specific tyrosine kinase inhibitors strongly validates the
clinical relevance of basic research on tyrosine phospho-
rylation. Functional profiling of the tyrosine phospho-
proteome is likely to lead to the identification of novel
targets for drug discovery, providing a basis for novel
molecular target approaches (Machida et al. 2003). Many
of the 500 or so identified human protein kinases are at-
tractive drug targets to treat cancer, inflammation pro-
cesses and autoimmune diseases.
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PTKs

PTKSs comprise proteins found in multicellular organ-
isms (Neet & Hunter 1996). PTKs may be found (i) an-
chored in the cell membrane, acting as receptors, (ii) free
in the cytoplasm, participating in signalling cascades, and
(ii1) in the nucleus, directly associated with gene activa-
tion processes. PTK catalytic domain activation results
from the interaction with other signalling proteins, which
allows specifically signalling propagation. There is no
evidence of PTK in yeast. However, 49 from 239 Droso-
phila melanogaster PKs and 105 out of 454 Caeno-
rhabditis elegans PKs have been classified as PTKs (Man-
ning et al. 2002a). There are two major classes of PTKs,
receptor tyrosine kinases (RTKs) and non-receptor ty-
rosine kinases, also named cytoplasmic or cellular tyrosine
kinases (NRTKs) (Neet & Hunter 1996).

Receptor tyrosine kinases (RTKs) - RTKs contain three
distinct regions: an extracellular binding domain, a trans-
membrane helix, and a cytoplasmatic domain that con-
tains the kinase activity (Hubbard & Till 2000). RTK acti-
vation is generally triggered by the interaction of a ligand
with a specific biding site on the receptor extracellular
domain. Following RTK stimulation at the extracellular site,
the catalytic domain on the cytoplasmic side of membrane
is activated by the dimerisation of the receptor, leading to
autophosphorylation (Alberts et al. 1994) and then to the
activation of kinase activity, providing a new biding site
for intracellular adapter molecules.

RTK families show diversified extracellular domains
(Heldin 1996). The first protein receptor described as be-
ing protein kinase tyrosine-specific was the epidermal
growth factor receptor (EGFr) (Yarden & Ullrich 1988).
However, there are growth and differentiation factor re-
ceptors that also belong to RTKs.

Non-RTKs (NRTK) - NRTKs are a set of intracellular
signalling proteins that has been identified as being able
to interact with PTK phosphotyrosine (Neet & Hunter
1996). Although intracellular signalling proteins that bind
to activated PTK phosphotyrosine residues have various
functions and structures, they generally share highly con-
served non-catalytic domains, known as SH2 and SH3.
One of the main features of NRTK is the presence of the
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SH2 domain. SH2 domains are small protein modules that
bind specifically to tyrosine-phosphorylated peptides.
There are more than 100 SH2 domains in the human ge-
nome, and different SH2 domains bind to different classes
of tyrosine-phosphorylated ligands. These domains play
a critical role in the propagation of signals in the cell,
mediating the relocation and complex formation of pro-
teins in response to changes in tyrosine phosphorylation
(Machida et al. 2003).

Protein kinases and schistosome biology

Animal cells normally divide when stimulated by
growth factors, which are generally produced by other
cells and act via RTKs. Given that mutations leading to
amino acid substitutions on protein kinases are common
in cancer, diabetes and other diseases, a better under-
standing on how such enzymes regulate a wide range of
functions may enable further therapeutic interventions
(Plowman et al. 1999). Further knowledge on PTKs may
provide new strategies for drug development, an approach
intensively pursued in cancer research (Traxler 2003, Harari
2004). As sensing and responding to the environment are
essential in the complex life cycle of schistosomes, the
knowledge gained by studying signal transduction pro-
teins and their mechanisms will be important for under-
standing the biology of the organism.

S. mansoni proteins involved in signal transduction

It is now clear that the ability of S. mansoni to survive
for decades in the blood-stream of its host and the sexual
maturation of the female that depends on a close contact
with the male are processes that require molecular com-
munication (Schussler et al. 1997, Kunz 2001, Kapp et al.
2004).

Recently, a number of signalling molecules have been
identified and cloned in schistosomes, including trans-
membrane and cellular receptors (Table I).

Some of the signalling proteins seem to be involved
with the SmRK (S. mansoni receptor kinase) signalling
pathway. SmRK is a divergent member of the serin/
threonin kinase TGF-B receptor (transforming growth fac-
tor beta receptor family), possibly participating in the host
response to growth factors such as: cell migration, differ-
entiation, adhesion and apoptosis. SmRKI1 is a surface
membrane receptor serine/threonine (Davies et al. 1998)
belonging to the S. mansoni TGF- superfamily that may
be important in mediating host-parasite interactions as-
sociated with parasite development. Sm14-3-3¢ is a
cytoplasmatic protein associated with TGF-8 (McGonigle
et al. 2001a). The overexpression of Sm14-3-3a leads to
increased TGF-P signalling, whereas elF2o (eukaryotic
initiation factor 2 alpha subunit) leads to TGF-J3 inhibition
(McGonigle et al. 2002). Smads are able to interact with
receptor molecules carrying the message to the nucleus.
Both Smads (SmSmad1 and SmSmad2) and SmRK1 are
found in the same developmental stages (lung stage and
adult parasites). SmSmad?2 interacts with SmRK 1, while
SmSmad4 interacts with SmSmad1 and SmSmad2, besides
phosphorylating Erk1/2 (kinase regulated by extracellular
signal) (Beall et al. 2000, Beall & Pearce 2001, Osman et al.
2001, 2004). FKBP12 influences a variety of signal trans-

TABLE I
Signalling molecules identified in Schistosoma mansoni
Protein References
CaBPs Siddiqui etal. 1991
MAP kinase Schussler et al. 1997
GAP Schussler et al. 1997
HSF Lantner et al. 1998
SmRK1/SmTbRI Davies et al. 1998
SmRXR1 Freebern et al. 1999a
SmRXR2 Freebern et al. 1999b
SmRas1 Kampkotter et al. 1999,
Osman et al. 1999
Sh-TOR Inal 1999
SmSmad1 Beall et al. 2000
SmMMAK16 Milhon et al. 2000
SmSmad2 Beall et al. 2000,
Osman et al. 2001
Sm14-3-3e McGonigle et al. 2001a
SMA3 Da’dara et al. 2001

SIP McGonigle et al. 2001b

SmFTZ-F1 De Mendonga et al. 2002
elF2a McGonigle et al. 2002
SmRhol Santos et al. 2002,
Vermeire et al. 2003
SmSmad4 Osman et al. 2004
SmRK2/SmTbRII Forrester et al. 2004
SmFKBP12 Knobloch et al. 2004
SchP2X Agboh et al. 2004
SmPKC1 Bahia et al. 2006a

duction pathways that regulate cell division, differentia-
tion, and ion homeostasis. Among these, TGF-f3 signal-
ling and calcineurin (CN) phosphatase activity are modu-
lated by FKBP12 via binding to TGF-3 family type I recep-
tors (TGFbR-I) or to the CN subunit A, respectively (Chen
et al. 1997). The S. mansoni FKBP12 homologue (Sm-
FKBP12) is a direct partner of SmRK1 and both are present
and interact in the female gonads (Knobloch et al. 2004).

Other signalling proteins found in S. mansoni partici-
pate in several different pathways and functions. SmPKC1
has been recently described by our group as the first B1-
type protein kinase C identified in S. mansoni. Immuno-
localisation studies indicated that SmPKC1 was strongly
associated with the ridge cyton and excretory vesicles in
sporocysts, while in skin-stage schistosomula, SmPKCl1
was clearly expressed in the acetabular gland, tegument,
and duct (Bahia et al. 2006a). SmMMAK 6 contains a nuclear
signalling portion and a site for CK2 (casein kinase 2)
phosphorylation, being related to the biogenesis of the
ribosome 60S subunit as well as to the cell cycle with
higher expression levels in female worms (Milhon et al.
2000). SmRXR are nuclear receptors and gene transcrip-
tion activators. The SmRXR gene is constitutively ex-
pressed and thus must play multiple roles throughout the
schistosome life cycle. SmRXR is located in vitellinic cells,
and may play a role in the activation of the eggshell p14
gene precursor. (Freebern et al. 1999a,b, Fantappié et al.
2001). SmFTZF1 is another nuclear receptor with a highly
conserved DNA binding domain, related with develop-
mental and sexual differentiation (de Mendonga et al. 2002).



SchP2X is related to the ATP ionic channel opening
(Agboh et al. 2004). SmRhol (Santos et al. 2002, Vermeire
et al. 2003) is a GTPase that possibly participates in the
cytoskeleton organisation, gene transcription, cell cycle
and membrane transport and is expressed at higher levels
in female worms (Vermeire et al. 2003). SMA3 is a Ca-AT-
Pase homologue found in the adult tegument, suggesting
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that SMA3 functions to help control Ca homeostasis within
the tegument and may play a role in signal transduction at
the host-parasite interface (Da’dara et al. 2001).

PTKSs identified in S. mansoni

Very few PTKSs have been identified and characterised
in S. mansoni: three of them are RTKs (SmRTK-1, SmIR-1,
SER), and four are NRTKs (TKS5, TK4, TK3, SmFes), (Table
D).

SmRTK1 is a membrane protein with an extracellular
binding domain similar to several protein domains that
share the Venus Flytap-VFT structure and the cytoplas-
matic TK domain, which is similar to the insulin receptor
(IR) catalytic domain. The SmRTKI1 gene is expressed
throughout all developmental stages. In males, it is pref-
erably found in parenchyma cells. In females, an intense
labelling was associated with ovocytes present in the
ovary and in the ovary duct. SmRTK1 is believed to con-
stitute an original GABA-activated RTK, which is involved
in pheromone recognition, necessary for the development
of the female ovaries (Vicogne et al. 2003). SmRTK 1 was
localised in sporocysts. The preferential localisation of
SmRTK1 in sporocysts germinal cells and ovocytes could
point to a role in schistosome growth and differentiation.

SmIR-1 is a tyrosine kinase similar to the family mem-
bers of IR. It has all the features of IR with a conserved
ligand-binding domain. Immunohistochemical studies
have shown that SmIR-1 is mainly expressed at the basal
membrane level of the tegument in adult worms (Dissous
et al. 2006, Khayath et al. unpublished results). It might
play a role in glucose uptake regulation.

SER is an epithelial growth factor receptor that con-
tains a TK domain homologous to the TK domain of the
erbB family. The gene is translated into a 170 kDa protein
that contains a signal peptide, a cystein-enriched extra-
cellular domain, a transmembrane hydrophobic sequence,
and an intracellular TK domain. The SER protein is present
in cercariae and, more strongly, in adult worm muscles
(Ramachandran et al. 1996), suggesting that it could par-
ticipate in muscle development and function. The genes
produce three variant transcripts, resulting from SER al-
ternative splicing (Shoemaker et al. 1992). SER seems to
be activated by vertebrate EGF ligands besides activat-
ing ERK signalling, suggesting a conservation of the EGFR
function in Schistosoma (Vicogne et al. 2004).

The NRTKs identified in S. mansoni have common
domains, as shown in Fig. 1. TK5 and TK3 (Fig. 1, Table
IT) are NRTK orthologues to the Src family. They contain
SH3 and SH2 domains followed by a C-terminal catalytic
domain with a tyrosine kinase activity. TKS is the first
Fyn subfamily identified in invertebrates (Kapp etal. 2001).
TK3 is a single-copy gene and it codes for a 71 kDa pro-
tein expressed in adult worms of both sexes, predomi-
nantly in the reproductive organs. Its enzymatic activity
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Fig. 1: structural organization of the non-receptor tyrosine kinases
(NRTKs) identified in Schistosoma mansoni - SmFes, TK3, TK4,
and TKS. SmFes exhibits the characteristic features of Fes/fps pro-
tein tyrosine kinases (PTK) family containing a SH2 and protein
tyrosine kinase catalytic domain signatures. TK3 and TKS5 are
orthologues to the Src family kinase. As expected for members of
the Src family, TKS and TK3 contain the SH3 domain, the SH2
domain and the catalytic tyrosine kinase domain. The N-terminal
myristylation motif in TK3 and TKS is not indicated. TK4 is a Syk
family kinase containing a catalytic TK domain and two SH2 do-
mains. Numbers underneath the boxes indicate the position of
aminoacids. Numbers on the right indicate the total number of
aminoacids.

was experimentally demonstrated in a heterologous eu-
karyote cell culture system, which was able to phospho-
rylate p130Cas, a protein closely related to proteins in-
volved in focal adhesion and cytoeskletal organization
(Kapp et al. 2004). Most Src family kinases contain an N-
terminal Met-Gly-Cys consensus sequence that under-
goes dual acylation with myristate or palmitate after me-
thionine removal (Pellman et al. 1985, Resh 1994). Although
this has not been yet experimentally demonstrated, both
TK3 and TKS5 presumabily have an N-terminal my-
ristylation motif, responsible for targeting the Src-related
proteins to cellular membranes.

TK4 (Fig. 1, Table IT) is a NRTK orthologue to the Syk
family. TK4 contains two SH2 domains and one tyrosine
kinase domain. It is transcribed in maturing and mature
adult stages, as well as in larval stages miracidia and cer-
cariae. The presence of TK4 in oocysts and spermato-
cytes suggests that this protein plays a role in germina-
tive cell development. However, there are no report in
literature on the involvement of Syk in gonad differentia-
tion (Knobloch et al. 2002).

Our group has previously identified and characterised
the molecular structure of anew PTK in S. mansoni, SmFes
(Fig. 1, Table IT, Ludolf et al. unpublished results). SmFes
exhibits the characteristic features of Fes/fps protein ty-
rosine kinases subfamily, a coiled-coil region, SH2 and
protein tyrosine kinase catalytic domain signatures, but
lacks the FCH amino-terminal domain. It is the first mem-
ber of Fes subfamily described in helminths. SmFes ex-
pression was detected by immunolocalisation in both mira-
cidia and skin-stage schistosomula (Bahia et al. unpub-
lished results). In miracidia, SmFes is expressed in the
terebratorium (Fig. 2A), whereas in schistosomula it is
localized in the oral sucker, acetabular glands, and tegu-
ment (Fig. 2B). In cercariae, an expression pattern similar
to schistosomula was observed (not shown). Due to func-
tions attributed to both acetabular glands, oral sucker



140 PTK in S. mansoni * Diana Bahia et al.

TABLE 11

Protein tyrosine kinases (receptor tyrosine kinases-RTKs and non-receptor tyrosine kinases- NRTKs) identified in
Schistosoma mansoni

Family Function Localisation References
SER EGFR Participates in schistosome Predominantly in the muscle Ramachandran et al. 1996
(170kDa) signal transduction, perhaps of adult male and female
GenBank related to muscle development worms
M86396 or function
SmRTK1 Insulin Probably with a role in male- In male: in parenchymal cells. Vicogne et al. 2003
(172kDa) receptors female communication. In female: in ovocytes and in the
GenBank Involved in the recognition ovary duct. In miracidia and
AF101194 of'a male pheromone signal newly-transformed sporocysts
necessary for the development  in cells surrounding the neural
of the female ovaries mass and probably representing
the parasite germinal cells
SmIR-1 Insulin Possible role in the regulation Basal membrane of the Unpublished results
(170kDa) receptors of the uptake of glucose viathe  tegument in the adult worms
GenBank activity of SGTP1 and SGTP4
AF314754
TK3 Src Seems to play a role in signal Predominantly expressed in the Kapp et al. 2004
(71kDa) transduction pathways reproductive organs such as
GenBank organising the cytoskeleton in testes (male) and ovary as
AJ585205 the gonads of schistosomes well as the vitellarium (female)
TKS Srec-like Seems to play a role during Expressed in the adult worms Kapp et al. 2001
(73kDa) embryogenesis as well as gut and, furthermore, occurs in the
GenBank formation and/or function free-living larval stages
AF232691
TK4 Syk May play a role in germ cell In larval stages and adult Knobloch et al. 2002
(140kDa) development schistosomes. Significant signals
GenBank were detected in ovocytes (female)
Al421472 and in spermatocytes (male)
SmFes Fes/Fps May play a role in the signal SmFes expression was detected Unpublished results
(143kDa) transduction pathway involved by immunolocalisation in both
GenBank in the larvae transformation miracidia and schistosomula
AF515706 after penetration into skin-stage. In miracidia, SmFes

intermediate and definitive
hosts

is expressed in the terebratorium,
whereas in schistosomula it is
localised in the oral sucker,
acetabular glands and tegument

and terebratorium, these findings seem to suggest that
SmFes plays a pivotal role in the signal transduction path-
way involved in the larvae transformation after penetra-
tion into intermediate and definitive hosts.

Presence of PKs in sequenced genomes

PKs have been characterised not only through tradi-
tional biochemical techniques but also by catalytic do-
main analyses from aminoacid sequences of their primary
structure (Hanks et al. 1988). PKs comprise one of the
largest families of proteins, which correspond to 1.5 to
2.5% of eukaryote genes (Manning et al. 2002a). The de-
velopment of genomic studies has led to the identifica-
tion of an increasing number of PK in various animal spe-
cies.

The genome of S. mansoni is currently being as-
sembled and annotated and two large scale transcriptome
projects described the majority of the genes of this spe-

cies (El Sayed et al. 2004, Oliveira et al. 2004, Oliveira &
Bahia 2004, Verjovski et al. 2004). It is expected that the
release of a full analysis of these projects will reveal a
large number of proteins related to parasite-environment
and parasite-host interactions, among them PTks.

By using C. elegans as model for studies on signal
transduction, as it was the first fully sequenced multicel-
lular organism, Pks were grouped into the second biggest
family of the protein domains in theses worms, compris-
ing 411 fully sequenced PKs (Plowman et al. 1999). Se-
quencing of the human genome revealed 518 PK coding
genes, 1.7% of the entire human gene content. Among
the 258 PKs analysed, 83 domain types were identified,
most of which are found to be closely related to signalling
protein interaction domains, e.g., SH2, which recognises
and binds to phosphorylated tyrosine residues (Manning
et al. 2002b). By comparing kinomes from S. cerevisiae
(yeast), C. elegans (worm), D. melanogaster (insect) and
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Fig. 2: immunolocalization of SmFes in miracidia and skin-stage
schistosomula. Optical sections of confocal images obtained from
immunolocalisation of SmFes were tridimensionally projected and
renderised. The presence of SmFes (in green) can be observed in
terebratorium (miracidia) (A) and in oral sucker and acetabular
gland (schistosomula) (B) (unpublished results). Actin (red) and DAPI
(blue) labellings were obtained according to Bahia et al. (2006b).

Homo sapiens (mammal), out of 209 subfamilies analysed,
51 proteins were present in the four genomes, 7 were only
present in yeast (S. cerevisiae and S. pombe), 15 in C.
elegans, 13 in H. sapiens, and none in D. melanogaster
(Manning et al. 2002a).

PKs represent promising drug targets for a number of
human and animal diseases. The recent completion of the
genomes of three human-infective trypanosomatid proto-
zoa, Leishmania major, Trypanosoma brucei and T. cruzi,
has allowed the kinome for each parasite to be defined as
179, 156, and 171 eukaryotic protein kinases, respectively
(Naula et al. 2005), that is about one third of the human
complement.

Last but not least, several lines of evidence suggest
that it is worth pursuing the study of the PK family to
identify drug targets for shistosomes. PKs have been
shown to be essential for proliferation and/or viability of
parasite life-cycle stages that are clinically relevant. As a
general rule, PKs having more than 60% sequence iden-
tity over the core catalytic domain have a high probability
of being inhibited by the same group of low molecular
mass compounds. The corollary is that “there is a higher
level of confidence that specific inhibitors can be designed
to target protein kinases with < 60% sequence identity,
which is the case for the vast majority of parasite kinomes
when compared to that of humans” (Vieth et al. 2004, Naula
etal. 2005).
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