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(57) 	 ABSTRACT 

The present invention refers to a medical diagnostic method 
based on proteomic and/or genomic patterns, using data 
obtained by mass spectrometry. The method also allows clas-
sifying the patients as to their disease stage Additionally, 
present invention also refers to two new biomarkers for the 
Hodgkin Disease medical diagnosis. Based on the SVM 
analysis, one localizes the windows of interest and later on 
uses the mass spectrum so to allow the biomarkers localiza-
tion, so that the identification of said biomarkers occur by 
means of a 2D gel ou by mass spectrometry. 
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METHOD FOR IDENTIFYING PROTEIN 
PATTERNS IN MASS SPECTROMETRY 

FIELD OF INVENTION 

[0001] The present invention refers to a medical diagnostic 
method based on proteomic and/or genomic patterns, using 
data obtained by mass spectrometry. The method also allows 
classifying the patients as to their disease stage. 
[0002] When comparing different states (i.e. healthy, dis-
ease), it has been shown that certain protein expression levels 
can correlate with the disease stage. These protein patterns, or 
biomarkers, are a challenge to identify, since they are usually 
present in femtomolar ranges, and masked by the thousands 
of proteins present within complex biological samples. Mass 
spectrometry (MS) based proteomics currently drives biom-
arker discovery and has created great expectations for disease 
classification and prognosis. Most existing feature selection 
methods are able to rapidly obtain a good feature set for 
classification, however the optimal solution is not guaranteed 
to be found. In this invention we show how to cluster data and 
then detect putative biomarker pattern in MS, LC/MS/MS 
and LC/LC/MS/MS data. The biomarker pattern can aid in 
disease diagnosis and prognosis 
[0003] Additionally, present invention also refers to two 
new biomarkers for medical diagnosis of the Hodgkin dis-
ease. 

BACKGROUND OF THE INVENTION 

[0004] During the last 40 years, the quest for diagnosing 
pathologies during its initial stages by using biomarkers has 
constantly driven the medical field to test new heights. The 
search for a biomarker can take place by profiling a patient's 
proteome. Biomarker patterns can also reflect an individual's 
response to a treatment; however, a unique biomarker has 
failed to be specific for a single pathology until today, alas, 
requiring a panel to increase specificity. As example, it is 
worth noting the prostate-specific antigen (PSA), much used 
in the diagnosis of prostate cancer, but sometimes failing to 
correctly indicate the disease. 
[0005] Proteome can be defined as the proteins expressed 
by a given genome, which can greatly vary over time, with the 
presence of a pathology or a drug treatment. Most of the 
proteome analyses disclosed for biomarkers make use of two 
dimensional gel electrophoresis (2DE). The former is carried 
out by contrasting biological samples from patients and con-
trol subjects, having protein profiles separated on a gel 
according to their pH and molecular mass. Eventhough this 
technique has contributed to the development of the genomic/ 
proteomic segment, many limitations still prevail in the state-
of-art. Among these limitations we cite the need of better 
methods to predict the codant capacity of a genome and that 
of the proteome, as to identify protein cellular localization, 
disease markers and drugs targets. The 2DE is not adequate to 
be used in medical routine, considering that it is laborious, 
time consuming, limited to discriminate protein profiles 
within a pH range that varies approximately between 3.5 to 
11.5, and molecular weight varying approximately between 7 
and 200 kDa. Moreover, even to trace the biomarkers, 2DE 
should be applied to a great number of samples, becoming 
expensive and inappropriate for this kind of research. 
[0006] Many methods for biomarker hunting is described 
in the available literature. Some have been used to differen-
tiate cancer from control samples by directly infusing bio- 

logical samples in the mass spectrometry for proteomic pro-
filing. These approaches aimed in selecting subsets of 
spectral peaks in MS of biological samples from different 
states (i.e. cancer patients and control subjects) enabling sta-
tistical models to "correctly" classify unknown spectra. The 
selected peaks having statistically different ion intensities 
among classes indicated the mass to charge ratio for putative 
biomarkers. For breast cancer, "unified maximum separabil-
ity analysis" was employed; for prostate cancer, decision 
trees with boosting techniques and classical statistical meth-
ods were used. For ovarian cancer, two different algorithms 
were employed: the self-organizing map of Kohonen and a 
linear discriminant. The SELDI technique involves the analy-
sis of small sets of proteins, pre-selected by their affinity 
properties with the SELDI plate. However, depletion of pro-
teins could result in loss of potential biomarkers or changes in 
sera patterns. 
[0007] Other methods for diagnosis have been described 
such as in U.S. Pat. No. 6,835,927 and U.S. Pat. No. 6,134, 
344. U.S. Pat. No. 6,835,927 describes amethodto search for 
discriminatory patterns within mass spectrometry peaks by 
using principle component analysis, least minimum squares 
or even neural networks. Such methods perform inferior to 
SVMs when operating in a high dimensional feature space 
with scarce data since they are limited to minimizing the 
empirical risk of the dataset while SVMs minimize simulta-
neously the empirical risk and the generalization error. Fur-
thermore, patentU.S. Pat. No. 6,835,927 does not clarify how 
to classify an individual if an unexpected protein expression 
profile is obtained. A classification methodology to treat mass 
spectral data should be very robust against overfitting since 
the complexity within protein profiles of biological samples 
is tremendous. Furthermore neither U.S. Pat. No. 6,835,927 
or U.S. Pat. No. 6,134,344 show ways to take advantage of 
physicochemical properties that are contained within the 
mass spec data that can greatly be used to the advantage of the 
pattern recognition strategy. The other patent, U.S. Pat. No. 
6,134,344 describes a method to increase the efficiency and 
speed of the analysis in a way to use a reduced number of 
entries. The elimination of data could also represent a loss in 
the generalization capacity of a learning machine or eliminate 
samples that are believed to be outliers but represent impor-
tant subclasses within a pathology. 
[0008] The Hodgkin's disease (HD) is here used as a model 
to exemplify the present achievement. HD is characterized by 
the presence of lymphoma. HD's clinical diagnosis compre-
hends various tests to identify type, disease stage and other 
information to subsidize in the medical decisions. 
[0009] Before describing the inventions, we will carefully 
define the meaning of a few terms that we will extensively 
refer to along this work; they are: feature, feature space and 
patterns. We define features as individual measurable prop-
erties of the phenomena being observed. For this patent, the 
features will be composed information originating from the 
mass spectra data (i.e. clustered mass peaks, how many times 
a specific ion was detected, spectral counts). We define fea-
ture space as an abstract space where each pattern sample is 
represented as a point in this n-dimensional space whose 
dimension is determined by the number of features used to 
describe the patterns. The patterns are the combinations of 
features that, according to machine learning/classification 
technique, can better separate among predefined classes. 
[0010] The pattern recognition method of this invention 
describes ways to cluster features before a feature selection 
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method is applied. The referred clustering takes advantage of 
intrinsic data contained within the mass spectra to correctly 
group related features. This is superior to directly applying a 
feature selection method directly to the raw mass spectra data 
because the direct strategy would not take advantage of such 
"extra" information that is part of the nature of a mass spec-
trum. Such intrinsic information comprehends the isotopic 
distribution of carbon 13 in the biological samples, or even 
clustering features as to their ion fragmentation patterns 
achieved with tandem mass spectrometry. Such is the case of 
ion counting and spectral counting. We will demonstrate how 
to benefit from such information using examples described 
below. 
[0011] After the feature clustering/pre-processing, feature 
selection strategies based on support vector machines (SVM) 
and the structural risk minimization are employed to search 
for biomarker patterns. Such methods also allow the classifi-
cation of non-linearly separable data within the feature space. 
[0012] SVM is described as a class of algorithms that 
makes use of kernels, has absence of local minimum, sparse 
solution, characterized by the use of support vectors and 
based on the structural risk minimization theory. In case of 
complex problems, competing strategies to SVM that show a 
high capacity of "adequacy" to the training data set could 
entail "vicious apprenticeship", the so called overfitting, and 
would then be deprived from the generalization power. SVM 
excels previous methodologies because of its generalization 
capacity and examples can be easily found in several known 
fields, such as: image, text, handwriting, or even sound iden-
tification and problems that can hardly be mathematically 
modeled. Recently with SVMs applied to bioinformatics, it 
has bee possible to discriminate different stages of cancers 
within microarray data, identify the disease evolution stage, 
aid in the design of new drugs, and in discovering proteins 
functions, predict their shapes, sub cellular localization, pro-
tein-protein interactions and identify transmembrane pro-
teins amongst others. 
[0013] Among other advantages of this invention, it pro-
vides means to allow the assessment of the post-translatable 
modifications. This invention also shows how to cluster data 
by "windows of interest" that can group key extensions of a 
mass spectrum to then perform feature selection and localize 
the biomarkers. Their identification can then be carried out by 
2D gel or tandem mass spectrometry. 

SUMMARY OF THE INVENTION 

[0014] This invention presents a medical diagnostic 
method based on proteomic and/or genomic patterns using 
data obtained by mass spectrometry. The invention makes 
possible to classify a diseases' stage, or elucidate new biom-
arker panels. The method for discriminating the biomarker 
panel is based on a previous clustering of the features to 
reduce the cardinality of the feature space We refer to this 
preprocessing as a maximum divergence analysis (MDA) 
using SVM throughout the first set of examples. MDA "navi-
gates" over the mass spectra data pool and by using the 
leave-one-out cross validation can spot possible sections 
within the mass spectrum data to search for biomarkers. After 
the clustering, feature selection methods (to be described) are 
used reduce the signal/noise in the diagnosis deciding pro-
cess. 
[0015] Therefore, the first objective of present invention is 
to make available a medical specialist system that, by per- 
forming a supervised learning in data obtained by mass spec- 

trometry, permits the classification of patients as to their 
disease stage or by indicating if an unknown sample belongs 
to a patient or a control subject. 
[0016] Additionally, the present invention also refers to the 
discovery of MS peak patterns that point to two new biomar-
kers that could aid in the diagnosis of the Hodgkin disease 

BRIEF DESCRIPTION OF THE FIGURES 

[0017] FIG. 1 shows a line that represents the decision 
boundary between two classes of points. 
[0018] FIG. 2 shows the MDA results for a navigation 
window opening of approximately 2240 and 4480 Da. 
[0019] FIG. 3 Mass spectrum from a randomly chosen HD 
patient (3A) and average spectrum created in silico obtained 
from serum spectra data of all individual HD patients (3B). 
Mass spectrum from a randomly chosen control subject (3C) 
and average spectrum created in silico obtained from serum 
spectra data of all control subjects (3D) Note the differentially 
expressed peak of 132,740 Da. 
[0020] FIG. 4 shows the MDA analysis for study windows 
of of approximately 20 m/z and 10 m/z. This spectrum section 
indicates the indicative site of potential biomarkers for clini-
cal diagnosis. 
[0021] FIG. 5 shows the mass spectrum for a section of the 
spectrum where one observes the presence of isotopic envel-
ops differently expressed in approximately 980 and 994 m/z 
in serum samples of control patients. 
[0022] FIG. 6. Demonstration of two methods for mapping 
mass spectra peaks to the feature space. Sections A and 6B 
show two simplified hypothetical mass spectra containing 
three peptides. The Y axis indicates MS signal intensity and 
the X axis the mass to charge ration of the ion (peptide). For 
the sake of simplicity, let all three peptide have a charge of +1, 
making the x axis represent mass. Each peptide appears as 
three consecutive peaks with a +1 Dalton shift in mass; char-
acterizing an isotopic envelope. 
[0023] On the top example, study windows are generated as 
to match the span of isotopic envelopes. A value for each 
study windows is addressed by integrating the MS signal 
within the window. Case A could be coded/clustered as an 
input vector according to the following example: 1:15 2:0 
3:13 4:0 5:16 where the numbers before the ":" indicate a 
respective dimension in the feature space and the numbers 
following the ":", hypothetically created, indicating the win-
dow value. The dimension for each feature could be assigned 
according to the initial X value comprehended within the 
window. 
[0024] The lower mass spectrum indicates another method 
for safely compressing the mass spectra data to the input 
vector format. A heuristics is applied to identify the peaks 
belonging to an isotopic distribution. Then an input vector is 
coded according to the example: 1:15 2:13 3:16 having thee 
dimension value assigned according to the mass of the 
monoisotopic peak for each feature. 
[0025] It should be noted that both methods show ways to 
compress thousands of peaks contained within the mass spec-
tra to features that correctly represent the corresponding pep-
tides, however in a lower dimensional feature space to avoid 
overfitting, so feature selection can be applied. 
[0026] FIG. 7: Sum of Pscores calculated for each combi-
nation of normalization/feature selection method when com-
paring the different spiked concentrations (legend), with (2B) 
and without (2A) log preprocessing. Lower bars indicate 
better performance. If a method performed poorly for a given 
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concentration, the maximum penalty was limited to one, thus 
the worst total score a method can obtain is 3. We recall that 
the Pscore is calculated by obtaining the Log,, of the sum of 
the ranks and subtracting 1. Note that SVM-F with and with-
out log preprocessing obtains a perfect score. 

DETAILED DESCRIPTION OF THE INVENTION 

[0027] The present invention addresses the problems exist-
ing in the state-of-art. In the first example, the method outputs 
a chart indicating in the mass spectra relevant sections where 
the biomarkers can be found. 
[0028] Differently that existing methods that simply apply 
mathematical and statistical methods directly to mass spectral 
peaks, in this example we will show that by clustering peaks 
in a study window, we are able to take advantage of isotopic 
distribution and obtain improved results. This happens 
because the study window could be set to match the size of 
protein isotopic envelopes and cluster MS peaks that origi-
nated from the same protein/peptide isotopic envelope. This 
preprocessing helps reduce the dimensionality of the feature 
space, thus dropping the chances of overfitting. 
[0029] Based on the MDA analysis one can find the regions 
of interest along the mass spectra having sites containing 
putative biomarkers to be identified, possibly by tandem mass 
spectrometry. 
[0030] The reason for searching for isotopic envelopes 
within mass spectra data is that proteins do not appear in the 
mass spectrum with one single peak, but it should have an 
isotopic envelope, or a series of peaks having an exact 1 Da 
difference if the ion acquired a +1 charge, 0.5 difference for 
+2 charge and so on. Taking advantage of this fact increases 
the conviction to obtaining a protein signature, to reduce 
overfitting. 
[0031] To exceed the limits of the state-of-art, having as 
main pillar the SVM analysis, or the maximum margin clas-
sifier, the invention is capable to deal with the sparseness, 
scarcity of the training set and assumes the lack of knowledge 
a priori of the quantity of the parameters required for the 
model. 
[0032] The method of present invention is based on the 
principle of structural risk minimization, a new principle of 
induction originating from the statistical learning theory 
introduced by Vapnik and Chervonenkis, an evolution of the 
previous empiric risk minimization (ERM). 
[0033] The present invention presents a method to avoid the 
loss of potential biomarkers through the use of the mass 
spectrometry technique, which uses the electrospray ioniza-
tion, in order to allow ionization of the fluid phase to the 
gaseous phase of larger quantity of proteins, and thus permit 
the analysis by mass spectrometry. 
[0034] As further demonstrated, a methodology of support 
vectors machines will be applied to classify samples of 
patients and control subject, by pre-selecting important infor-
mation from the entire proteomic profile obtained by mass 
spectrometry. 
[0035] The invention shall be now described with basis on 
examples, which should not be considered limiting of same. 

Example 1 

Collection of Blood Samples 

[0036] 30 blood samples from healthy blood donors and 
from 30 HD patients were collected immediately after the 
medical diagnosis but before the treatment initiation. Diag- 

nosis and histological classification were confirmed by a 
hematopathologist, according to WHO the WHO (World 
Health Organization) criteria. 
[0037] The presence of the Epstein-Barr (EBV) virus in the 
tumor cells were assessed through the immunohistochemical 
expression of the LMP protein —1 (latent membrane protein) 
with the use of the CSI-4 monoclonal antibody cocktail. 
[0038] The evaluation of the patients included complete 
history, physical examination, several scorings and complete 
blood samples, biochemical files, serology for HIV, thorax 
radiography, thorax and abdomen computer-assisted tomog-
raphy, bone marrow biopsy. 
[0039] The serum extracted from the patients' blood 
samples was stored in aliquots at a temperature of approxi-
mately —80° C. The tumor's stage, development and other 
pathologic information about the patients were stored in a 
computer database. 

Example 2 

Analysis of the Proteome 

[0040] Before analysis, an aliquot of each serum was 
thawed at room temperature and vortexed. Each sample was 
diluted 1:3 with Milli-Q graded water and desalted with Mil-
lipore's Zip-Tip C4 according to the manufacturer's manual. 
The final sample solution containing 2 µL was then diluted to 
10 µL by adding the sample preparation solution. 

Example 3 

Obtention of Mass Spectra 

[0041] All mass spectra were acquired using a quadrupole-
TOF hybrid mass spectrometer (Q-TOF Ultima, Micromass, 
Manchester, UK) equipped with a nano Z-spray source oper-
ating in positive ion mode. The ionization conditions used 
included a capillary voltage of 2.3 kV, a cone voltage and RF1 
lens of 30 V and 100 V, respectively, and collision energy of 
10 eV. The source temperature was 80° C. and the cone gas 
was N2  at a flow of 80 1/h; no nebulising gas was used to obtain 
the sprays Argon was used in the collision cell for ion colli-
sion cooling. External calibration with sodium iodide was 
performed over a mass range from 400 to 3000 m/z. All 
spectra were obtained with the TOF analyser in "V-mode" 
(TOF kV=9.1) and the MCP voltage set at 2.15 kV. 
[0042] Each sample was injected twice into the mass spec-
trometer source with a syringe pump at a flow rate of 1 
µL/min. during 2 min. using MCA mode. The whole system 
was washed with acetonitrile between injections. Data were 
collected from 400 to 3,000 m/z. 

Example 5 

Result of the Mass Spectrometer 

[0043] Each of the serum samples was injected at least 
twice in the mass spectrometer through a syringe that is 
attached to the source receiver device with a 1 µL/min flow 
rate during some 2 minutes using the analyzer TOF MCA 
module. At the intervals between the first serum samples 
injection and a second serum sample, all the system must be 
washed with an adequate solution, such as, acetonitrile. The 
data to be analyzed was collected at the spectrum preferential 
interval comprised between 400 and 3000 m/z. 
[0044] As to the mass spectrometry data at the interval of 
approximately 1200 to 2200 m/z, the data was submitted to a 
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computing treatment in the Masslynx 3 program. Such com-
puting program applies a smooth filter to reduce noises. The 
smooth filter was applied at 3 windows of the channel in order 
to use present invention method. 
[0045] The multi charge spectrum was then converted to a 
single charge spectrum for the interval of 8 kDa to 250 kDa 
using a maximum entropy algorithm which belongs to the 
Masslynx computing program However, other non-convolu-
tion programs using a similar computing approach can be 
used, not limited to the application of the program used in 
current invention. 
[0046] A 35 Da/channel preferential resolution with a dam-
age model of around 0.75 Da with half the height width, 
minimum intensity beams of approximately 65% to left and 
right was configured for this spectrum. The Mass/Intensity 
data was exported to the text files. 
[0047] The Mass/Intensity data was exported to the text 
files in the ASCII (.txt) format with the peaks resolution so to 
reach Dalton third decimal place of accuracy. 

Example 6 

Treatment of Data Obtained in the Spectrum Read- 
ing 

[0048] The data obtained after the spectrum readings treat-
ment was analyzed using the SVM strategy, which can be 
described as shown below (Vapnik, V.N.1995): 
[0049] Given a set of linearly separable training on the 
space of characteristics: S={(x i , y,),(X,,, y,)} which results 
in an equation of a linear classifier W Tx+b=0, where w is the 
normal vector and b is a value attributed to a obliquity, for an 
unknown sample with input vector x, such must be classified 
with <w,x>+b>=1 and classified as -1 if: <w,x>+b<=-1. 
[0050] FIG. 1 geometrically shows that the margin can be 
calculated in accordance with following development stages 
after the normal vector definition: 

<wx 1 >+b=1 	 (1.1) 

<wx2>+b=-1 	 (1.2) 

[0051] Subtracting eq. 1.1 from 1.2 yields 

w< 1-x2 >=2 	 (1.3) 

Projecting the difference vector on the normal vector w: 

1 	 2 	 (1.4) 

Ilwllw- 
<x1-x2>= 

 FRII 

[0052] The algorithm searches for the w's and b's space 
with the purpose of finding the maximum separation margin 
so to positioning a hyperplane. The better approach for this 
problem resolution is to converting such into a convex prob-
lem, in order to minimize a quadratic function under inequa-
tions restrictions. Therefore, such problem can be solved in its 
dual form applying the Lagrange treatment. 

1 	 (1.5)  

[0053] The solution of this problem is equivalent to above 
equation resolution in its dual form (Wolfe), only written as a 
function of dual variables. 

1 	 (1.6) 
MinLO _ 	a; - 2 Yi Yj ' i ' j  < Xi  . xj  > 

i=1 	j=1 

Subject to: E, a, y^-0 e a,?O 

[0054] The normal vector is obtained through this problem 
solution for the a* values 

w=E,a,*y1x„ for a;  *>0. 	 (1.7) 

[0055] In order to obtain a discriminating function f(x) 
=<w,x>+b the sloping parameter, b, must be computed. This 
is easily found applying the Karush-Kuhn-Tucker "supple-
mentary condition": 

a,(y,(<w,x,>+b)-1)-0. 	 (1.8) 

[0056] Above condition only applies to positive values of 
a^. These multipliers are associated to the points that define 
the position of the hyperplane, and are thus called supporting 
vectors. In this way, if the slop parameter is correctly com-
puted, we have a,>0, y,(<w,x,>+b)=1, in order to satisfy the 
"supplementary" equation. 

[0057] The approach for non separable data can be done by 
utilizing "slack variables" (^) and/or application of kernel 
functions in a non linear form (0) In this way, the problem 
optimization becomes: 

y,((w4(x,))+b- 1-^5 , ^ i-0, I=1, .. . , n 	 (1.9) 

[0058] The model allows some mistakes during the classi- 
fication process so that a new function is then optimized and: 

(1.10) 
1/211w11 2 +c^g; 

i= 1  

where C is a constant >0 and such related to the compromise 
between the empirical risk and the model complexity. The 
new formulation becomes. 

1 	 (1.11) 

Subject to: 

[0059] 

Ola C,i=1, ... n 	 (1.12) 

and also: 

(1.13) 
Y,' iyi = 0  
=1 

where: a, 3 0 are the variables in its dual form or Lagrange 
multipliers. 
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[0060] When introducing the "slack-variables", the 
Lagrange multipliers value is limited to a maximum of C 
(a, C). 

Example 7 

Preparation of the SVM Data 

[0061] The "ACESO" software (navigator under the spec-
trum set), developed in current work, was used to normalize 
the spectra intensity for values between 0 and 1, having, as a 
result of the maximum ion current, the value 1, adequate to 
the algorithm application. Additionally, an average value for 
the spectrum data is created based on the mass spectrum data, 
multiplied for each sample. 
[0062] For the peptides spectra (approximately 400-1200 
m/z), the software configures the spectrum data so they have 
around 1 Da of resolution by summing intermediate values. In 
this way, the "ACESO" software is actually formed by data in 
an optimized manner to classify and interact with the next 
stage, with SVMPP, to classify the information based on the 
"leave one out" approximations. 
[0063] The leave-one-out cross validation (LOO) is done 
by excluding one data file from the dataset, and using the rest 
as a training set. The algorithm builds a support vector model 
based on the training set and then tries to properly classify the 
excluded file by establishing on what side of the hyperplane it 
is placed. The process is repeated until all samples from the 
dataset have gone through the test. This enables to evaluate 
the error within the dataset, or the empirical risk, by verifying 
the percentage of misclassified samples. 
[0064] The algorithm of the current invention uses small 
spectrum portions as training set, so to search for regions 
where better accuracy can be obtained. 
[0065] The method accuracy is calculated as true positive 
(TP), true negative (TN), false positive (FP) and false negative 
(FN) functions, as shown in the equation: 

Accuracy°(ZP+T 1(ZP+TN+FP+FN). 

Example 8 

Obtention of Biomarkers 

[0066] The software "ACESO" in another moment was 
used to promote the search for biomarkers, through the analy-
ses of a small pre-scheme "window of studies". The window 
of studies is a small extension in m/z which opening is defined 
by the user 
[0067] Two distinct LOO analyses were carried out for all 
study windows so that it could stand in opposition to 59 
trained subjects schemes in the same window extension; one 
first group for the serum control samples and a second group 
for the patient's serum samples containing the Hodgkin Dis-
ease. 
[0068] The MDA analyses used a window for the approxi-
mate spectrum values of 100 m/z, 20 m/z and approximate 
spectrum values of 10 m/z to approximately 400 to 1200 m/z 
of extension and approximately 2,240 and 4,480 for 8 kDa at 
about 200 kDa extensions. 
[0069] The MDA data production is given by the report text 
file so to classify all inputs from all windows of studies, and 
a chart in which the ordinary distance for all approximate 
values from 0 to 100 represents the "healthy material" per-
centage classified in each LOO analysis. 
[0070] The chart abscissa had its extension analyzed in 
conformity with the data obtained on the total spectrum. Each 

and every "leave one out" analyzed data relative to each and 
every analyzed group were plotted and connected so to form 
a shortcut, which is shown in the chart abscissa. 
[0071] The MDA data chart presents two parallel lines on x 
axis, where, in an ideal case, the first line across x axis at 
100% and the second line across y axis at 0%. The upper line 
must represent the blood samples of the control patient group, 
so to indicate that about 100% of the control patients were 
classified as "healthy". 
[0072] The lower line must represent the blood samples of 
the HD patients group, meaning, non "healthy patients", so as 
to indicate that 0% of this group of patients were classified as 
"healthy". 
[0073] However, in a current data base, this result is not 
likely to happen. Maximum convergence points between the 
two straight lines of the chart must be visible, so as to repre-
sent the spectrum portion where most of the samples from 
control subjects and samples from HD patients have been 
"correctly" classified. 
[0074] These "hot spots" indicate regions in the chart, 
where the search for peaks differently expressed on the spec-
trum for biomarkers representation is the ideal. For this rea-
son, the SVM extension technique was labeled Maximum 
Divergence Analyses (MDA). 
[0075] The algorithm used for the supporting vector 
mechanism was able to classify approximately 93% of the 
control patients' blood samples and approximately 88% of 
the Hodgkin Disease-infected patients' blood samples using 
the "leave one out" technique, with approximately 90% accu-
racy. 
[0076] The control subject samples were classified either as 
belonging to a healthy class or sick class. The HD patients that 
were incorrectly classified are the patients: 4, 5, 16, 20, the 
serum samples identified as 5, 16 e 20 belong to HIV+ 
patients. 
[0077] The chances to select 4 patients, being 3 or more 
thereof, HIV+ patients for a population of 30 patients blood 
samples, which already had about 6 HIV+ patients is smaller 
than 1%. This fact indicates that the infection caused by HIV 
leads to a modification in the protein associated with the mass 
spectrum for Hodgkin disease patients. 
[0078] Within the HD group, the patient 4, who shows a 
histochemistry-immune negative test for the EBV virus, has 
also shown that, the progression stage of HD was in its early 
phase, which in turn suggests why the incorrect classification 
could have occurred. 
[0079] This methodology can be extended to the creation of 
other models, for example, the multiple diagnosis. The cur-
rent method of diagnosis system based on the SVM technique 
can be used for diagnosis on population which has DH 
patients and DH+HIV patients. 
[0080] On a second 400 to 1200 m/z spectrum reading 
interval, the supporting vector of the algorithm of supporting 
vector mechanism classified all control subjects and Hodgkin 
Disease patients "correctly" through the LOO technique. This 
result shows that for this spectrum interval, the data obtained 
indicates that the extension of approximately 400 to 1200 mlz 
is the most recommended extension in the classification use 
for the Hodgkin Disease associated to other pathologies than 
high molecular mass data, as listed in the state-of-art. 
[0081] FIG. 2 shows the MDA analyses results with the use 
of an opening on the window of studies of approximately 
2240 and 4480 Da. The analyses for the window of studies of 
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approximately 4480 Da shows an important divergence 
region around the area of approximately 130 kDa 
[0082] Approximately at 2240 Da, the MDA analyses 
result confirms this key segment approximately in between 
the values of 131 kDa and 133 kDa, so as to present an 
optimum divergence. The MDA analyses in this region for all 
serum samples from control patients and Hodgkin Disease 
infected patients express different peaks of approximately 
132, 740 Da, 97% of Hodgkin Disease infected patients and 
97% for the serum of control patient's blood samples, these 
peaks are not expressed. 
[0083] The patients number 305 and again 16 were errone-
ously classified on the other point of maximum divergence 
between the spectra. 
[0084] An efficient way to examine many spectra in the 
search for biomarkers is the comparison of the average of all 
corresponding spectra at each peak, for each class. 
[0085] The spectrum average was built through the deter-
mination of the mass intensity average of each peak for each 
one of the groups. The mass spectrum for this region is shown 
on FIG. 3, the peak presence expressed in approximately 132, 
740 Da for blood samples of control patients is differently 
expressed for blood samples of Hodgkin Disease infected 
patients. 
[0086] The MDA analyses for the windows of studies of 
approximately 20 m/z and 10 m/z clearly shows the extension 
segment divergence of approximately 980 m/z to 1000 m/z 
with approximate maximum divergence between 990 m/z-
1000 m/z, as shown in FIG. 4. This region of the spectrum 
indicates the indicative site to potential biomarkers for clini-
cal diagnosis. 
[0087] According to FIG. 5, the mass spectrum for a region 
of approximately 980 m/z shows the presence of isotopic 
envelops differently expressed in approximately 980 and 994 
m/z in blood samples of control patients Such isotopic envel-
ops are not expressed in blood samples of Hodgkin Disease 
patients. 
[0088] By the performance of approximation of the "leave 
one out" analyses only under the segment between about 990 
and 1,000 Da, approximately 97% of patients infected by the 
Hodgkin. Disease were "correctly" classified just like 
approximately 91% of the control patients' blood sample, as 
shown in FIG. 5. The control patients' blood samples, due to 
the inaccurate classification, are 5 and 299. One incorrect 
classification of the blood samples from patients #9 with 
Hodgkin Disease has shown a negative histochemistry-im-
mune for the EBV virus. 
[0089] To promote the study of the control material samples 
5 and 299, the PCR test was performed for the EBV virus, 
where the positive results shown for both the control patient 5 
and 299 serum samples were confirmed. A large number of 
patients with Hodgkin Disease also showed a high rate of 
EBV antibody in their serum. 

[0090] The classification "not expected" of patients 5 and 
299 was due to the presence of EBV high rates in the patients' 
serums. The proposed model on the current invention was 
trained based on patients with HD, who also had the EBV 
virus. Thus, the presence of the EBV virus was detected in 
their serums, which led to the incorrect classification of these 
patients. 

[0091] The evolution of the large spectrometric masses 
both for the blood samples of the HD patients and for the 
blood samples of control subjects, recognized as control mat- 

ter, prove that the model was capable to classify individuals 
with closer accuracy (400-1,200 m/z), than in the largest 
molecular mass zone. 
[0092] According to the data achieved for the spectrum 
extended to approximately 1200-2200 m/z as shown on FIG. 
4, a satisfactory number of correct achievements was reached 
in the classification process, but the method was able to reveal 
"hot spots" on the spectrum. These "hot spots" are able to 
separate the results obtained with control patients, those of 
HD patients, besides discriminating patterns originating from 
HIV virus and EBV virus. 
[0093] The MDA analyses can be construed as a selection 
aspect, and each isolated aspect represents a new biomarker 
for medical diagnosis. In the present invention, about 100% 
of the control matter samples and Hodgkin Disease infected 
patients samples were correctly classified in the approximate 
extension of 400-1200 m/z. 
[0094] Through the method developed by the present 
invention, a quick cancer diagnosis is possible allowing a 
customized treatment. 

Example 1 

[0095] Before demonstrating other methods of pre-cluster-
ing peaks, we clarify the concepts that went on and show a few 
variants by referring to FIG. 6. 
[0096] FIG. 6. Demonstration of two methods for mapping 
mass spectra peaks to the feature space. Sections A and 6B 
show two simplified hypothetical mass spectra containing 
three peptides. The Y axis indicates MS signal intensity and 
the X axis the mass to charge ration of the ion (peptide). For 
the sake of simplicity, let all three peptide have a charge of +1, 
making the x axis represent mass. Each peptide appears as 
three consecutive peaks with a +1 Dalton shift in mass; char-
acterizing an isotopic envelope. 
[0097] On the top example, study windows are generated as 
to match the span of isotopic envelopes. A value for each 
study windows is addressed by integrating the MS signal 
within the window. Case A could be coded/clustered as an 
input vector according to the following example: 1:15 2:0 
3:13 4:0 5:16 where the numbers before the ":" indicate a 
respective dimension in the feature space and the numbers 
following the ":", hypotheticaly created, indicating the win-
dow value. The dimension for each feature could be assigned 
according to the initial X value comprehended within the 
window. 
[0098] The lower mass spectrum indicates another method 
for safely compressing the mass spectra data to the input 
vector format. A heuristics is applied to identify the peaks 
belonging to an isotopic distribution. Then an input vector is 
coded according to the example: 1:15 2:13 3:16 having thee 
dimension value assigned according to the mass of the 
monoisotopic peak for each feature. 
[0099] It should be noted that both methods show ways to 
compress thousands of peaks contained within the mass spec-
tra to features that correctly represent the corresponding pep-
tides, however in a lower dimensional feature space to avoid 
overfitting, so feature selection can be applied. 

Example 2 

[0100] To exemplify another method of the present inven-
tion, it will be study a type of database. The first one, above 
exemplified, is originated from serum samples from thirty 
control subjects and thirty Hodgkin's disease (HD) patients 
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(MS data). The second database (composed of LC/LC/MS/ 
MS data) is obtained from yeast lysate with artificially spiked 
proteins, and we show, according to the proposed methodol-
ogy in the invention, that by defining the various "study 
windows" of interest and then searching for patterns, we were 
able to detect how many and which proteins were spiked in 
the yeast lysate. 

Example A 

Searching for Differences in LC-LC-MS-MS Data, 
Grouping the Data by Spectral Counts and Searching 
for Patterns Basing on the Structure Risk Minimiza- 

tion Principle 

[0101] The need for higher sensitivity, better reproducibil-
ity and the ability to analyze samples of greater complexity 
have led to the use of liquid chromatography with electro-
spray mass spectrometry (LC-MS) to profile digested protein 
mixtures. Elimination of the data dependent tandem mass 
spectrometry process enhances the detection of ions since the 
instrument spends less time acquiring tandem mass spectra 
and the lack of alternating MS and MS/MS scans improves 
the ability to compare analyses. Becker et al used ion chro-
matograms from an LC-MS system to identify differences 
between samples including complex mixtures such as 
digested serum with reasonable variation in the analyses (39). 
Wiener et al. used replicate LC-MS analyses to develop sta-
tistically significant differential displays of peptides (40). 
These approaches divide the comparison and identification 
processes to first identify chromatographic and ion differ-
ences and then to identify the peptides responsible for the 
differences in much the same strategy as used in 2-DGE 
analyses. To reduce comparison errors and ambiguities 
between samples, chromatographic peak alignment is 
increasingly used (41-47). 
[0102] Multi-dimensional liquid chromatography coupled 
with tandem mass spectrometry has been used to analyze 
proteolytically digested complex protein mixtures (48). This 
approach has been used to analyze protein complexes, 
organelles, cells and tissues and to compare differences 
between samples (49-51). By using the numbers of tandem 
mass spectra obtained for each protein or "spectral counting" 
as a surrogate for protein abundance in a mixture, Liu et al. 
demonstrated the use of LC/LC/MS/MS to obtain semi-quan-
titative data on mixtures (52). Because of the more complex 
nature of the 2-D LC method and the alternating acquisition 
of mass spectra and tandem mass spectra, chromatographic 
alignment is far more complicated than by using LC-MS and 
therefore data are most often analyzed from the perspective of 
tandem mass spectra and identified proteins. Two issues with 
the use of LC/LC/MS/MS analyses to compare samples 
involve the normalization of spectral counting data and the 
identification of differences between samples. Here we evalu-
ate a machine learning approach to facilitate classification 
and sample comparison of shotgun proteomics data Our aim 
was to determine whether spectral counting could pinpoint 
protein markers that were added at different concentrations 
into complex protein mixtures (yeast lysate). To achieve this, 
we evaluated different combinations of normalization/feature 
selection methods. To identify the combination that best per-
formed on our dataset we used the support vector machine 
(SVM), the leave-one-out (LOO) cross-validation method 
and the Vapnik-Chervonenkis (VC) confidence to estimate 

the upper bounds on generalization performance in terms of a 
classification function's separating margin distribution (32). 

Example A. 1 

MuDPIT Spectral Count Acquisition from Yeast 
Lysate having Spiked Proteins 

[0103] Four aliquots of 400 µg of a soluble yeast total cell 
lysate were mixed with Bio-Rad SDS-PAGE low range 
weight standards containing phosphorylase b, serum albu-
min, ovalbumin, lysozyme, carbonic anhydrase and trypsin 
inhibitor at relative levels of 25%, 2.5%, 1.25%, and 0.25% of 
the final mixtures' total weight, respectively (FIG. 1.1). Each 
sample was sequentially digested, under the same conditions, 
with Endoproteinase Lys-C and trypsin. Approximately 70 µg 
of digested peptide mixture were loaded onto a biphasic 
(strong cation exchange/reversed phase) capillary column 
and washed with a buffer containing 5% acetonitrile, 0.1% 
formic acid diluted in DDI water. Two-dimensional liquid 
chromatography (2DLC) separation and tandem mass spec-
trometry conditions as described by Washburn et al were used 
for the analysis (54) (FIG. 1.2) The flow rate used at the tip of 
the biphasic column was 300 nL/min when the mobile phase 
composition was 95% H20, 5% acetonitrile, and 0.1% formic 
acid. The ion trap mass spectrometer, Finnigan LCQ Deca 
(Thermo Electron, Woburn, Mass.) was set to the data-depen-
dent acquisition mode with dynamic exclusion turned on. 
One MS survey scan was followed by four MS/MS scans. The 
target value was 1 x10 $  for MS and 7x10 7  for MS/MS. Maxi-
mum ion injection time was set to 100 ms. Each aliquot of the 
digested yeast cell lysate was analyzed 3 times. The data sets 
were searched using a modified version of the Pep_Prob 
algorithm (55) against a database combining yeast and human 
protein sequences (FIG. 1.3). The sequences of phosphory-
lase b, serum albumin, ovalbumin, carbonic anhydrase, 
trypsin inhibitor, lysozyme, and some common protein con-
taminants (e.g., keratin) were added to the database. The 
result files use the .txt format and were named after their 
acquisition date followed by a "—" and either 1, 5, 10 or 100 
to indicate the percentage of markers added (0.25, 1.25, 2.5, 
and 25% respectively). 

Example A.2 

Generation of the Study Dataset 

[0104] A program named MPDiff (MuDPIT Difference 
Finder) created for this study was employed to parse the 
output of protein identifications into a format more suitable 
for the feature selection/machine learning process. Firstly, 
MPDiff reads the DTASelect files (56) placed in a selected 
directory and generates an output file called "index.txt". The 
latter lists all the proteins identified in all the MuDPIT runs-
assigning a unique Protein Index Number (PIN) to every 
identified protein. Secondly, the program generates a sparse 
matrix (model.txt) where each row is an input vector (IV). An 
IV contains the spectral count information acquired during 
one MuDPIT run by listing PINs followed by the correspond-
ing spectral counts. We also refer to each component of the IV, 
a PIN, as a feature. The classifications performed here are 
limited to two-class classification problems, the two classes 
being referred to as the positive (+) and negative (—) classes. 
An example of an IV having spectral count values of 3, 5 and 
6 for PINS 1, 2 and 3 respectively is "+1 1:3 2:5 3:6' ; the +1 
indicates that the IV belongs to the positive class. 
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[0105] The sparse matrix generated for this study is com-
posed of 15 IVs, obtained from 15 independent MuDPIT runs 
with different percentages of protein markers spiked in the 
yeast lysate (4 runs with spiked markers representing 25% of 
the total protein content, 4 with 2.5%, 3 with 1.25% and 4 
with 0.25%). We note that each IV had approximately 1000 
PINs and a total of 2181 PINs were detected among all 15 IVs, 
showing that many proteins were not identified in all runs. 
Since our aim was to verify whether the feature selection 
methods were able to pinpoint proteins having different 
expression levels in complex mixtures we created four sparse 
matrixes. Each matrix is identical to all others except for the 
IV class labels. In the first matrix; the input vectors originated 
from the 25% protein spiking were labeled as belonging to the 
positive class and all the rest as to the negative class. On the 
second matrix, the 25% and the 2.5% input vectors were 
labeled as from the positive class and the rest from the nega-
tive class; and so forth From here on we refer to each matrix 
as a training dataset to be used in a classification problem. 

Example A.3 

Data Normalization 

[0106] The normalization methods described below were 
carried out using MPDiff 

A.3.1 Normalization by Total Spectral Counting 
(TSC) 

[0107] Let SCE  be the spectral count associated with PIN i 
in IV j. The total spectral count of IV j is 

TSC1 _ 	SCE. 	 (1) 

[0108] The normalization by TSC of IV j is obtained by 
performing 

SC 	 (2) SC — 	for all i. 
TSC, 

A.3.2 Golub's Normalization/Preprocessing (GP) 

[0109] The following preprocessing step was used by 
Golub when analyzing microarray data (57). For PIN i let µ^ 
be the mean of SC E  over all j, and similarly a, the standard 
deviation. Normalization is achieved by performing 

(3) 
SC1 F 

for all j. The mean of the resulting SC E, over all j is then zero 
and the standard deviation is 1. We note that GP is carried out 
over each matrix column while TSC is performed on each 
matrix row. 

A.3.3 Hybrid Normalization (TSC—GP) 

[0110] This is obtained by TSC followed by GP. 

A.3.4 Log Preprocessing 

[0111] Taking the logarithm of the spectral count data was 
also evaluated as a preprocessing step before the above nor-
malization steps, 

SCu—ln(SC) 	 (4) 

[0112] Our aim was to increase the signal of the PINs with 
low spectral counts with respect to the "highly abundant" 
PINs. 

A.4 Feature Selection/Ranking 

[0113] For this study, we evaluated Golub's correlation 
coefficient (GI), SVM-RFE and a method we call forward-
SVM (SVM-F). These feature selection/ranking methods 
were carried out using MPDiff. 

A.4.1 Golub's Correlation Coefficient (GI) 

[0114] For PIN i, Golub's correlation coefficient (58) is 
defined by 

Gl;  _ 	 (5) 
c-; + c  

where t7, µ^ , a^+, and o, are the means and standard devia-
tions corresponding to the positive (+) or negative (—) class of 
PIN i. The larger a positive GI B, the stronger the PINs corre-
lation with the positive class, whereas the larger a negative 
GI, the stronger the correlation with the negative class. For 
our goal of class-independent feature ranking we simply took 
absolute values. 

A.4.2 Support Vector Machine (SVM) 

[0115] SVMs constitute a supervised learning method 
based on statistical learning theory and the principle of struc-
tural risk minimization (59) SVMs have been successfully 
used in a number of applications, including particle and face 
identification (60), text categorization (61), database market-
ing, and extensively in bioinformatics for the prediction of 
protein folds (62), siRNA functionality (63), rRNA, DNA and 
DNA-binding proteins (64), etc. An SVM model is evaluated 
using the most informative patterns in the data (the so-called 
support vectors) and is capable of separating two classes by 
finding an optimal hyperplane of maximum margin between 
the corresponding data. 
[0116] Briefly, in the linearly separable case the SVM 
approach consists of finding a vector w in the feature space 
and a scalar b such that the hyperplane (w, x)+b can be used 
to decide the class, + or —, of input vector x (respectively if 
(w, x)+b?0 or (w, x)+b<0). During the training phase, 
the models compromise between the empiric risk and its 
complexity (related with generalization capacity) is con-
trolled by a cost parameter C, that is a constant >0. We refer 
the reader to Vapinik's book for further details of the SVM 
approach, including how to obtain w and b from the training 
dataset (32). To carry out SVM modeling, MPDiff wraps 
SVMlight (65). 

A.4.3 SVM-F Feature Ranking 

[0117] SVM-F feature ranking is performed on the SVM 
model of the whole training set. If w is the corresponding 
vector in the feature space and w, is the coordinate in w that 
corresponds to PIN I, SVM-F ranks features in decreasing 
order of w^ 2 . Clearly the lowest ranking PINs influence the 
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hyperplane the least. SVM-F's output consists of the PINs 	separating margin between classes and the smallest radius of 
ordered and listed side by side with their ranking score. 	the hyphersphere that encompasses all input vectors. 

A 4.4 SVM-RFE 

[0118] SVM-RFE consists of recursively applying SVM-F 
on a succession of SVM models. The first of these corre-
sponds to the whole training set; for k>1, the kth SVM model 
corresponds to the previously used training set after the 
removal of all entries that refer to the least-ranking PIN (ac-
cording to SVM-F). The SVM models are then built on suc-
cessively lower-dimensional spaces. Termination occurs 
when a desired dimensionality is reached or some other cri-
terion is met. Since features are removed one at the time, an 
importance ranking can also be established. 

Example A.5 

Evaluation of Combined Normalization and Feature- 
Ranking Methods 

[0119] Combinations of the methods described were used 
to verify whether the spiked proteins could be pinpointed 
when comparing mixtures having markers spiked with differ-
ent concentrations. In the ideal case, the four spiked proteins 
should achieve the top feature ranks. The ranks of the spiked 
proteins are listed in Tables S-I and S-II for the various 
method combinations and concentration comparisons. The 
tables also show, in each case, a penalty score (Pscore) used to 
evaluate each method. This score plus one is the logarithm to 
the base 10 of the summed ranks of the four markers. Clearly, 
the ideal ranks yield a (minimum) Pscore of 0. 

Example A.6 

Evaluation of The Normalization Methods 

[0120] By using only the spectral counts of the spiked pro-
teins, SVM models were calculated varying its C's from 2 to 
100 with a step of 2 for all normalization methods. The C's 
that achieved a minimum LOO error or VC confidence were 
recorded. In either case, the LOO error, the VC confidence 
and the number of support vectors of the model were also 
recorded (Table S-III). We note that LOO error and VC con-
fidence are respectively ways of measuring a model's empiri-
cal risk (the error within the dataset) and how much may be 
added to that risk as the model is applied on a new dataset 
(generalization capacity). 
[0121] The LOO technique consists of removing one 
example from the training set, computing the decision func-
tion with the remaining training data and then testing on the 
removed example. In this fashion one tests all examples of the 
training data and measures the fraction of errors over the total 
number of training examples. 
[0122] The models VC confidence has roots in statistical 
learning theory (32) and is given by 

h(ln(21/h)+1)—ln(ij/4) 	 (6)  
VC confidence= 

where h is the VC dimension of the models feature space, 1 is 
the number of training samples and 1-r^ being the classifica-
tion function's desired confidence. We recall that, given an 
SVM model, the VC dimension is a known function of the 

Example A.7 

Predicting how Many Proteins were Spiked 

[0123] Feature ranking can be combined with methods that 
predict how many features are significant. Here, predicting 
the number of features is equivalent to estimate how many 
proteins were spiked. All feature ranking methods we used 
output a two-column list having features (PINs) ordered by 
their ranks in the first column and the method's score for each 
PIN in the second column. The number of spiked proteins was 
estimated by locating in this output list, the two consecutive 
rows that present the greatest difference in score values. The 
number of features is then computed by counting how many 
features have scores above this gap's upper limit. 

Example A.8 

A.8.1 Evaluation of the Feature Selection/Ranking 
Methods 

[0124] An efficient feature ranking criterion should select 
the features that best contribute to a learning machine's ability 
to "separate" data (e.g. cancer vs. normal), reduce pattern 
recognition costs and make the model less prone to overfitting 
Translational studies usually hold limited amount of samples 
and have a high dimensionality (many features), making fea-
ture selection and evaluation of the generalization capacity 
imperative steps. By spiking proteins within yeast lysates and 
detecting them, we perform a proof of principle of the poten-
tial of using spectral counts and SVM to identify differences 
and perform classification in proteomic profiles. 
[0125] To exemplify the importance of an appropriate fea-
ture selection method, we recall that Guyon et al. applied 
SVM-RFE to colon cancer microarray data (n=62 d=2000), 
selecting 4 genes that yielded a 98% classification accuracy, 
while the baseline method only reduced the dataset to 64 
genes with 86% accuracy (66). It is believed that SVM out-
performs most methods (i.e. linear discriminant analysis, 
neural networks, PCA), especially for sparse and high-di-
mensional datasets, because it simultaneously minimizes the 
error contained within the dataset (empirical risk) and a func-
tion that bounds the generalization error for future samples. 
[0126] Both SVM-F and SVM-RFE are multivariate fea-
ture selection methods (they use combined information from 
all the features), while GI is a univariate feature selection 
method and such is influenced by only one feature at a time. 
In our hands, for the yeast MuDPIT spectral count dataset, 
both Golub's preprocessing, with and without log preprocess-
ing and the use of raw data with the log preprocessing fol-
lowed by SVM-F achieved a perfect score, pinpointing all 
spiked proteins for all configurations over the 10 2  dynamic 
range tested. These results are shown in Tables S-I, S-II and 
FIG. 6. 
[0127] Overall, the greatest difficulties found in the meth-
ods were in finding the spiked markers for the 2512.5, 1.25, 
0.25 separation. We hypothesize that this originates from 
limitations in both the feature selection methods and the 
experimental procedure used From the machine learning per-
spective, according to Cover and Van Campenhout no non-
exhaustive sequential feature selection procedure is guaran-
teed to find the optimal feature subset or list the ordering of 
the error probabilities (67). We do not use exhaustive feature 
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searching since the number of subset possibilities grows 
exponentially with the number of features; this method 
quickly becomes unfeasible, even for a moderate number of 
features. Less abundant proteins are not identified in every 
MuDPIT analysis, generating a bias toward the acquisition of 
more abundant peptide ions. Thus, less abundant proteins are 
identified by less peptides and their identifications can some-
times be suppressed by peptides from highly abundant pro-
teins. Liu et al. addressed the randomness of protein identifi-
cation by MuDPIT for complex mixtures. (68). The input 
vectors originating from the 25% spiking show that less PINs 
were identified during these runs (-700), contrasting with 
—1000 PINs from the other runs. This lack of PINS may have 
driven the SVM-RFE toward an "undesired direction" while 
recursively eliminating the features. During the RFE compu-
tation and before narrowing down to —600 features, the 
weights of the normal vector (w) still included the spiked 
proteins among the most important features. 

[0128] Although we have successfully identified the spiked 
proteins, there could be variants of the presented method that 
could perform better for datasets of different nature The 
methods employed here are "greedy", in the sense that they 
quickly narrow down to what could be local optimal solu-
tions. The quest for the global optimum in high-dimensional 
feature spaces still remains a challenge for pattern recogni-
tion. Distributed computing, coupled with algorithms that can 
efficiently rake the feature space (genetic algorithms (18;69), 
swarms (70), etc.), holds promises for proteomics of mining 
datasets more complex than the ones we addressed. Among 
the possibilities lies the application of feature selection meth-
ods in raw MuDPIT data (MS and MS/MS mass spectra). The 
patterns search would rely on the counting of mass spectral 
peaks with their respective ion intensities instead of how 
many times a specific protein/peptide was identified. Raw 
data studies hold the promise to identify post-translational 
modifications and draw database independent conclusions. 
To search for patterns within this type of dataset, genetic 
algorithms with SVM-based fitness functions could be 
employed, and constitute a path to better study the nature of 
pathogen interactions and diseases. The different solutions 
and correlations provided by these methods could also help 
identify protein-protein interactions. 

Example A.9 

Evaluation of the Normalization Methods Regarding 
Dataset "Separability" 

[0129] Given that more than one method is able to select the 
spiked proteins, which one is best? Since spiked markers exist 
in contain different concentrations in each class and that 
spectral counts correlate with protein abundance, there 
should be a linear function capable of separating the input 
vectors containing only the spectral count information of the 
spiked proteins. To further evaluate the generalization capac-
ity of the model, we used the VC confidence. 

[0130] Both GP and log preprocessed data allowed SVM-F 
to correctly select the spiked proteins and yielded a 0% LOO 
for all spiking configurations (Table S-III). VC confidence 
shows that for the 2512.5 and the 2.511.2.5 separations under 
GP there is a greater capacity than for 1.2510.25, thus here the 
lower masses made it harder for GP preprocessing. On the 
other hand, the LN preprocessed data separated better in the 

lower masses, probably because of the nature of the log func-
tion which discriminates lower values better than larger val-
ues. 

Example A.10 

Predicting the Number of Spiked Proteins 

[0131] Overall, according to our benchmarks strategy, GP 
normalization followed by SVM-F was the method that 
obtained a perfect score for the yeast MuDPIT dataset. The 
method used to predict the number of spiked markers 
described in section 2.7 was applied to the GP/SVM-F results 
and it correctly identified the number of spiked markers as 
being 4 for all three separations of spiked marker possibili-
ties. 
[0132] The acquisition of data using shotgun proteomics 
provides information about the abundance of proteins based 
on the number of tandem mass spectra acquired per protein. 
In the course of a MuDPIT experiment this information is 
automatically acquired. In this study we set out to address 
whether the data from spectral counts can be normalized and 
then classified using pattern recognition techniques The 
above results conclude that GP followed by SVM-F applied 
to the yeast MuDPIT spectral count dataset is an effective 
method for finding differences in this type of data. The meth-
odology described was also capable of correctly identifying 
how many markers were spiked in the lysate. Addressing the 
number of features is important especially to avoid overfit-
ting. It is expected that the presented method should perform 
satisfactory for other yeast experiments where data is simi-
larly experimentally acquired. It is expected that this method 
should also achieve a good performance for proteomics 
datasets of similar nature. 
[0133] Most importantly, we show a method to validate a 
computational approach for a proteomic study. A dataset's 
high dimensionality, scarceness, and lack of a known a priori 
probability distribution could easily "play tricks" on well 
founded pattern recognition techniques. Thus, we also note 
the importance of optimizing ones pattern recognition 
method with the nature of their experiment and data acquisi-
tion methodology. As shown in our results, even the state-of-
the-art SVM-RFE failed to obtain satisfactory results for our 
dataset, however, according to Guyon et al. it outperformed 
various other methods in their microarray data (71). Interest-
ingly, the same GP followed by GI also evaluated in Guyon et 
al. outperformed SVM-RFE for our dataset. An experiment 
using SVM-RFE on yeast having the proteomic profile 
mapped with MuDPIT/spectral could lead to false conclu-
sions. This shows that pattern recognition methods can per-
form differently on datasets of distinctive nature pointing out 
that there is no "one suits all" method. Thus, it becomes 
imperative to previously validate a computational approach 
with ones experimental methodology before drawing conclu-
sions when dealing with complex datasets 

Table S-I. Normalization and Feature Selection Results 
(C=100) 

[0134] The first column lists the spiked proteins we 
tracked; phosphorylase b (PHS2), serum albumin (ALB), 
carbonic anhydrase (CAH) and trypsin inhibitor (ITRA). The 
top row lists the normalization methods; total spectral count 
(TSC), Golub's preprocessing (GP) and TSC followed by GP 
GI, SVM-F and SVM-RFE stand for Golub Index, Forward 
SVM and SVM-Recursive Feature Elimination; the three fea- 



US 2010/0017356 Al 
	

Jan. 21, 2010 
11 

ture selection methods. The three yellow rows that span 
across the table indicate the different matrixes analyses (refer 
to the end of section 2.2) (i.e. 2512.5, 1.25, 0.25 indicates that 
the input vectors decurrently from yeast lysate having 25% of 
their protein content from spiked markers composed the posi-
tive class). The numbers indicate the rank of the protein 
markers among the various other proteins present in the yeast 

lysate. To qualify the method combinations, we used a pen-
alty score (Pscore) that is calculated by the Log (sum of the 
ranks) -1. Here we used 10 as the log's base; thus for a perfect 
score the ranks would add up to 10 (4+3+2+1), the Log would 
yield 1 and after the subtraction of 1, the final Pscore would be 
0 The Tscore is the sum of the Pscores for a given method and 
is used to quickly browse who performed best. 

TABLE S-II 

GI 

TSC 

SVM-F 

Normalization and Feature Selection Results 
(C = 100) having LN as a preprocessing step. 

Refer to the legend of Table S-I. Log e  was used as a 
preprocessing step before qualifying the feature selection method. 

No Log treatment 

	

GP 	 TSC->GP 

SVM- 	 SVM- 	 SVM- 
RFE 	GI 	SVM-F 	RFE 	GI 	SVM-F 	RFE GI 

UD 

SVM-F 
SVM- 
RFE 

Separating condition 2512.5, 1.25, 0.25 

PHS2 3 3 342 2 	4 	6 	3 	1 4 2 3 1242 
ALB 1 1 340 1 	2 	7 	1 	2 1 1 1 469 
CAH 4 4 343 17 	3 	2 	4 	4 5 18 5 1261 
ITRA 2 2 341 3 	1 	1 	2 	3 2 3 2 476 
Pscore 0 0 2.14 0.36 	0 	0.20 	0 	0 0.08 0.38 0.04 2.54 

Separating condition 25, 2.511.25, 0.25 

PHS2 2 5 7 4 	4 	14 	2 	6 56 4 4 20 
ALB 1 1 1 1 	2 	1 	1 	3 18 1 1 14 
CAH 4 3 4 2 	1 	4 	4 	1 23 2 3 16 
ITRA 3 2 2 3 	3 	12 	3 	2 22 3 2 15 
Pscore 0 0.04 0.15 0 	0 	0.49 	0 	0.08 1.08 0 0 0.81 

Separating condition 25, 2.5, 1.2510.25 

PHS2 352 4 173 10 	4 	18 	352 	7 15 9 4 315 
ALB 348 1 8 2 	1 	2 	348 	5 54 2 1 313 
CAH 357 3 6 1 	2 	1 	357 	3 61 1 3 312 
ITRA 361 2 12 3 	3 	17 	361 	6 43 3 2 314 
Pscore 2.15 0 1.30 0.20 	0 	0.58 	2.15 	0.32 1.24 0.18 0 2.10 
Tscore 2.15 0.04 3.59 0.56 	0 	1.27 	2.15 	2.4 2.4 0.56 0.04 5.45 

TABLE S-III 

Linear SVM separability analysis 
Loa_ treatment 

TSC GP 	 TSC->GP UD 

SVM- SVM- SVM- SVM- 
GI SVM-F RFE GI 	SVM-F 	RFE 	GI 	SVM-F RFE GI SVM-F RFE 

Separating condition 2512.5, 1.25, 0.25 

PHS2 59 359 522 31 	1 	7 	59 	228 194 31 1 6 
ALB 7 75 373 58 	2 	6 	7 	2 11 58 3 8 
CAH 6 75 372 252 	4 	22 	6 	1 5 252 2 11 
ITRA 8 101 375 87 	3 	14 	8 	3 8 87 4 10 
Pscore 0.90 1.79 2.22 1.63 	0 	0.69 	0.90 	1.37 1.34 1.63 0 0.54 

Separating condition 25, 2.511.25, 0.25 

PHS2 1017 351 432 2 	1 	1 	1017 	234 312 2 1 1 
ALB 9 80 25 1 	4 	2 	9 	2 7 1 3 3 
CAH 6 75 38 5 	3 	15 	6 	1 1 5 2 8 
ITRA 30 88 32 3 	2 	7 	30 	3 6 3 4 7 
Pscore 2.03 1.77 1.72 0.04 	0 	0.40 	2.03 	1.38 1.51 0.04 0 0.28 

Separating condition 25, 2.5, 1.2510.25 

PHS2 2088 407 512 4 	2 	3 	2088 	247 354 4 1 9 
ALB 892 91 83 2 	3 	7 	892 	2 10 2 3 8 
CAH 664 82 56 1 	4 	1 	664 	1 2 1 2 1 
ITRA 1352 100 113 3 	1 	2 	1352 	3 11 3 4 7 
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TABLE S-III-continued 

Linear SVM separability analysis. 
Log, treatment 

TSC GP 	 TSC->GP UD 

SVM- SVM- SVM- SVM- 
GI 	SVM-F RFE GI 	SVM-F 	RFE 	GI 	SVM-F RFE GI 	SVM-F RFE 

Pscore 	2.70 	1.83 1.88 0 	0 	0.11 	2.72 	1.38 1.58 0 	0 0.40 
Tscore 	5.63 	5.39 5.82 1.67 	0 	1.2 	5.65 	4.13 4.43 1.67 	0 1.22 

[0135] C for Min VC and C for min LOO represent the C 
value used during the SVM training that achieved the mini-
mum VC Confidence and the minimum leave-one-out (LOO) 
error respectively. The VC-LOO and the mLOO are the LOO 
errors obtained for the C for Min VC and C for min LOO are 
used during the SVM training phase. VC-Conf-mLOO and 
VC-Conf-mVC represent the models VC confidence when 
the model was trained with the C value that produced the 
minimum LOO and the minimum VC confidence respec-
tively. The VC-LOO-SV and the mLOO-SV represent the 
number of support vectors contained in the classification 
model when trained with the C for Min VC and C for Min 
LOO respectively. 

Example B 

[0136] No non-exhaustive feature selection methods are 
not guaranteed to find the optimal solution, but exhaustive 
feature search is impractical in problems of high dimension-
ality. By grouping the protein information into spectral 
counts, or by peaks following the MDA approach, it is also 
possible to perform semi-exhaustive search using advance 
heuristics. Such methodology can take advantage of genetic 
algorithms, so besides performing the information clustering, 
for the first time, it is also demonstrated a genetic algorithm 
having its fitness function based on the structure risk minimi-
zation principle. We apply this method on the same dataset 
acquired in Example two. 

Norm. TSC 

No Log treatment 

TSC->GP 	GP UD TSC 

Log treatment 

GP 	TSC->GP UD 

Spiking condition 2512.5, 1.25, 0.25 

C for Min VC 2 2 2 2 2 2 2 2 

C for min LOO 86 2 2 2 2 2 2 2 

VC-LOO 0.27 0 0 0 0 0 0 0 

mLOO 0 0 0 0 0 0 0 0 

VC-Conf- 1.011 1.333 1.027 1.871 2.301 1.949 1.501 2.503 

mLOO 

VC-Conf-mVC 0.624 1.333 1.027 1.871 2.301 1.949 1.501 2.503 

VC-LOO-SV 8 3 2 2 3 4 2 3 

mLOO-SV 8 3 2 2 3 4 2 3 

Spiking condition 25, 2.511.25, 0.25 

C for Min VC 2 2 2 2 2 2 2 2 

C for min LOO 2 2 2 2 54 2 2 2 

VC-LOO 0.47 0 0.27 0 0.467 0 0.20 0 

mLOO 0.47 0 0.27 0 0.333 0 0.20 0 

VC-Conf- 0.624 1.278 0.775 2.013 2.753 1.239 1.641 2.431 

mLOO 
VC-Conf-mVC 0.624 1.278 0.775 2.013 >2.753 1.239 1.641 2.431 

VC-LOO-SV 8 4 8 3 8 4 9 2 

mLOO-SV 8 4 8 3 8 4 9 2 

Spiking condition 25, 2.5, 1.2510.25 

C for Min VC 4 2 4 2 6 2 2 2 

C for min LOO 4 2 4 2 6 2 4 2 

VC-LOO 0.27 0 0.27 0 0.200 0 0.267 0 

mLOO 0.27 0 0.27 0 0.200 0 0.200 0 

VC-Conf- 0.624 1.841 0.633 1.265 1.470 1.280 2.272 1.673 

mLOO 

VC-Conf-mVC 0.624 1.841 0.633 1.265 1.470 1.280 1.625 1.673 

VC-LOO-SV 9 4 10 2 8 2 8 2 

mLOO-SV 9 4 10 2 8 2 8 2 
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Example B.1 

Description on the Algorithm (NaturalSVM) 

[0137] A genetic algorithm based on the structure risk 
minimization principle from the statistical learning theory 
was employed to search for the spiked proteins. NaturalSVM 
firstly generates a population of solutions. Each individual in 
the population is a vector composed of zeroes and ones hav-
ing its cardinality according to the number of existing fea-
tures. In these vectors, zero means that the feature for the 
corresponding dimension will not be taken into account in a 
classification model. The fitness of each individual is evalu-
ated by generating a support vector model and evaluating the 
VC dimension, the leave-one-out error and the number of 
support vectors. According to the statistical learning theory, a 
lower VC dimension corresponds to a less complex model, 
thus, the classification model is expected to generalize better. 
We recall that the VC dimension for the SVM classifier is a 
function of the separating margin among classes and the 
smallest radius of the hyphersphere that encompasses all 
input vectors. 
[0138] The fitness function of the naturalSVM is given by 

F=Loo+(1-1/nSV)*10+1-(1 n) 	 (8) 

where LOO is the SVM leave-one-out error, nSV is the num-
ber of support vectors and h stands for the VC dimension. 
[0139] Mating among individuals of the GA population is 
carried according to fitness where more fit individuals have 
higher chances of mating. During the mating process, a cross-
over is performed having the offspring receive alleles from 
either one of its parents with equal chances. 
[0140] After mating, the GA can perform mutations in the 
offspring. The mutation index is predefined by the user. In 
example, a mutation index of 2, allows the offspring to have 
up to two mutations, so a number of mutations between 0 and 
2 is randomly chosen. The process of mating, crossover and 
mutation is carried out until a population of same size as the 
initial is created, so it can replace the previous. The user can 
also configure the GA to allow elitism, or a specified amount 
of individuals to continue in the new population. 
[0141] Natural SVM can also perform what is known as 
island models. In this method, more than one population is 
created when the algorithm is initiated. After a certain amount 
of time specified by the user, individuals from one population 
are allowed to migrate to the other population according to 
their fitness. To take advantage of the most recent technology 
of multiple core processors, the GA was coded to have each 
population living in a different computing thread. Thus, a 
computer with two cores can manage two populations simul-
taneously without sacrificing performance. All the user pre-
defined preferences are configured in a XML file. 
[0142] To identify the spiked markers, the GA is executed 
various times (i.e. 10). For every execution, each time the 
most fit individual is substituted, his genomic information is 

saved in a text file. We recall that ones genomic information is 
defined as the vector composed of zeroes and ones, where the 
ones indicate that the respective feature for the corresponding 
dimension, or protein was taken into consideration for the 
classification model. The GA ceases to produce new popula-
tions after there is no increase in the fitness of the most fit 
individual during a user specified amount of generations. 
Upon execution completion, the output file will list the "evo-
lution" of the most fit in the population we will refer to this file 
as the evolution file latter in the manuscript. Since the GA 
runs various times over the same dataset, a feature ranking 
can be established. This ranking is given by the ratio of how 
many times the most fit was substituted, and how many times 
a given feature remained within the genome of the most fit. 

Example B.2 

svmN Result Interpretation 

[0143] To evaluate the GA, we varied various parameters. 
Table IV shows the GA results when configuring the 25% 
marker MuDPIT runs as the positive class, and the other runs 
as the negative class. An important result shown by Table IV 
is that the island model was essential in finding the correct 
amount of features; indeed, all runs that used Island correctly 
pointed out that the classification model should have four 
features. By observing the results in Table I, we chose the 
configuration of Elitism-0, Islands=1 80 and Mutation=2, to 
try and identify the spiked markers for different configura-
tions of spiked concentrations. These results are discrimi-
nated in Table 2. 

Table IV 

[0144] The PHS2, ALB, CAH and ITRA stand for the 
spiked protein markers, and the number in each of the respec-
tive columns indicates the ranking of importance according to 
the GA methodology referred in section 2.4.6. The number 
underneath the Elitism column stands for how many individu-
als of the population were allowed to remain untouched for 
the following generation. The numbers contained within the 
island column indicate the amount of seconds required before 
a migration even could occur; a zero indicates that the island 
model was not applied. The No. Mark columns indicates how 
many features the GA suggested that should be taken into 
consideration for the classification model. TheAvg. No. subst 
indicates how many times the most fit individual was substi-
tuted. FL stands for "feature lock", this is a term that we 
defined to explain the cases when the GA can not reduce the 
number of features beyond a certain point, given that this 
amount of features is way beyond the optimal answer. The 
Drop column is obtained from the evolution file, and stands 
for the greatest difference among scores obtained by features; 
this is the main parameter used to estimate the amount of 
features in the classification model. 

TABLE V 

Performance of the feature selection methods 

Avg. 

	

No. 	No. 
Elitism Mutation Islands Mark Subst. Runs Drop FL PHS2 ALB CAH ITRA 

	

0 	113 	754 	10 0.016 3 	2 

	

180 	4 	590 	10 0.038 0 	4 
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TABLE V-continued 

Performance of the feature selection methods 

Elitism Mutation Islands 
No. 

Mark 

Avg. 
No. 

Subst. Runs Drop FL PHS2 ALB CAH ITRA 

0 2 0 5 493 10 0.016 0 	3 1 4 	2 
0 2 180 4 394 10 0.047 0 	3 1 4 	2 
0 3 180 4 317 10 0.044 0 	3 1 4 	2 
1 1 0 52 869 10 0.014 7 	4 1 3 	2 
1 1 180 4 691 10 0.061 0 	3 1 4 	2 
1 2 0 7 614 10 0.018 0 	3 1 4 	2 
1 2 180 4 477 10 0.036 0 	4 1 3 	2 
1 3 0 5 480 10 0.040 0 	3 1 4 	2 
1 3 180 6 491 10 0.033 0 	4 1 3 	2 
1 3 180 4 391 20 0.034 0 	3 1 4 	2 

[0145] The results below show the ranks obtained for the 
spiked markers (PHS2, ALB, CAH, and ITRA) for the dif-
ferent feature selection methodologies and for different con-
figurations of spiked marker concentrations. For the experi-
ments below, the GA was executed 6 times, and correctly 
pointed out 4 spiked markers, according to the evolution file, 
for all spiking concentrations. There were also no feature-
locks. 

PHS2 	ALB 	CAH 	ITRA 

Separating condition 25 1 2.5, 1.25, 0.25 

GASVM 	3 	 1 	4 
Separating condition 25, 2.5 1 1.25, 0.25 

GASVM 	2 	 1 	4 
Separating condition 25, 2.5, 1.25 1 0.25 

GASVM 

[0146] It was demonstrated that spectral counts can be used 
to classify proteomic data and pinpoint differentially 
expressed proteins. In our hands, the GA algorithm selected 
the spiked markers and indicated the correct amount of fea-
tures to the model. These results suggest that this methodol-
ogy could be extended to search for putative biomarkers and 
perform "proteomic profile classification". 
[0147] The invention described and the aspects approached 
must be considered as possible achievements. However, it 
should be highlighted that the invention isn't limited to these 
achievements and, those individuals skilled for the art, will 
realize that any particular characteristic therein introduced 
must be understood as something that was described to facili-
tate the comprehension. The limiting characteristics of the 
invention object are related to the claims incorporated in this 
report. 

1. Diagnostic method based on proteomic and/or genomic 
patterns through the SVM analysis characterized by prefer-
entially searching a small protenomic profile expressed by 
means of peaks of the spectrometry spectrum, using the mass 
spectrometry technique at different intervals of the spectrum. 

2. Diagnostic method in accordance with claim 1, charac-
terized by the utilization of the methodology of supporting 
vectors machines to classify a sample as belonging to a sick or  

healthy person, based on the entire or part of the proteomic 
profile obtained in the mass spectrometry. 

3. Diagnostic method in accordance with claim 1, charac-
terized by the fact that the data from the analysis comprised 
between the approximate interval of 1200 to 2200 m/z and 
400 to 1200 m/z is submitted to a computing treatment in the 
Masslynx 3 program or similar. 

4. Diagnostic method in accordance with claim 1, charac-
terized by the fact that the data from the spectrum readings is 
analized using the SVM strategy, serving to obtain the sepa-
ration maximum margin to positioning a hyperplane. 

5. Diagnostic method in accordance with claim 4, charac-
terized by the fact that the approach for non-separable data is 
done using the "slack variables" (^) and/or applying the ker-
nel functions in the non-linear form (0). 

6. Diagnostic method characterized by the fact that the data 
obtained in the SVM analysis are treated by means of a 
computer program, such program used for: (i) normalizing 
the spectra intensity for values between 0 and 1, having as a 
result of the maximum ionic current, the value 1; and, (ii) 
classifying and interacting with the SVMPP stage so to clas-
sify the information based on the "leave one out" approxima-
tions. 

7. Diagnostic method according to claim 6 characterized 
by the fact that, for the peptides spectra (approximately 400-
1,200 m/z), the computer program configures the spectrum 
data so to show a resolution of around 1 Da integrating the 
intermediary values. 

8. Method to obtain biomarkers for diagnosis by means of 
a computer program, characterized by the utilization of analy-
sis of a short extension pre-scheme "window of studies" at 
m/z which opening is defined by the user. 

9. Diagnostic method according to claim 8 characterized 
by the fact that the production of data is generated by the 
report text file to classify all the inputs of all windows of 
studies and a chart where the ordinay distance for the aproxi-
mate values of 0 to 100 represent a percentage of the "healthy 
material" classified in each "leave one out" analysis. 

10. Method in accordance with claim 9, characterized by 
the fact that the chart contains an upper line at the x axis 
representing the control patients' blood samples group clas-
sified as "healthy", and an lower line at axis x representing the 
Hodgkin Disease-infected patients' blood samples group, the 
"non healthy" patients. 

11. Method in accordance with claim 9, characterized by 
the fact that the chart shows maximum convergence points 
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between two straight lines, representing the spectrum portion 
where most of the blood samples were "correctly" classified, 
further indicating the site of potential biomarkers for clinical 
dignosis. 

12. Method in accordance with claim 9, characterized by 
the fact that the methodology of the computer program is 
further applied for other diseases diagnosis. 

13. Biomarkers characterized by the fact that they are 
defined through the SVM analysis, after localization of the 
windows of interest and subsequently after the localization 
through the mass spectrum, so that the identification of said 
biomarkers may take place by means of a 2D gel or by mass 
spectrometry. 
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