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Despite continuous efforts by both governmental and 
private initiatives to eliminate malaria, Plasmodium in-
fections still result in millions of deaths annually world-
wide. Approximately two thirds of the world’s population 
lives in areas at risk for malaria (Guerra et al. 2008, Hay 
et al. 2009). Among the five Plasmodium species that can 
cause human disease, Plasmodium falciparum and Plas-
modium vivax represent the majority of infections. In fact, 
globally, P. falciparum has been responsible for the ma-
jority of malaria-associated mortality (Guerra et al. 2008); 
however, vivax malaria, previously considered a benign 
disease, has now clearly emerged as a potentially lethal 
condition (Anstey et al. 2009), particularly in non-African 
endemic regions. P. vivax is also more widely distributed 
than P. falciparum and has potential to cause morbidity 
and mortality amongst the 2.85 billion people living at 
risk of infection (Guerra et al. 2010). In Brazil, P. vivax 
accounts for up to 80% of the malaria cases (Oliveira-Fer-
reira et al. 2010). Techniques for adequate malaria control 
are based on the development of sensitive diagnostic tools, 
effective treatments and the successful implementation 
of preventive strategies using bed nets and insecticides. 
Despite more than 40 years of tremendous investments, 
no reliable vaccine is available to prevent malaria, in part 
because Plasmodium parasites have evolved a number of 
evasion mechanisms that subvert host immune responses. 
Understanding the nuances of malaria immunopathogen-
esis is fundamental to the development of innovative ap-
proaches to reduce disease burden. 

Once infected with Plasmodium, a human host 
generally presents with one of three major clinical out-
comes: asymptomatic infection, mild disease or severe 
disease. These diverse clinical presentations are deter-
mined by complex interactions between the host, the 
parasite and environmental factors (Fig. 1). Parasite 
determinants include the different pathogenic potential 
of the various Plasmodium species. For example, P. fal-
ciparum is well known to cause severe infections more 
frequently than other Plasmodium species because P. 
falciparum exhibits a number of unique characteristics 
that favour increased disease severity, including high 
multiplication rates in both erythrocytes and reticulo-
cytes, strong cytoadherence to infected erythrocytes 
[reviewed in Schofield (2007)] and toxin-induced activa-
tion of inflammatory responses [reviewed in Clark and 
Cowden (1999)]. Interestingly, cases of severe malaria 
caused by P. vivax (Andrade et al. 2010c) or uncommon 
Plasmodium species (Cox-Singh et al. 2010) display 
patterns of inflammation and immunopathology simi-
lar to those seen in severe falciparum malaria cases. 
These findings suggest that different Plasmodium spe-
cies can trigger strikingly similar host responses that 
can result in severe disease. A number of host factors 
have already been described as important determinants 
of clinical outcomes in malaria cases, including age 
and gender, ethnicity, concomitant chronic conditions, 
co-infections and diverse genetic polymorphisms. En-
vironmental factors include deforestation, health care 
system infrastructure and access to effective antimalar-
ial treatment, vector exposure and sociocultural factors. 
Within the clinical spectrum of Plasmodium infections, 
we consider the two opposite poles that remain to be 
fully understood of utmost importance: asymptomatic 
malaria, which is directly associated with clinical im-
munity to infection and severe malaria, which underlies 
key processes in susceptibility to infection.
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Malaria remains a major infectious disease that affects millions of people. Once infected with Plasmodium para-
sites, a host can develop a broad range of clinical presentations, which result from complex interactions between 
factors derived from the host, the parasite and the environment. Intense research has focused on the identification 
of reliable predictors for exposure, susceptibility to infection and the development of severe complications during 
malaria. Although most promising markers are based on the current understanding of malaria immunopathogenesis, 
some are also focused more broadly on mechanisms of tissue damage and inflammation. Taken together, these mark-
ers can help optimise therapeutic strategies and reduce disease burden. Here, we review the recent advances in the 
identification of malarial biomarkers, focusing on those related to parasite exposure and disease susceptibility. We 
also discuss priorities for research in biomarkers for severe malaria.
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Several epidemiological studies have shown that 
cases of asymptomatic malaria are highly prevalent in 
many endemic regions (Cucunubá et al. 2008, Baliraine 
et al. 2009, Marangi et al. 2009, Steenkeste et al. 2010). 
Individuals with asymptomatic Plasmodium infection 
can exhibit low parasitaemia for up to 60 days (Alves et 
al. 2002). Because of the absence of symptoms, these in-
fected individuals do not seek health care at malaria ref-
erence centres. Furthermore, active detection of asymp-
tomatic malaria cases is hampered by the low sensitivity 
of microscopy-based detection techniques in identifying 
very low parasite burdens (Andrade et al. 2010b). More-
over, despite low concentrations of circulating parasites, 
individuals with asymptomatic malaria infections can 
transmit Plasmodium to uninfected vectors (Alves et al. 
2005). This phenomenon suggests that individuals with 
asymptomatic Plasmodium infections may serve as an 
important parasite reservoir in endemic areas. 

Major factors associated with asymptomatic ma-
laria are related to the magnitude of parasite and vector 
exposure (Bejon et al. 2009). Indeed, it is well estab-
lished that the occurrence of asymptomatic malaria is 
associated with increased age (Baird et al. 1991), time 
of residence in the endemic area and number of previ-
ous malaria episodes (Rogier & Trape 1995). After many 
years of repeated infections, the host develops clinical 
immunity against Plasmodium. In these cases, the on-
set of symptoms is prevented by limiting parasite bur-
den and controlling inflammation (Fig. 2). Intriguingly, 
such asymptomatic carriers have developed just enough 
immunity to protect them from malarial illness, but not 
from malarial infection. Thus, the search for biomark-
ers of clinical immunity must explore tools to estimate 

both parasite/vector exposure and the host’s own protec-
tive responses. Important general concepts related to bi-
omarkers are presented in Fig. 3.

The hallmark symptom of malaria is fever, which 
can be followed by a wide range of other symptoms 
including headache, chills, diarrhoea, lethargy, cough-
ing fits and abdominal or muscular pain (Greenwood et 
al. 2005). Further, more severe manifestations of ma-
laria also vary and include anaemia, hypoglycaemia, 
hypotension, intense haemolysis, metabolic acidosis, 
spontaneous bleeding, hepatitis, acute kidney failure, 
respiratory distress, convulsion, coma and multiple or-
gan failure (WHO 2000). Notably, while the parameters 
defining severe malaria are standardised with regard to 
P. falciparum infections, there are as yet no consensus 
criteria measuring severity of vivax malaria infections. 
One simple approach that has been explored is based on 
outcomes of clinical and laboratory tests, which are used 
to predict overall mortality and specific complications 
(Mishra et al. 2007, Winkler et al. 2008). Unlike in cases 
of asymptomatic malaria, parasitological diagnosis is not 
a major concern in severe cases, as most patients present 
with high levels of parasitaemia that are easily detected 
by microscopy-based techniques. In these situations, the 
critical point is to exclude mixed Plasmodium infections  
and other comorbidities, such as bacterial sepsis, lep- 
tospirosis, dengue, viral hepatitis and acquired immune 
deficiency syndrome, that can result in similar clinical 
presentations. Thus, the search for highly specific mark-

Fig. 1: determinants of human malaria. The susceptibility to Plasmo-
dium infection results from a complex combination of factors from 
the host, parasite and environment. The degree of susceptibility can 
result in diverse clinical outcomes, ranging from asymptomatic infec-
tions to severe and lethal disease. Furthermore, an infected individual 
can progress from one clinical presentation to another depending on 
additional factors such as therapeutic efficacy, parasite drug resis- 
tance, changes in parasite virulence and changes in host immunocom- 
petence. A major challenge is to identify reliable predictors of unde-
sirable outcomes and reduce disease burden. Rx: treatment. 

Fig. 2: clinical presentations of malaria. The boxes show common 
signs and symptoms of the clinical malaria spectrum. In general, chil-
dren, young adults and pregnant women are the groups that are the 
most susceptible to mild or severe forms of malaria. With increasing 
age and time residing in endemic areas, individuals are repeatedly 
exposed to bites from uninfected vectors and also to various Plas-
modium infections. Consequently, some individuals develop immune 
responses against both the parasite and vectors, which leads to the rel-
ative control of parasite biomass and the modulation of pathological 
host responses; this is commonly observed in asymptomatic malaria 
cases. DIC: disseminated intravascular coagulation.
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ers should be prioritised to facilitate diagnosis. Never-
theless, less specific markers, such as those that indicate 
inflammatory status, are also extremely important in the 
light of their high sensitivity in predicting disease sever-
ity (Andrade et al. 2010d). Intense research focused on 
the immunopathogenesis of severe malaria will contrib-
ute to the identification of useful surrogate and specific 
biomarkers for cases of severe malaria.

The identification of reliable biomarkers for suscep-
tibility to infection and for disease severity can provide 
important insights into the diagnosis and management 
of malaria. Here, we review recent research advances 
in the identification of malaria biomarkers, focusing 
on biomarkers specifically related to parasite exposure 
and susceptibility to disease. We also present a critical 
analysis of the priorities for research regarding biomar-
kers for severe malaria.

Biomarkers of exposure - Plasmodium is transmitted 
through the bites of Anopheles mosquitoes. As the insect 
takes a blood meal, arthropod saliva is injected into the 
vertebrate host. Vector saliva is essential to the Plasmo-
dium life cycle (Choumet et al. 2007), facilitating blood 
feeding by inhibiting host coagulation and inflammatory 
responses [reviewed in Andrade et al. (2005)]. These ef-
fects may be directly linked to changes in host immune 
response (Depinay et al. 2006); furthermore, several of 
the active molecules present in vector saliva are immu-
nogenic to vertebrate hosts, resulting in the initiation of 
an anti-saliva immune response. Immediate, delayed and 
systemic hypersensitivity reactions to vector saliva have 
been described [reviewed by Andrade et al. (2005)]. Ver-
tebrate responses to arthropod salivary components have 

been used as epidemiological markers for vector expo-
sure for ticks (Schwartz et al. 1991), phlebotomines (Bar-
ral et al. 2000, Gomes et al. 2002), Triatoma (Nascimento 
et al. 2001), Glossina (Poinsignon et al. 2008b) and Aedes 
mosquitoes (Remoue et al. 2007). In the case of malaria, 
the host immune response against vector saliva can be 
used as a biomarker of exposure to Anopheles. 

Two points related to the detection of biomarkers in 
saliva must, however, be clarified. First, detection of a 
host immune response against saliva does not necessar-
ily imply host protection. This is a controversial point, 
as both host-protective (Donovan et al. 2007) and non-
protective (Kebaier et al. 2010) findings have been re-
ported. Currently, we utilise anti-Anopheles saliva im-
mune responses as a marker of exposure of potential 
epidemiological significant. Second, the evaluation 
of host responses against mosquito saliva should not 
be confounded with diagnostic approaches that detect 
plasmodial products in host saliva (Wilson et al. 2008, 
Nwakanma et al. 2009, A-Elgayoum et al. 2010, Buppan 
et al. 2010, Gbotosho et al. 2010).

Antibodies against Anopheles gambiae saliva have 
been described in young children from a region in Sen-
egal with seasonal malaria transmission (Remoue et al. 
2006). Travellers transiently exposed to An. gambiae 
bites in endemic areas of Africa also develop anti-saliva 
antibodies (Orlandi-Pradines et al. 2007). Outside of Af-
rica, anti-Anopheles dirus salivary protein antibodies oc-
cur predominantly in patients with acute P. falciparum 
or P. vivax malaria; people from non-endemic areas do 
not carry such antibodies (Waitayakul et al. 2006). 

In the Americas, the presence of anti-Anopheles sa-
liva antibodies has been described in malaria-endemic 
areas. Adult volunteers from communities in the state 
of Rondônia, Brazil, were tested for antibodies against 
Anopheles darlingi salivary gland sonicates (SGS), as 
this species is a prevalent malaria vector in Brazil. Indi-
viduals infected with P. vivax presented higher levels of 
anti-SGS antibodies than did non-infected individuals. 
This test is potentially useful as an epidemiological tool; 
antibody levels could discriminate between infection 
and non-infection with a high likelihood ratio (Andrade 
et al. 2009). Using a similar approach, a recent study 
associated the presence of anti-Anopheles albimanus 
saliva antibodies with mosquito bite exposure in Haiti, 
but did not connect these results with clinical outcomes 
(Londono-Renteria et al. 2010). The practical large-scale 
application of serological tests to detect vector saliva-
specific antibodies for epidemiological purposes has 
been hampered by the difficulty in obtaining sufficient 
quantities of vector saliva and by problems in the stand-
ardisation of the reagent. Recently, the feasibility of us-
ing peptide markers to identify exposure to Anopheles 
bites has been demonstrated (Poinsignon et al. 2008a). 

Biomarkers of susceptibility - There is now strong 
evidence that high frequencies of genetic disorders, pre-
dominately those involving haemoglobin and red blood 
cell metabolic pathways and membranes, reflect relative 
resistance to malaria. One of the most famous genetic 
disorders associated with protection against death or se-
vere disease is the sickle cell trait, haemoglobin S (HbS). 

Fig. 3: key insights in biomarkers. Biomarker is anything that can be 
used as an indicator of a particular disease state or other physiologi-
cal state. Indeed, biomarkers can be used to discriminate pathological 
from non-pathological conditions during diagnosis (A). Certain bi-
omarkers are more useful for diagnosis (e.g. fever to infer Plasmodium 
infection), whereas others are used to predict the disease severity (e.g. 
coma or severe anaemia). A relevant biomarker must present very high 
sensitivity (few false negatives) and specificity (few false positives) to 
the prediction of a certain clinical endpoint (B). A surrogate marker is 
a laboratory measurement or a physical sign used as a substitute for a 
clinically meaningful endpoint that measures directly how a patient 
feels, functions or survives. Changes induced by a therapy on a sur-
rogate marker are expected to reflect changes in a clinically mean-
ingful endpoint. Thus, the primary difference between a biomarker 
and a surrogate marker is that a biomarker is a “candidate” surrogate 
marker, whereas a surrogate marker is a validated test used and taken 
as a measure of the effects of a specific treatment (Katz 2004).
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The gene for HbS is widely distributed throughout many 
tropical regions, including sub-Saharan Africa, the 
Middle East and India. The first study to propose the 
relationship between the HbS variant and falciparum 
malaria showed high frequencies of the sickle cell trait 
in non-infected children from highly endemic areas 
and a relative rarity of HbS in individuals with severe 
disease [reviewed in Weatherall (2008)]. Although the 
mechanism of protection remains unknown, it has been 
established that the parasitised erythrocytes from a pa-
tient with sickle cell trait are much more susceptible to 
sickling compared to non-parasitised cells (Luzzatto et 
al. 1970). Thus, the removal of sickling red cells in the 
spleen increases the rate of parasite clearance, reducing 
parasitaemia and therefore the magnitude of symptoms. 
In addition, sickle cell carriers had significantly higher 
titres of IgG antibodies against a panel of malaria an-
tigens compared to non-carrier children (Cabrera et al. 
2005). A range of other possible mechanisms, however, 
may protect sickle cell trait carriers from severe malaria 
and these should be explored in further studies. 

Many other red blood cell mutations, such as haemo-
globin C (Fairhurst et al. 2005) and alpha thalassaemia 
(Allen et al. 1997, Mockenhaupt et al. 2004, Williams et 
al. 2005) are associated with some degree of protection 
against falciparum malaria. The mechanisms of protec-
tion against malaria are commonly linked to reduced 
parasite replication within infected cells or the enhanced 
clearance of infected erythrocytes resulting from abnor-
mal erythrocyte fragility (Pasvol et al. 1978, 1982, López 
et al. 2010). For other genetic disorders, the mechanism 
of protection is less well understood; this is the case for 
glucose-6-phosphate-dehydrogenase (G6PD) deficiency, 
the most common enzymopathy worldwide (Nkhoma 
et al. 2009). It is likely that this condition enhances red 
blood cell fragility as a result of increased susceptibility 
to oxidative stress (Cappadoro et al. 1998). Although it 
is protective against malaria, G6PD deficiency is also 
linked to a severe haemolytic syndrome triggered by 
primaquine, a primary drug used to treat P. vivax in-
fections (Cappadoro et al. 1998). Beyond advancing the 
understanding of protective mechanisms, more effort is 
needed in applying this knowledge to the development of 
practical prophylactic or therapeutic tools. 

The Duffy blood group antigen illustrates how genetic 
epidemiology can drive essential insights into the molecu-
lar basis of malaria. Epidemiological studies first suggest-
ed that individuals lacking the Duffy antigen/chemokine 
receptor (DARC) were relatively protected against vivax 
malaria (Miller et al. 1976). Later evidence revealed that 
P. vivax molecules bind to DARC and are important for 
parasite invasion (Chitnis & Miller 1994). Recent studies 
have shown that P. vivax infections are common in Duffy-
negative people (Cavasini et al. 2007a, b, Ménard et al. 
2010), bringing attention to the question of the real role of 
Duffy antigens in Plasmodium infectivity.

In addition to genetic determinants, there are a number 
of other interesting markers of malaria susceptibility. 
One such marker is the initial inflammatory response to 
Anopheles bites. Levels of antibodies against An. gambiae 
saliva were higher in young children who developed clini-

cal malaria episodes than those that remained asympto-
matic; these findings were interpreted to mean that the 
anti-saliva response is a potential marker for the risk of 
falciparum malaria (Remoue et al. 2006). Additionally, 
individuals with asymptomatic P. vivax parasitaemia 
presented higher anti-saliva antibody titres and a lower 
interferon-gamma (IFNγ)/interleukin (IL)-10 ratio than 
symptomatic individuals; furthermore, the IFNγ/IL-10 
ratio was inversely correlated to anti-SGS titres in asymp-
tomatic individuals (Andrade et al. 2009). Unfortunately, 
there is little data regarding cellular immune responses 
against salivary antigens; such responses are commonly 
observed in other diseases such as leishmaniasis (Gomes 
et al. 2002). It is important to verify whether the manipu-
lation of a host’s immune response against vector saliva 
can influence susceptibility to infection.

It is well established that antibodies and T cells have 
crucial roles in protective immunity against the differ-
ent life cycle stages of Plasmodium (Good et al. 1998). 
Antibodies against merozoite surface molecules inhibit 
parasite invasion of new erythrocytes (Giha et al. 2000). 
Some classes of antibodies, mainly the IgG isotype, di-
rected against antigens of P. falciparum erythrocytes 
are important in antimalarial immunity; the transfer 
of serum from an immune person to a non-immune is 
protective against infection (McGregor 1964). Humoral 
responses can also target sporozoites, reducing parasite 
invasion of hepatocytes (Hisaeda et al. 2005) or, as the 
case of anti-P. falciparum merozoite surface protein 1, 
humoral responses can interfere with the attachment 
of infected erythrocytes to the endothelium (Giha et 
al. 2000). Furthermore, specific antibodies against gly-
cosylphosphatidylinositol, an immunostimulatory mol-
ecule, suppress macrophage activation, thus decreasing 
cytokine production and inflammation (Schofield et al. 
2002). Additionally, host antibodies directed against 
gametocytes interfere with the transmission of parasites 
to new vector mosquitoes. Although this type of immu-
nity does not protect infected individuals, it may help to 
reduce infection at the community level. 

Biomarkers of severity - Severe malaria is a highly 
lethal condition that requires intensive care. As a result 
of their immunocompromised state, children and preg-
nant women are the most susceptible to complications 
from P. falciparum infection. Although severe cases of 
vivax malaria are also associated with younger age (An-
drade et al. 2010c), adults appear to be susceptible even 
in regions with moderate to high endemicities. Multiple 
factors have been implicated in the pathogenesis of se-
vere malaria caused by either P. vivax or P. falciparum 
infection, including uncontrolled cytokine production 
(Clark et al. 2006), intense haemolysis (Yeo et al. 2009, 
Andrade et al. 2010a) and erythropoiesis suppression 
(Lamikanra et al. 2007). In addition, systemic endothe-
lial damage and obstruction of blood flow are important 
contributors to lethal outcomes, mainly in P. falciparum 
infections (Schofield & Grau 2005, Schofield 2007). 

Several different biomarkers have been described as 
useful predictors of severe malaria and many of these 
were discovered based on understanding of Plasmodium 
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immunopathogenesis. The majority of what is known con-
cerning severe malaria is related to P. falciparum infec-
tions, most likely because of this parasite’s large disease 
burden in Africa. Because P. vivax infection has been 
relatively neglected compared to falciparum malaria, the 
factors involved in its pathogenesis are less well under-
stood; furthermore, biomarkers for vivax malaria suscep-
tibility and disease severity are largely unknown. Many 
factors have been associated with severe forms of malaria 
and most efforts have focused on distinguishing cerebral 
malaria (CM) and severe malarial anaemia from other 
diseases caused by uncomplicated infections. One simple 
factor that can influence malaria severity is parasitae-
mia. In P. falciparum infections, parasitaemia is directly 
linked to the severity of symptoms (WHO 2000). In vivax 
malaria, the limit of parasitaemia that can trigger patho-
logical events is lower, so patients with relatively few cir-
culating parasites can exhibit the inflammatory cytokine 
overproduction that results in fever and other complica-
tions (Karunaweera et al. 1992, Hemmer et al. 2006). In 
addition, as P. vivax preferentially infects reticulocytes, 
parasitaemia rarely exceeds 2% of circulating red blood 
cells and high parasite burdens are not a common feature 
of severe vivax malaria. Indeed, in two studies carried 
out in the Brazilian Amazon, patients with severe vivax 
malaria presented diverse parasite burdens (Alexandre et 
al. 2010, Andrade et al. 2010c). Differentiating CM from 
other causes of serious illness in endemic areas is com-
plicated by the non-specific clinical presentation and the 
high prevalence of incidental P. falciparum parasitaemia 
(Conroy et al. 2010). Knowledge of the pathogenesis of 
CM and the identification of cytoadherence in P. falci-
parum and P. vivax (Carvalho et al. 2010) led us to test 
mediators associated with endothelial activation or dam-
age. The angiogenic factor angiopoietin-2 is released from 
endothelial cells with reduced nitric oxide bioavailability 
in cases of CM (Lovegrove et al. 2009); it contributes to 
endothelial activation, sequestration of parasite biomass, 
impaired perfusion and poor clinical outcome (Yeo et al. 
2008). Other strong predictors of CM that can be meas-
ured in plasma are intracellular adhesion molecule-1 
(Conroy et al. 2010), interferon gamma-inducible pro-
tein 10 (IP-10), soluble tumour necrosis factor receptors 
(sTNF-R) and soluble FAS molecules. These molecules 
were independently associated with increased risk of 
CM-associated mortality (Jain et al. 2008). Many other 
markers, including IFNγ, IP-10, IL-8, MIP-1β, IL-1RA, 
Fas-L, sTNF-R1 and sTNF-R2, could be identified in the 
cerebrospinal fluid of patients with lethal CM, suggesting 
their involvement in CM neuropathology (Yeo et al. 2008). 
Recently, cell-specific microparticles, which indicate cel-
lular damage, were demonstrated to be biological markers 
for cerebral dysfunction in human CM (Pankoui Mfonkeu 
et al. 2010). Interestingly, elevated plasma concentrations 
of microparticles were also found in individuals with non-
complicated P. vivax infection in a study conducted in the 
Brazilian Amazon (Campos et al. 2010), suggesting that 
platelet-derived microparticles may play a role in the onset 
of acute inflammatory symptoms of vivax malaria. These 
results also suggest that the microparticles are a potential 
biomarker for severity of malaria caused by P. falciparum 

or P. vivax. Many of these candidate biomarkers could be 
combined in a multiplex immunoassay, which could be 
validated in broader applications.

IL-10, together with TNF-α and erythropoietin, has 
been described as a good predictor of severe anaemia 
(Ageely et al. 2008, Ouma et al. 2008). Recently, the 
IFNγ/IL-10 ratio has been successfully used as a marker 
for pathological inflammatory activity in patients with 
varying disease severity (Andrade et al. 2010c). The most 
famous inflammatory marker of severe malaria is TNF-α, 
which is tightly associated with fever, paroxysms, anae-
mia, CM (Karunaweera et al. 2003, Armah et al. 2005) 
and many other systemic symptoms of the infection. 

It is worthy of note that as all of these markers are 
based on immunopathogenesis and not on the presence 
of the parasite itself, they have limitations in their use. 
After differential diagnosis, but before the onset of severe 
symptoms, some biomarkers can be used as predictors 
of complications or mortality, which could prove impor-
tant in the management of potentially lethal infections. 
Accordingly, factors that indicate not only inflammatory 
status but also oxidative stress and damage to specific 
organs can easily be used in predictive models; they may 
serve as surrogate markers of disease severity. In addi-
tion, as the objective of the prediction is to influence the 
clinical outcome, the specificity of these markers is not 
critical. Indeed, non-parasite-specific markers have been 
shown to be powerful tools. Haemolysis, for example, is 
inherent to the Plasmodium life cycle during the sympto-
matic phase of the disease (Ekvall et al. 2001). The acute 
haemolysis observed in severe malaria cases results in 
abnormally high concentrations of free heme, which sub-
sequently induces the production of superoxide radicals 
(Delmas-Beauvieux et al. 1995), cell death (Gozzelino 
& Soares 2011) and an imbalance between pro-inflam-
matory and anti-inflammatory mediators (Andrade et al. 
2010a). Recently, we have shown that haemolysis related 
to high plasma levels of indirect bilirubin, total heme and 
Cu/Zn superoxide dismutase (SOD1) is consistently as-
sociated with severe vivax malaria (Andrade et al. 2010a). 
Furthermore, SOD1 is a better predictor of severe vivax 
malaria than are plasma levels of TNF-α (Andrade et al. 
2010d), but this biomarker cannot be used to discriminate 
between P. vivax and P. falciparum infections. In a recent 
study of a cohort of patients with different clinical pres-
entations of vivax malaria, we described a series of prom-
ising markers of severe disease (Andrade et al. 2010c). 
These markers can be easily measured and can be used 
to generate a score that is strongly associated with un-
favourable outcomes. The markers included plasma cre-
atinine, urea, C reactive protein, fibrinogen, bilirubins, 
hepatic transaminases and heme oxygenase-1. Some of 
these mediators were evaluated and found to have very 
high discriminating power (Fig. 4). A summary of some 
promising biomarkers of clinical protection or disease se-
verity is illustrated in Fig. 5. 

Future perspectives - Although much published data 
exists regarding new biomarkers for malaria susceptibil-
ity and disease severity, few studies provide validation 
of their results using large samples or multi-centre ap-
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proaches. Coordinated initiatives are necessary to de-
sign robust validation studies and generate standardised 
guidelines. One potential approach is the screening for 
susceptibility signatures using high-throughput analy-
ses. Another method is the creation of tools using com-
binations of powerful biomarkers to quantify the degree 
of malaria susceptibility and severity. The use of a com-
bination of biomarkers instead of one specific candidate 
could increase reliability and predictive power. Network 
analyses are necessary to address this demand, as they 
can provide an understanding of the real relationship be-
tween candidate biomarkers and pathological processes 
or clinical and parasitic determinants. Furthermore, we 
should emphasise larger epidemiological human stud-
ies that examine the vector-host-parasite relationship to 
reveal potential markers. Caution, however, is needed 
in the search for the ideal biomarker of malaria sever-
ity. Validation studies must be designed to discriminate 
between severe cases caused by P. vivax and P. falci-
parum. Until now, the research on falciparum malaria 
has been much more advanced, mostly because of the 
higher incidence of lethal cases. Consensus criteria to 
classify severe vivax malaria are now necessary; lacking 
such criteria, candidate biomarkers validated in studies 
with falciparum malaria may show weak or no correla-
tion with vivax malaria severity and vice versa. Aside 
from investigating genetic determinants of the disease, 
the search for good predictors of susceptibility or sever-
ity must involve the generation of simple and cheap tools 
that can be implemented in undeveloped endemic areas.
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