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Abstract.

We analyzed the development of Leishmania ( Leishmania) infantum chagasi in its natural sandfly vector

Lutzomyia longipalpis. In addition. we compared sandfly infections initiated with axenic amastigotes or promastigotes.
Our data showed no important difference between Lu. longipalpis infection rates resulting from either type of infections.
Furthermore, development of infection was equivalent in both cases. All promastigote forms were found inside the
sandfly and, after blood digestion, most of the population consisted of procyclics and nectomonads. A low percentage
of metacyclic forms was coincident with a high number of nectomonads during late stages of infection, but which form
oives rise to metacyelic forms in L. infanttun chagasi s unknown. These results also show that the promastigote infection
model. at least for this situation, is suitable for obtaining of infected sandtlies because it is easier and less laborious.

INTRODUCTION

Leishmaniases are neglected diseases endemic to 98 coun-
tries or territories. Leisfumania infections range from mild, self-
healing skin lesions to a fatal visceral form, depending on the
Leishimania species involved. Approximately 500,000 cases of
visceral leishmaniasis (VL) are estimated to occur per year,
and leishmaniasis is the ninth most common infection dis-
ease worldwide. More than 90% of cases are concentrated
in Bangladesh, Ethiopia, India, Nepal. Sudan, and Brazil.
In developing countries of the Western Hemisphere, the
urbanization of VL caused by Leishmania infantuon chagasi
has been increasingly reported in many cities, and its proven
main vector, the sandfly Lutzomvia longipalpis® is becoming
highly adapted to artificial environments.®

Development of Leishmania inside its vector is a complex
process. After the sandfly has had an infected blood meal.
ingested amastigotes (non-flagellate forms) differentiate into
dividing promastigotes (flagellate forms) to establish the
parasite life cycle. However, there are numerous adverse con-
ditions to overcome in the midgut of the host, including diges-
tive enzyme activities® and the synthesis of a physical barrier
(the peritrophic matrix; PM).” and the need to bind to the
midgut cells®™ 1o excretion. Lipophosphoglycan,
the major Leishmania surface glycoconjugate, protects the
parasites {rom the enzyme activities of its host and mediates
parasite attachment to the midgut of the sandfly.® '® After
digestion, successful infection in a sandfly vector results in
development of several promastigotes forms types named.
according to their morphology. as procyclic, haptomonad.
nectomonad. paramastigote. and metacyclic forms.'” Only
metacyclic forms transmitted through sandfly bites are able
to begin an infection in vertebrate hosts.”*!

Studies on Leishmania-vector interactions are needed to
understand the processes mvolved in parasite development
and transmission. Much information regarding Old World
Leishmania species and their vectors is available, as reviewed

avoid

2 .
others.™ In contrast. there are few
to New World species; for example.

recently by Sacks and
published data relating

" Address correspondence to Paulo F. P. Pimenta, Laboratorio de
Entomologia Médica, Centro de Pesquisas René Rachou, FIOCRUZ-
MG, Av. Augusto de Lima, 1715, CEP3(190-002, Belo Horizonte,
Minas Gerais, Brazil. E-mail: pimenta@cpqrr.fiocruz.br

606

there are only a few studies on L. mfantum chagasi and
L. mexicana i Lu. longipalpis™™** and L. amazonensis and
L. braziliensis in Lu. migonei and Lu. intermedia™ >” However,
there is little detailed information in the literature about the
developmental biology of the L. infantum chagasi in its natural
vector Lt longipalpis. This finding is somewhat unexpected, given
that L. infantum chagasi is the causative agent of the American
visceral leishmaniasis. the most severe form of the disease.

Successful experimental infection of sandflies to resemble
natural transmission depends on providing amastigotes (the
parasitic form found in vertebrate host) during an infective
blood meal. Promastigote differentiation into axenic amastigotes
is achieved as a result of changes in pH. temperature, and
CO, concentration.®® *!

We provide an in vivo analysis of the development L. infannan
chagasi throughout its life cycle in its natural sandfly vector
Lu. longipalpis {from establishment of infection to the meta-
cyclogenesis, a process that enables the parasite to be trans-
mitted to its vertebrate host. In addition, we compared infections
initiated with axenic amastigotes and promastigote forms.

MATERIALS AND METHODS

ite cultures. In the current study, we used L. infantuan
chagasi World Health Organization reference strain MHOM/
BR/1970/BH46. Promastigotes was cultured in medium
199 supplemented with 10% fetal bovine serum and other
components'® at 26°C. Axenic cultures of in vitro amastigotes
were initiated from stationary-phase promastigotes. which
were placed in a concentration of 5 x 10% cells/mL in medium
199 containing 20% fetal bovine serum and 25 pg/ml of
hemin at 37°C in an atmosphere of 5% CO» (Aradjo MS
and others, unpublished data). Amastigote transformation
dynamics were evaluated upon observation of parasite mor-
phology and RNA expression.

Identification of A2 amastigote-specific protein by reverse
transcription polymerase chain reaction. Total L. infantum
chagasi RNA was extracted by using Trizol® (Invitrogen.
Carlsbad, CA) and treated with DNase (Invitrogen) from
log-phase promastigotes at 24, 48, 72, 96 hours
from transformed axenic amastigotes. First-strand cDNAs were
generated from 2 pg of RNA by using oligo dT (15) primer
(Promega. Madison, WI) and M-MLV reverse transcriptase
(Promega). The cDNAs were amplified with gene-specific

and and
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primers A2 (GenBank accession no. 569693), 5'-GACCGAG-
CACAATGAAGATC3  (forward), 5-GTCACCATGCC-
TCATGGCAT-3 (reverse): and c-tubulin (GenBank accession
no. DO129864.1). S'-CGTGTGCATGATTGCCAACT-¥
(forward). S-GAATTGTCCGCTTCGTCTTGAT-3' (reverse).
The polymerase chain reaction mixture contained Tag Plati-
num DNA polymerase (1 unit) (Invitrogen), 200 mM of each
dNTP (Invitrogen), 1.5 mM MgCl,. 50 mM KCL 10 mM
Tris-HCL, pH 8.5, and 10 pmol of each specific primer
set in a 25-uL reaction. Thermal conditions were 94°C for
45 seconds, specilic annealing temperatures (60°C for A2 and
62°C for alpha tubulin) for 45 seconds and 72°C for 45 sec-
onds. and a final extension at 72°C for 5 muinutes. Amplified
products were resolved by electrophoresis on 1.5% agarose
gels and stained with ethidium bromide.

Sandfly infections. Wild-caught Lu. longipalpis sandflies
were collected in the Lapinha Cave, a non-endemic leish-
maniasis area located at Lagoa Santa. Brazil (43°57'W.
1923'S) using CDC light traps. Unfed female sandflies were
separated into batches of 150 insects. They were kept in an
insectary of the Laboratory of Medical Entomology of the
Centro de Pesquisas Rene Rachou for at least two days
before infection experiments. The experimental infections
were carried out according to the protocol of Tesh and
Modi® Sandflies were allowed to feed through a chick skin
membrane in an artificial feeding device containing hepa-
rinized mouse blood with heat-inactivated serum and seeded
with 4 8x 107 parasites/mL. Blood-engorged females were
separated and allowed to feed ad libitm on a 50% sucrose
solution at 25°C and a humidity of 95% until they were dissec-
ted for parasite development analysis.

Parasite detection and development. Infected flies were
dissected daily from the first to the tenth day after the infec-
tive blood meal. Insects were quick immobilized in a [reezer
and dissected individually in drops of phosphate-buffered
saline. The gut of each sandfly was also homogenized in
microfuge tube containing 30 u L of phosphate-butfered saline
at pH 7.2. The number of parasite was counted in a hemo-
cytometer by using phase-contrast microscopy. The same mate-
rial was used to prepare slide smears. which were stained
with quick Romanovsky-type stain (Panotico Rapid: Laborclin,
Pinhais. Brazil) for detection of relative proportions of devel-
opmental forms of the parasite. These forms were recog-
nized by morphology and classified according to terminology
established by Lawyer and others' and subsequently used by
several authors®™ - as shown in Figure 1.

Statistical analysis. Results were analyzed by using the
Mann Whitney test and the r-test. £ values > 0.05 were con-
sidered significant.

RESULTS

In vitro prepared L. infantum chagasi axenic amastigotes.
Amastigotes completed differentiation from promastigotes at
96 hours, as confirmed morphologically by light microscopy
(Figure 2A). They were visualized as non-motile, round. or
slightly elongated cells lacking a free flagellum. They were
viably active cells. as shown by their ability to revert to
promastigotes and to infect BALB/c macrophages. Moreover.
AZ protein, a well-known amastigote=specific protein was
expressed abundantly in the axenic amastigotes, but was largely
absent in promastigotes at 96 hours of cultivation. as demon-
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Figure 1. Developmental forms of Leishounin  promastigotes
showing from left to right an amastigote ingested from an infective
bloodmeal: a procyelic promastigote, a short. ovoid, slightly motile, first
promastigote that appears in the sandfly: a nectomonad promastigote. a
long slender form; a haptomonad promastigote, a shorter and broader
form: a paramastigote promastigote. a rare form with the kinetoplast
adjacent to the nucleus: and a metacycelic promastigote, a short, slender.,
highly active. infective form for the vertebrate host.

strated by reverse transcription polymerase chain reaction
(Figure 2B). These parameters ensured that axenic amastigotes
would be useful for successtul infection of sandflies.

Lutzomyia longipalpis infection with L. infantum chagasi.
Lutzomyia longipalpis was able to sustain L. infantum chagasi
infection for the experimental period (10 days post-feeding)
when the metacyclogenesis is completed and the parasites
can be transmitted to vertebrate hosts. Infection rates begin-
ning with either promastigotes or axenic amastigotes ranged
from 79% to 94% and from 83% to 100%. respectively. The
decreased infection rates was observed at days 3 and 4 (79%
and 83%). respectively for promastigotes and amastigotes.
After digestion. the parasite number increased again with
migration to midgut regions. as observed until the end
of the analysis (Figure 3). No significant difference was
observed in the infection rates of L. longipalpis initiated
with either promastigote or axenic amastigote (£ = 0.05).
except on day 6. The parasite number at 48 hours, before
excretion of the blood meal, was 2.4x 10%sandfly, This
number decreased by day 3 because of digestion of the
blood meal, increased again to approximately 2.4 10%
sandfly until days 6 and 7. respectively. to promastigotes
and amastigotes. and was [inally maintained at approximately
L% 10%sandfly by day 10 (Figure 3). The significant difference
observed in the infection rates on day 6 can be explained by
the transformation time of axenic amasticotes (slower) and
promastigotes (faster) needed to achieve the maximum density
of parasites.

Colonization of the stomodeal valve and a gelatinous
substance similar to the promastigote secretory gel described
by Rogers and others?! in Lu. longipalpis infected with
L. amazonensis. a non-natural vector-parasite pair. were
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Figure 2. A, Evaluation of amastigote transformation dynamics
of parasite morphology and cell viability in samples stained with trypan
blue. B. reverse transcription polvmerase chain reaction analysis of
cxpression of A2 amastigote-specific protein in axenic Leishimania
infantum chagasi amastigotes. a, A2 primer: b, a-tubulin primer. Lanes
I 4 = axenic amastigotes 24, 48, 72, and 96 hours post &1 vitre incuba-
tion. respectively: lane 5 = cultivated promastigotes: lane 6 = negative
control. The dataset represent the analysis of two independent experi-
ments. bp = basepairs. Error bars indicate mean = SD.

observed at day 3 in most of the L. infantum chagasi females
infected with either promastigotes or amastigotes (Figure 4).

Developmental forms of L. infantum chagasiin Lu. longipalpis.
The proportion of L. infunnen chagasi morphotypes also
changed during development of infection within L. longipalpis
(Figure 5 and Table 1). In infections initiated with pro-
mastigotes, procyclic forms were observed on day 2. but at low
proportions (4.7%). At day 4. the number of procyclic forms
was approximately the same (5%) but decreased after day 6.
Nectomonads were seen on day 2 and were the predominant
form (= 80% ) until day 10, which was the last day of the exper-
iments. In contrast. paramastigotes were rarely seen (0.1%).
Haptomonads were observed on day 2 (2.8%) and never
exceeded 4%. Only a few metacyclic forms were detected until
day 4. However. they accounted for 13% of the entire popula-
tion by day 10.

A similar trend was seen in infection initiated with
amastigotes but with some delay in their differentiation to the
promastigote forms. On day 2. undifferentiated amastigotes
accounted for 5.9% of the parasite population. but they had
disappeared completely by day 3. when procyclic forms became
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Fiure 3. Lutzomyio longipalpis infected midgut  with AL
promastigote and B. axenic amastigote forms of Leisiimania infantum
churgasi. Numbers above the points indicate the number of dissceted
females. The dataset represent the analysis of four independent
experiments. Horizontal lines indicate means.

predominant (81.7%). In contrast, nectomonads accounted
for 12.3% of forms by day 2 and became the predominant form
by day 3 (96.2%). Procyclic promastigotes decreased to 2.1%
of the total forms by day 3 and persisted at low levels through-
out the course of infection. Metacyclic promastigotes were
only found at day 9 (0.2%). but represented 2.7% of the popula-
tion by day 10 (Figure 5 and Table 1).

DISCUSSION

Promastigotes are the easiest parasite form to obtain from
Leishimania parasites in culture to use in laboratory experi-
ments. Amastigotes of some species were originally cultivated
axenically in cell-free media. 2% 37 Acidic pH and a higher
temperature induce developmentally regulated changes in
shape and gene expression of promastigotes., which gene-
rate amastigotes that resemble the animal tissue-derived
amastigotes. 1% 1y yvitro cultivation of amastigotes pro-
vides an excellent source of parasites that are free from host-
derived components. They have been used in drug evaluation,
molecular cloning. identification of developmentally regu-
lated genes, and vaceine production.® In this study. we have
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Frgure 4. A, Dissected midgut of Lutzemyia longipalpis showing
the promastigote scerctory gel plug (7) in a sectioned stomodeal
valve (Sv). Abm = abdominal midgut: Thm = thoracic midgut: C = crop.
Mt = midgut. B. Enlargement showing details of the promastigote
sceretory gel plug (*) with a massive concentration of promastigotes
(arrows). C = crop.

used axenically cultivated Leishmania amastigotes to infect
sandfly vectors. To verity L. infantiun chagasi amastigote via-
bility, we used criteria such as morphology. ability to revert
into promastigotes in culture-dependent temperature., ability
to infeet macrophages, and expression of A2 protein. a well-
known amastigote-specific protein.® Our data show that axenic
L. infantum chagasi amastigotes resemble morphologically
and physiologically animal tissue-derived amastigotes, including
their expressing of the A2 protein and their ability to infect
Lu. longipalpis, the natural vector of the parasite. In addition,
infection with amastigote. the natural mode of infection. was
used to compare their development with infection initiated
with cultured promastigotes. Interestingly. no significant dif-
ference was observed between Li. longipalpis infection rates
initiated with either promastigote or amastigote forms. This
result shows that the infection model using promastigotes, at
least for the L. infantum chagasi Lu. longipalpis model system.
is suitable for obtaining infected sandflies. It is also easier and
less laborious than other options.

Experimental infections in sandflies exhibit different
developmental patterns of Leishmania species inside the host
insect gut. These patterns are determined by colonization of
different anatomic regions ol the gut and the appearance of
distinet promastigote forms. Differentiation of infective meta-
cyclic forms is crucial to determine the vectorial capacity of
a sandfly.® To evaluate the impact of the type of infection
(amastigotes versus promastigotes) on L. mfanmm chagasi
development, sandfly midguts were examined daily. Parasite

1004

o
(=]

Propetion o merphd gt al Torms (Ye) 5
g

(]

de  Emmm ¥ e ==

— e e

10 4

o 4 ﬁlnk

4 5 ] 7 - 9 10
Days pat-infSction

propetion of marphelog el forms (Ya) o
s

(&7
[

Figure 5. Lutzemyia longipalpis infected with either AL pro-
mastigotes or B, axenic amastigotes of Leisfunania infjantium chagasi.
Samples of 12 sandflics were prepared for morphologic analyses and
at least 300 parasites were analyzed in cach dissected midgut. Data
represent the geometric mean of flies analvzed from two independent
experiments. The data st represents the anal of approximately
30,000 individual parasites. Dilferent forms are all displayed at the
same magnification. Error bars indicate mean + SD.

multiplication was higher on the second day of infection. How-
ever. in all sandflies. there was a significant decrease in para-
site number during the early events of blood meal digestion.
Transformed promastigotes inside the sandfly gut have to over-
come potentially lethal conditions: for example. approximately
50% of L. major ingested by Phiebotomues papatasi during initial
infection died during this early stage.” Borovsky and Schlein®
suggested that trypsin-like activity in the midgut of the
P. papatasi prevented survival of L. donovani. Pimenta and
others’ observed that the midgut environment, in the first few
hours after blood feeding. is harmful even for a strain of
L. major that is capable of complete development in the
sandfly. These studies also showed that the addition of soy-
bean trypsin inhibitor to the blood meal prevent much of
the early parasite deaths. In Luw. longipalpis, trypsin-like pro-
teins were identified that displaying high sequence similarities
to those from P. papatasi®” ** Also. mutants lacking lipophos-
phoglycan were more susceptible to digestion by enzymes.'”
Our data consistently showed high parasite mortality at the
carly stages of L. infantiun chagasi infection, which is probably
caused by enzymatic activity.
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Lutzomyia longipalpis infected with promastigotes (Pro) or axenic amastigotes (Ama) of Leisfunania infantum chagasi®

Morphologic forms (%)

Amastigote Procyelic Nectomonad Paramastigote Haptomonad Metacvelic
Days post-intection Pro Ama Pro Ama Pro Ama P'ro Ama Pro Ama Pro Ama
2 5.9 4.7 81.7 92.2 12.3 01 0.0 28 0.0 0.2 0.0
3 0.0 5.3 2.1 91.5 96.2 0.1 0.1 3.0 1.7 0.1 0.0
4 0.0 4.6 3.1 91.2 90.4 (.0 0.0 4.0 6.4 0.2 0.0
5 0.0 4.7 2.5 88.3 92.7 01 0.1 36 4.7 33 0.0
6 0.0 37 2.6 87.4 91.8 1 0.1 2.6 5.5 6.2 0.0
7 0.0 25 1.9 87.5 92.8 0.0 0.0 2.5 5.3 7.4 0.0
8 0.0 2.5 3.0 8.8 90.1 0.1 0.0 39 6.9 12.7 (0.0
9 0.0 1.9 1.2 83.5 932 (.0 0.0 2.7 54 11.9 02
It 0.0 2.0 0.9 813 9.4 (L0 0.2 33 5.9 13.5 27

*Samples were prepared tfor morphologic analvses and at least 300 parasites were analvzed. Data represent the geometric mean of tlies analyzed from two independent experiments. Data set

represents the analysis of approximately 3000 individual parasites.

The PM is a semi-permeable barrier that enables gradually
diffusion of sandfly hydrolytic enzymes™ and. for this reason.
protects the parasites from them.” Although the PM eventu-
ally disintegrates, this process was described to occur more
quickly in infected sandflies**** which suggested a contri-
bution of insect and Leishmania chitinases.*® Parasite escape
from PM is an essential step to avoid their expulsion with the
non-digested blood meal. At this point, appearance and vari-
ation of distinet promastigote forms are considered sequential
steps necessary for metacyclogenesis.” This process culmi-
nates with development of thin. high-motile and infective
metacyclic forms*™® that are able to infect the vertebrate host.
Morphology of L. infantium chagasi parasites within the
Lu. longipalpis midgut changed during infection process.
After blood digestion (day 2). the parasite population
consisted almost entirely of procyclic forms and nectomonads
in infections started either with amastigotes or promastigotes.
Procyclic forms have the capacity to multiply. initiate. and
sustain infection during the digestion process.

In the sandflies fed with amastigotes, the new transformed
procyclic population  decreased on day 3. According to
Pimenta and others.” the susceptibility to gut proteases is
extremely high in transitional-stage parasites during trans-
formation of amastigotes to promastigotes. After expulsion of
the blood meal. nectomonads became the main promastigote
form present in the gut until the end of experiment. In con-
trast. in the sandflies infected with promastigotes. the
procyclic population decreased early. before expulsion of the
blood meal and. on the second day. the predominant forms
were nectomonads.

In the current study. all promastigote forms described and
classified by Lawyer and others' were found. However, we
could not find a so-called haptomonad (a morphotype with
disc-like expansion of flagellar tip). proposed as a new morpho-
logic category by Rogers and others®' This finding could be
caused by differences in the Leisfunania strain and sandfly vec-
tor pair used because these Rogers and others used a non-
natural model: L. longipalpis infected with L. mexicana.
Nevertheless, similarly to the results reported by Rogers and
others. we also observed formation of a promastigote secretory
gel like substance located in the stomedeal valve. but we were
not able to determine the morphotype involved in its formation.

The appearance of L. infantum chagasi metacyclic forms in
L. longipalpis was coincident with the presence of a high
number of nectomonads during late stages of infection. In
other studies using different vector-parasite pairs. appearance

of metacyclic forms overlapped with paramastigotes in the
foregut.™*” However. we did not observe this phenomenon.
Despite careful sequential observation on the appearance of
morphologic promastigotes types. the question of which form
gives rise to L. infantum chagasi metacyelic forms remains
unanswered. However. L. infuntum chagasi and other New
World Leishmania species™># develop low percentages of
metacyclic forms. a feature that differs from the Old World
species.™ which appear to be better adapted to generate
higher numbers of infective parasite forms.

Lutzomyia longipalpis has been the focus of studies
because of its importance as a vector of VL in Latin America.
Therefore. interaction studies with this sandfly are needed to
understand its competence as a vector.

A study comparing sandfly infection with amastigotes from
lesion and promastigotes of L. infantum did not show any dif-
ference in parasite development in Lu, longipalpis (Jacobina),*?
Similarly. using amastigotes and promastigotes and another
Lu. longipalpis population (Lapinha) and L. infanten chagasi
strain (BH46), we also observed this trend. Comparative studies
are of interest because differences in development of parasites
might exist if L longipalpis is considered a species complex™?
with currently unknown underlying differences between geo-
graphically distinct populations with regard to Leishmuania
interaction and, more importantly. vectorial competence.

Despite minor differences in morphotypes. it is clear
that infection of Lu. longipalpis with L. infantum chagasi
promastigotes is an easier way to obtain infected vectors.
Importantly. the proportion of metacyclic forms inside the
sandfly midgut was higher in promastigote-initiated infection
than in amastigote-initiated infection. This finding 1s probably
caused by a two-day delay needed for transformation of
amastigotes into promastigotes inside the vector. In con-
clusion, promastigote infection can be a reliable tool for
obtaining infected sandflies and for interaction studies. It is
less laborious, quicker, and enables metacyclic differentia-
tion before considerable vector mortality occurs.
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