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Abstract

Background: Trypanosoma cruzi has a single flagellum attached to the cell body by a network of specialized cytoskeletal
and membranous connections called the flagellum attachment zone. Previously, we isolated a DNA fragment (clone H49)
which encodes tandemly arranged repeats of 68 amino acids associated with a high molecular weight cytoskeletal protein.
In the current study, the genomic complexity of H49 and its relationships to the T. cruzi calpain-like cysteine peptidase
family, comprising active calpains and calpain-like proteins, is addressed. Immunofluorescence analysis and biochemical
fractionation were used to demonstrate the cellular location of H49 proteins.

Methods and Findings: All of H49 repeats are associated with calpain-like sequences. Sequence analysis demonstrated that
this protein, now termed H49/calpain, consists of an amino-terminal catalytic cysteine protease domain II, followed by a
large region of 68-amino acid repeats tandemly arranged and a carboxy-terminal segment carrying the protease domains II
and III. The H49/calpains can be classified as calpain-like proteins as the cysteine protease catalytic triad has been partially
conserved in these proteins. The H49/calpains repeats share less than 60% identity with other calpain-like proteins in
Leishmania and T. brucei, and there is no immunological cross reaction among them. It is suggested that the expansion of
H49/calpain repeats only occurred in T. cruzi after separation of a T. cruzi ancestor from other trypanosomatid lineages.
Immunofluorescence and immunoblotting experiments demonstrated that H49/calpain is located along the flagellum
attachment zone adjacent to the cell body.

Conclusions: H49/calpain contains large central region composed of 68-amino acid repeats tandemly arranged. They can be
classified as calpain-like proteins as the cysteine protease catalytic triad is partially conserved in these proteins. H49/calpains
could have a structural role, namely that of ensuring that the cell body remains attached to the flagellum by connecting the
subpellicular microtubule array to it.
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Introduction

The flagellum of the parasitic protozoan Trypanosoma cruzi, the

etiological agent of Chagas disease, is a complex and specialized

structure with critical roles in motility, cellular division and

morphogenesis. It differs from its counterparts in mammalian cells

in several structural, biochemical and immunological respects,

suggesting that its components may be potential targets for the

development of new anti-parasitic drugs. Several T. cruzi flagellar

and cytoskeletal proteins are potent immunogens in humans and

have been used as specific diagnostic and prognostic antigens in

the serodiagnosis of Chagas’ disease [1,2,3]. Immunization of mice

with purified or semi-purified fractions of T. cruzi cytoskeleton

induced high levels of specific humoral and cellular immune

responses that protected the mice against a fatal challenge [4,5,6].

Trypanosomes have a single flagellum that emerges from the

flagellar pocket and remains attached along the cell body for most

of its length, with the exception of the distal tip. This adhesion

region, named the flagellar attachment zone (FAZ), is a complex

system of membrane connections, filaments and specialized

microtubules [7,8,9,10,11]. At the cytoplasmic side there is an

electron-dense filament and a quartet of microtubules connected
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to the smooth endoplasmic reticulum; both lie below the plasma

membrane and follow the flagellum length. Several studies have

suggested that the FAZ region plays a role in cellular organization

and cytokinesis [12,13]. FAZ structures are replicated and

associated with the new flagellum.

The FAZ region has been well characterized at the morpholog-

ical level, but the majority of its components are as yet unknown.

The molecular characterization of these components is not an easy

task, as several are found at very low levels and are often insoluble.

In T. cruzi, a few proteins have been identified in the FAZ region.

The membrane glycoprotein of 72 kDa (GP72) is concentrated in

the FAZ region, and distributed over the surface of the cell body and

the flagellar pocket membrane [14,15]. T. cruzi GP72 null mutants

have an unexpected morphology characterized by the detachment

of the flagellum from the cell body, leading to major alterations in

the overall shape of the parasite [14,15]. The FAZ1 protein was

identified in T. brucei using the monoclonal antibody L3B2, and it is

required for normal FAZ assembly and flagellum attachment [16].

In T. cruzi epimastigotes, L3B2 antibody reacted with the initial

portion of the flagellar-cell body adhesion zone, suggesting the

presence of a T. cruzi FAZ1 homologue [10]. Several T. cruzi

antigens have been isolated by screening genomic and cDNA

expression libraries with sera from human Chagasic patients or

infected animals [1,17,18,19,20,21,22]. One such antigen, H49,

encodes a high molecular mass repetitive protein, composed of 68-

amino acid repeats tandemly arranged [17,23]. Immunoelectron

microscopy demonstrated that H49 is located along the attachment

region between the flagellum and the cell body [17]. Another FAZ

component was identified using the monoclonal antibody 4D9; it

reacted with a high molecular weight protein located in the cell

body of the FAZ region [10,24,25].

In this study, the structure of the H49 protein and its repeats is

further characterized. Sequence analysis demonstrated that the

68-aa repeats are located in the central domain of calpain-like

cysteine peptidases, suggesting that H49 proteins are members of a

novel family of calpain-related genes in T. cruzi. According to

domain structure and sequence composition, calpain-like proteins

in trypanosomatids were classified into five groups (I to V) [26].

Our studies have focused on proteins belonging to group IV,

which contain the second and third domains separated by varying

numbers of tandem amino acid repeats. Critical alterations in the

Cysteine-Histidine-Asparagine (CHN) catalytic motif suggest that

H49 proteins lack calpain proteolytic activity and are non-enzyme

homologues. The sub-cellular location of H49 proteins in the FAZ

region were identified using biochemical and immunofluorescence

analyses, and suggest a distinct role for these proteins in T. cruzi.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Federal University of Sao Paulo (Permit

Number: CEP09555-07). All surgery was performed under sodium

pentobarbital anesthesia, and all efforts were made to minimize

suffering.

Parasites. T. cruzi clone CL Brener [27,28] and strain G [29]

were used in this study. Parasites were maintained by cyclic

passage in mice and in axenic cultures in liver infusion tryptose

medium containing 10% fetal calf serum at 28uC.

Southern blot analysis and pulsed-field gel

electrophoresis. DNA samples isolated from epimastigotes as

previously described [30] were digested with restriction enzymes,

separated by electrophoresis on agarose gels (0.8%) and stained

with ethidium bromide (0.5 mg/mL). They were incubated with

0.25 M HCl for 45 min, denatured with 0.5 M NaOH/1 M NaCl

for 20 min, neutralized with 1 M Tris-base/0.5 M NaCl for

20 min and transferred to nylon membranes in 20X SSC (1X

SSC = 0.15 M NaCl/0.015 M sodium citrate); DNA was fixed by

exposure to 150 mJ of UV radiation in a GS Gene Linker UV

chamber (Bio-Rad). The membranes were prehybridized in a

solution containing 50% formamide/5X SSC/5X Denhardt’s

solution (Invitrogen)/0.1 mg/mL salmon sperm DNA/0.1 mg/

mL tRNA at 42uC for 2 h and hybridized overnight at 42uC with

a32P-labeled probes, consisting of DNA fragments corresponding

to various regions of the H49/calpain genes. Following

hybridization, the membranes were subjected to two washes

(30 min each at 42uC) with 2X SSC containing 0.1% SDS, one

wash (30 min at 42uC) with 1X SSC containing 0.1% sodium

pyrophosphate and one additional wash at 56uC with 0.1X SSC

containing 0.1% SDS/0.1% sodium pyrophosphate. They were

exposed to X-ray film thereafter.

T. cruzi chromosomal DNA was separated by pulsed-field gel

electrophoresis in a Gene Navigator System (Amersham Pharma-

cia Biotech, NJ, USA), using a hexagonal electrode array. PFGE

was carried out in 1.2% agarose gels in 0.5X TBE (45 mM Tris/

45 mM boric acid/1 mM EDTA, pH 8.3) at 13uC for 132 h as

previously described [31]. Gels were stained with ethidium

bromide, photographed, transferred to nylon filters, and hybrid-

ized as described above.

Expression and purification of GST-H49, GST-CysPc

domain and GST-H49 degenerated/calpain recombinant

proteins. The 204-bp repeat of the H49 gene was cloned in a

pGEX vector (GE Healthcare) as described previously [32]. The

catalytic domain (CysPc) and the H49 degenerated repeats (H49

deg) were amplified by PCR with specific primers based on the

H49/calpains XM_799896 and XM_804900, respectively (Table

S2). All nucleotide sequences were cloned in frame with

glutathione S-transferase (GST) in a pGEX-3X vector (GE

Healthcare). GST-CysPc and GST-H49 recombinant plasmids

were transformed into Escherichia coli DH-5a, and GST-H49 deg

into E. coli BL21 (DE3). After growing in LB medium and being

induced with 1 mM isopropyl-b-D-thiogalactopyranoside for 4 h,

the transformed bacteria were washed with PBS, resuspended in

20 mL PBS containing 1% Triton X-100/4 mg/mL lysozyme/

1 mM PMSF, incubated for 10 min at 4uC, sonicated and

centrifuged at 17,210 x g for 15 min at 4uC.

The GST-H49 recombinant protein was affinity purified from

bacterial lysates using a prepacked glutathione Sepharose 4B

column (Amersham Pharmacia Biotech). The yield and purity

were checked by protein concentration measurement and SDS-

PAGE, respectively.

The recombinant proteins GST-CysPc and GST-H49 deg were

purified from polyacrylamide gels. Briefly, the gels were treated

with ice-cold 250 mM KCl in order to precipitate the SDS and

visualize the proteins bands. The expected size bands were

excised, frozen and shattered. The mixture was eluted for 16 h

under constant agitation at room temperature in five volumes of

solution containing 50 mM Tris-HCl (pH 8.0)/5 mM EDTA/

1 mM PMSF/50 mM NaCl. Two separate approaches were

adopted to remove the SDS, which remains attached to the

proteins, from elutes. The GST-CysPc elute was dialyzed against

two exchanges of 10 mM ammonium bicarbonate for 16 h at 4uC
followed by two exchanges of bidistilled water for 16 h at 4uC and

two exchanges of PBS buffer for 16 h at 4uC. The dialyzed volume

was concentrated against sucrose. GST-H49 deg elutes (100 mL)
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were combined with 400 mL methanol, 100 mL chloroform and

300 mL of bidistilled water, and homogenized for 15 s. The

mixture was incubated at 270uC for two min and centrifuged at

10,300 x g for 10 min. The protein interface was recovered,

washed with 300 mL methanol and centrifuged at 10,300 x g for

5 min. The pellet was washed with 500 mL methanol: acetone (1:1)

and centrifuged at 10,300 x g for 5 min. The recombinant protein

was resuspended in 50 mM Tris-HCl (pH 8.0) and stored at

220uC [33].

Production of anti-H49, anti-CysPc domain and anti-H49

deg antibodies. Anti-H49, anti-CysPc domain and anti-H49

deg polyclonal antibodies were generated by intraperitoneal

immunization of BALB/c mice with four doses of recombinant

protein (30 mg/mouse) and Al(OH)3 as an adjuvant (3 mg/mouse)

at 7-day intervals. Seven days after the last immunizing dose,

animals were bled and the sera were stored at 220uC. In addition,

anti-H49, anti-CysPc domain and anti-H49 deg polyclonal

antibodies were generated by immunizing New Zealand rabbits

with four doses of recombinant protein (100 mg/rabbit). The first

inoculation was with complete Freund adjuvant and the remaining

doses were with incomplete Freund adjuvant at 15-day intervals.

Two weeks after the last dose, animals were bled and the sera were

stored at 220uC.

Enzymatic assays. Epimastigotes and trypomastigotes of T.

cruzi (108 cells) were harvested and washed in PBS. The parasites

were resuspended in 1 mL of lysis buffer (80 mM HEPES pH 7.5/

150 mM NaCl/1 mM MgCl2/1% NP 40/3 mM EGTA/3 mL

DNase) during 10 min in an ice-bath. The solutions were

centrifuged (10,000 x g; 10 min; 4uC) and the soluble (S) and

insoluble (P) fractions were separated. The P fractions were

washed twice and resuspended in 1 mL of the same buffer.

Calpain activity of freshly prepared S and P fractions was assayed

by both gel enzymography and fluorometry. For this, 5 or 10 mL

of each fraction were submitted to 8% SDS-PAGE-0.2% gelatin at

4uC under reducing or non-reducing conditions, without boil the

samples. After running, the gel was washed 4 times with 25 mM

Tris-HCl/150 mM NaCl, pH 7.5 (reaction buffer), and incubated

in the same buffer containing 0.25, 1.0 or 2.0 mM CaCl2, at 37uC,

during 24 h. The gel was then Coomassie stained. Calpain activity

was also assayed by diluting 10 mL of S or P fractions in 90 mL of

reaction buffer containing different concentrations of CaCl2 (from

0.062 to 2.0 mM) in the presence of 25 mM N-Suc-Leu-Leu-Val-

Tyr-7-amido-4-Methilcoumarin (LLVT-AMC; Sigma-Aldrich), a

substrate of the CA clan of cysteine peptidases (www.merops.

sanger.ac.uk). After 30 min incubation, free AMC was measured

in a HITACHI F-2000 spectrofluorometer as described [34].

SDS-PAGE and Western blotting. T. cruzi epimastigotes

(26106 cells) were harvested by centrifugation, washed in PBS for

5 min at 1,600 x g and lysed with a solution containing 150 mM

NaCl/80 mM PIPES (pH 7.2)/1 mM MgCl2/3 mM EGTA/

3 mM EDTA/1% Triton X-100/0.1 mM AEBSF/0.5 mM

1,10-phenanthroline/2.2 mM Pepstatin/1.4 mM E-64. The

parasite lysate was incubated at 4uC for 10 min and centrifuged

for 5 min at 17,400 x g at 4uC. These supernatants were used for

the immunoblotting studies. Pellets and supernatants were boiled

in Laemmli’s sample buffer and subjected to SDS-PAGE (5%)

using molecular size markers ranging from 205 kDa to 29 kDa

(Sigma SDS-6H) as a reference. Western blots were performed

using standard procedures [35]. The western blots were probed

with the appropriate anti-sera (against H49 and CysPc domain)

and after reaction with anti-mouse IgG conjugated to horseradish

peroxidase, were developed by chemiluminescence using the ECL

Western blotting detection reagent and Hyperfilm (Amersham

Biosciences).

Immunolocalization
Immunofluorescence localization in whole cells. T. cruzi

epimastigotes were centrifuged and washed with PBS for 5 min at

900 x g. Parasites were fixed with 2% paraformaldehyde diluted

with PBS and incubated for 30 min at room temperature. The

cells were washed three times with PBS for 5 min at 900 x g. The

fixed parasites were placed on glass slides. The parasites were

permeabilized with 0.1% Triton X-100 for 5 min at room

temperature, washed and incubated sequentially with anti-H49,

anti-CysPc or anti-H49 deg at an appropriate dilution for one

hour at room temperature. The slides were washed and incubated

for one hour with an appropriate dilution of fluorescein (FITC)-

conjugated anti-mouse (IgG) or anti-rabbit IgG diluted in PBS/

10% serum containing 10 mM DAPI.

Immunofluorescence localization in cytoskeleton. Epi-

mastigote forms were placed on glass slides in a humid chamber

for 30 min. Decanted parasites were briefly washed with PBS. To

prepare the cytoskeleton, cells were lysed on glass slides with a

solution containing 150 mM NaCl/80 mM PIPES pH 7.2/1 mM

MgCl2/3 mM EGTA/3 mM EDTA/0.5% NP-40 or 1% Triton

X-100/0.1 mM AEBSF/0.5 mM 1,10-phenanthroline/2.2 mM

Pepstatin/1.4 mM E-64. The cytoskeletons were fixed with 2%

paraformaldehyde at room temperature for one hour, washed with

PBS and stored refrigerated in a humid chamber until use. The

cytoskeletons were incubated with anti-H49, anti-CysPc or anti-

H49 deg, and DAPI and FITC-conjugated secondary antibody as

described above. Images were acquired on a Nikon E600

fluorescence microscope coupled to a Nikon DXM 1200F digital

camera using ACT-1 software. Images were processed with Image

J and Adobe Photoshop 7.0.

Cloning of various regions of H49/calpain genes by

reverse transcriptase PCR. Total RNA was extracted from

epimastigotes with TRIzolH. First-strand cDNA was prepared

using the ThermoScriptTM RT-PCR System (Invitrogen)

according to the manufacturer’s instructions. Specific primers

based on sequences of H49/calpains XM_799896, XM_804900

and XM_799016 were used to amplify CysPc, H49 deg and H49

conserved, respectively (Table S2). In addition, these primers were

used to amplify H49/calpain sequences in genomic DNA of T.

cruzi. The amplified PCR products were cloned into plasmid

pGEMH-T easy vector (Promega) and transformed into E. coli

strain DH-5a. Nucleotide sequences of cDNA clones and genomic

DNA clones were determined using the dideoxynucleotide chain

termination method with BigDye Terminator cycle sequencing

chemistry (Applied Biosystems) in an ABI PRISM 377 DNA

Sequencer.

Sequence similarity searches. The T. cruzi clone CL

Brener [27] genome sequence used in this study was obtained

from the National Center for Biotechnology Information (http://

www.ncbi.nlm.nih.gov/GenBank). A locally compiled database

(DB) of T. cruzi sequences was built by parsing sequences from

GenBank, GeneDB (http://www.genedb.org), and The Institute

for Genomic Research, and used for sequence similarity searches.

Similarity searches of amino acid and nucleotide sequences of H49

repeats (GenBank L09564) against this locally compiled DB were

carried out using the BLAST and FASTA program package

algorithms [36]. To search for, identify and extract H49 repeat full

copies in this locally compiled sequence DB, we used a PERL

script specifically developed for this study and loaded with a

regular expression specifically describing the repeat. The

annotation and graphical output of the H49 repeats and

flanking regions were obtained using ARTEMIS [37] (http://

www.sanger.ac.uk/Software/Artemis) and in-house-developed

PERL scripts to analyze and format the results of the similarity

H49/Calpain at the Flagellum Attachment Zone
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searches. The alignments were realized in January 2009 using

BLAST 2.2.19 version and only alignments with an E-value

between 0 and 161023 were chosen. In addition, a search in the

GenBank database, using the key words calpain OR calpain-like

AND T. cruzi CL Brener, was carried out to identify calpain

sequences.

Global multiple sequence alignments of domains II

(CysPc) and III of calpains identified in the T. cruzi

database and phylogenetic inference. Global multiple

sequence alignments of domains II (CysPc) and III of calpains

identified in the T. cruzi database were performed using Clustal X

[38] followed by visual inspection and manual adjustment with

SeaView [39] (http://pbil.univ-lyon1.fr/software/seaview.html)

and GeneDoc (http://www.psc.edu/biomed/genedoc). The

phylogenetic analysis was performed using MEGA 4 program

[40]. The phylogenetic tree was obtained for the Neighbor-joining

method and constructed using an input model with 5,000

bootstrap replications.

Results and Discussion

Comparative sequence analysis to identify genes carrying
H49 repeats in the T. cruzi genome

The clone H49, isolated by immunoscreening from a T. cruzi

expression library, consists of 4.8 tandemly arranged repeats of

204-bp that encode 68-amino acid repeats located in a high

molecular weight cytoskeleton-associated protein [17,23].

The sequence of clone H49 (GenBank L09564) was used as a

query to search for H49 genes in the T. cruzi genome database

(GeneDB and GenBank) using the tblastn program. Twenty-three

contigs consisting solely of conserved tandem repeats of 204-bp, and

eight contigs carrying the 204-bp repeats associated with the calpain-

like cysteine peptidase sequences (Figure 1), were identified, and are

referred to as H49/calpains herein. These proteins possess the CysPc

calpain domains IIa and IIb, characteristic of calcium-dependent

cytoplasmic cysteine proteinases and papain-like proteins (Figure 1

and Table S1). Among the 53 T. cruzi calpain-like sequences in the

genome database, eight were associated with H49 sequences. Only

one H49/calpain sequence (XM_804900) represents an entire gene

copy; the remaining copies were incomplete and collapsed in the

repeat region. Collapsed repeats frequently arise during automated

genome assembly when sequence reads originating from distinct

repeat copies cannot be joined to generate a single unit. Two

H49/calpain pseudogenes (Tc00. 1047053506925.550 and

Tc00.1047053511443.10) were also identified.

The blocks of tandemly arranged, conserved 204-bp (68-aa)

repeats are flanked by degenerate repeats present in various

numbers (Figure 1). Herein, H49 conserved and H49 degenerate

denote units that are more or less than 80% similar to the H49

unit (GenBank L09564) using tblastn analysis, respectively. H49

conserved units were located at the extremities of the following

sequences: XM_799016, XM_799896 and XM_797463 (Figure 1);

H49 degenerate units were identified in all H49/calpains. For

example, the XM_799016 sequence (Figure 1) consists of inexact

repeats separated by short non-repeat sequences, followed by a

block of tandemly conserved 204-bp repeats at the 39 end. The

only entire copy of the H49/calpain gene (XM_804900) found in

the T. cruzi genome database encodes a protein of 4,571 amino

acids (,520 kDa), which contains 24 degenerate repeats in its

central domain (Figure 1).

Figure 1. Schematic representation of H49/calpain genes identified in the T. cruzi genome by tblastn using the 204-bp repeat of
clone H49 (accession no. L09564) as the query. The repeats are boxed and their identity to the H49 repeat (query) is indicated at the foot of the
figure. The specific calpain domains CysPc and III are boxed and shaded in dark and light gray, respectively. Accession numbers for nucleotides and
translated protein (in parentheses) sequences are: XM_797134 (XP_802227), XM_797463 (XP_802556), XM_798170 (XP_803263), XM_799016
(XP_804109), XM_799896 (XP_804989), XM_809239 (XP_814332), XM_801211 (XP_806304) and XM_804900 (XP_809993).
doi:10.1371/journal.pone.0027634.g001
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Blastp search revealed the presence of inexact H49 repeats in

genomes of other trypanosomatids including Trypanosoma brucei,

Trypanosoma brucei gambiense, Leishmania major, Leishmania infantum and

Leishmania braziliensis. These repeats are less than 60% identical to

H49, and are located in calpain-like cysteine peptidases in Leishmania

spp. and in calpain-related proteins (CAP5.5) in T. brucei [41,42].

These results suggest that the expansion of H49 repeats only

occurred in T. cruzi after separation of a T. cruzi ancestor from other

trypanosomatid lineages. The expansion could be generated by a

recombination process that homogenizes tandemly repeated

sequences, for instance unequal crossing over after misalignment

of repeats and/or gene conversion. The H49/calpain gene

(XM_804900), which encodes the calpain (XP_809993) carrying

degenerate H49 repeats, could be a remnant of ancestral repeats

that rarely participated in the recombination processes that

maintain the present tandem repeat arrays.

The H49/calpains can be classified as calpain-like proteins

(CALP). They carry one copy of the protease domain [domain II

(CysPc) followed by domain III] in the carboxy-terminal region, and

two copies of CysPc in the amino-terminal region. Between the

protease domains is a region composed of tandem repeats of 65–68

amino acid residues unit length. Four H49/calpains proteins

(XP_806304, XP_814332, XP_804989, XP_809993) contain the

domains II (CysPc) and III. The H49/calpains XP_806304 (1,351

aa) and XP_814332 (1,165 aa) share 72% identity, and 52–54% with

XP_804989 (1,275 aa). Comparison with the protein XP_809993

(4,571 aa) is somewhat complicated by its great length. The amino

acid sequence identity between XP_809993 and XP_814332 over

the first 1,165 amino acids is 98%, and 75–77% with XP_806304

and XP_802263. Domains II (CysPc) and III of H49/calpains were

compared with other T. cruzi calpain-like cysteine peptidases and

calpain cysteine peptidases (Figs. S2 and S3). The CysPc and III

domains are conserved among H49/calpains (Figure S4) but they

differ from other T. cruzi calpains. Residues of the classic CHN

(Cysteine-Histidine-Asparagine) cysteine protease catalytic triad

were partially conserved in H49/calpains, suggesting that these

proteins do not mediate peptidase activities. This correlates well with

our observations that the insoluble T. cruzi fractions do not mediate

calpain activity in contrast with the soluble fractions that hydrolyzed

LLVT-AMC substrate (data not shown).

A phylogenetic tree based on the CysPc of T. cruzi calpain-like

proteins is presented in Figure 2. The CysPc domains of H49/

calpain are grouped into a cluster (bootstrap 100%), separated from

the other T. cruzi calpain-like proteins. Interestingly, one CysPc

domain of H49/calpain XP_809993 is part of one cluster, while two

other CysPc domains present in this protein have similarities with

other calpains. The phylogenetic reconstruction suggests that the

CysPc domains of H49/calpain are derived from a common

sequence (Figure 2). Interestingly, this group includes three T. cruzi

calpain-like proteins (XP_806305, XP_804990 and XP_803057)

that do not contain the 68-aa repeats. The sequences coding for

XP_806305 and XP_803057 are incomplete, interrupted by errors

during DNA sequencing. They share more than 98% identity with

the amino-terminal region of XP_809993, suggesting that they

could be paralogs of XP_809993, a H49/calpain that carries

degenerate H49 repeats (see Figure 1). Recently, Giese et al.

identified a T. cruzi calpain-like peptidase (XP_816697) expressed in

epimastigotes subjected to nutritional stress that precedes metacy-

clogenesis [43]. The CysPc domain of this protein is grouped with

other calpain-like proteins that do not contain 68-aa repeats.

Genomic organization of H49/calpain genes
The H49/calpain genes are distributed among 10 contigs

(ranging in length from 1,269 to 36,049 bp) assigned to the

chromosome-sized scaffolds TcChr39-P and TcChr39-S of the T.

cruzi sequenced genome (clone CL Brener). Recently, T. cruzi

contigs were assembled into 41 chromosome-sized scaffolds named

chromosomes (TcChr), which were numbered in crescent order

size [44]. Clone CL Brener is a hybrid that displays two

haplotypes. Therefore, the chromosome-sized scaffolds assigned

to the Esmeraldo and non-Esmeraldo haplotypes were designated

S and P, respectively. All H49/calpain genes were densely

clustered within a distance of ,45 Kb on the genome, one cluster

composed of three genes (XM_804900, XM_799016 and

XM_798170) on TcChr39-P, another composed of five genes

and two pseudogenes on TcChr39-S (Figure S1). The functional

H49/calpain genes XM_804900 and XM_798170 are located on

TcChr39-P, and their pseudogenes are located on TcChr39-S.

Each of the H49/calpain genes in a cluster is in the same

transcription orientation.

There are several contigs carrying repetitive sequences at one or

both ends, undetermined regions of nucleotides (hereafter called N

regions) were introduced between two contigs. Figure 1 presents

seven H49/calpains containing tandem repeats at one or both

extremities. Interestingly, all gene-ends contain H49 repeats

flanked by N regions. There is overwhelming evidence that these

repetitive sequences prevent the correct assembly of the complete

H49/calpain genes. The only complete H49/calpain sequence

identified in the T. cruzi database is XM_804900, located on the

chromosome-sized scaffold TcChr39-P (Figure S1). Flanking H49

degenerate units are two CysPc domains (A, B) in the 59 region, a

third (C) and a domain III in the 39 region (Figures S1 and S4).

The alignments between TcChr39-S and -P chromosomes

revealed the relationships among H49/calpains. Figure 3 presents

the overall gene-to-gene comparison between TcChr39-S and -P

chromosomes, and highlights a set of calpain genes in more detail.

The comparison demonstrated similarity between the 59 ends of

calpains XM_804900 and the XM_801212, and between the 39

ends of XM_804900, XM_809239 and XM_797134 (Figure 3C).

XM_801212 has two blocks consisting of CysPc and domain III.

XM_797134 contains four H49 repeats, whereas XM_809239

contains H49 repeats followed by CysPc and domain III.

XM_801212, XM_797134 and XM_809239 are separated by N

regions, suggesting a collapsed problem in TcChr39-S. Phyloge-

netic analysis of the CysPc domain (Figure 2 and Figure S4)

demonstrated that the three CysPc (A, B, C) domains of

XM_804900 share high sequence identity with the corresponding

CysPc domains in XM_801212 (CysPc A and B) and XM_809239

(CysPc C). The location in homologous regions, the collapsed

problem indicated by N region and the strong similarity among

CysPc domains suggest that these sequences (XM_801212,

XM_797134 and XM_809239) could be parts of the same gene,

a homologue of XM_804900.

Chromosomal alignment was used to define the relationship

among other H49/calpain sequences located on chromosomes

TcChr39-P and TcChr39-S (Figure 3A and B). Various regions of

XM_799016, located on TcChr39-P, share similarity with three

sequences located on TcChr39-S: a calpain-like pseudogene

Tc00.1047053506925.550, and H49/calpains XM_797463 and

XM_799896 (Figure 3A). All of these sequences are flanked by

N regions. Chromosomal alignment suggests that Tc00.104-

7053506925.550, XM_797463 and XM_799896 belong to a H49/

calpain pseudogene located on TcChr39-S. The same reasoning

suggests that a calpain-like cysteine peptidase pseudogene

(Tc00.1047053511443.10) and H49/calpains XM_797964 and

XM_801211 could be parts of a H49/calpain pseudogene.

Similarity between H49/calpain sequences on TcChr39-P and

TcChr39-S scaffolds was greater than similarities between
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adjacent H49/calpain genes located within the same scaffold. We

suggest that there are six H49/calpain sequences in the genome of

clone CL Brener: two truncated copies (XM_799016 and

XM_798170) and one complete copy (XM_804900) on

TcChr39-P; two truncated copies XM_797463 and

XM_799896) and a pseudogene (Tc00.1047053506925.550) on

TcChr39-S. It is noteworthy that CysPc domains share high

sequence identity according to their position in the molecule

(Figure S2). Calpain genes that do not contain H49 repeats are

distant phylogenetically and have completely different amino acid

sequences from the H49/calpain proteins.

Chromosomal bands were separated by PFGE and hybridized

with various regions of H49/calpain genes (H49 repeat, catalytic

domain CysPc and H49 degenerate repeats) as probes. Previously,

H49 repeat has been mapped to the chromosomal bands XVI and

XVII of clone CL Brener, which are homologous chromosomes of

different sizes [45]. As expected, probes from CysPc, and H49

conserved and degenerate repeats hybridized to the same

Figure 2. Phylogenetic reconstruction of the CysPc domain of T. cruzi calpain cysteine peptidases classified as calpain and calpain-
like cysteine peptidases. H49/calpains are shaded and indicated by an asterisk (*). Sequences XP_809993 and XP_806305 have three and two
CysPc domains, respectively, which are indicated by numbers 1, 2 and 3. Bootstrap values not shown are below 50%.
doi:10.1371/journal.pone.0027634.g002
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Figure 3. Schematic overview of the genomic region containing the H49/calpain genes on the T. cruzi chromosomes TcChr39-P and -
S. ‘‘S’’ chromosome is assigned to the Esmeraldo haplotype and ‘‘P’’ to the non-Esmeraldo haplotype. Each delimited area is presented in zoom-in
panels A, B and C. Panel A) Detailed representation of region A demonstrating overlap of genes H49/calpain XM_799016 belonging to TcChr39-P,
calpain-like pseudogene Tc00.1047053506925.550 and H49/calpains XM_797463 and XM_799896 belonging to TcChr39-S. Panel B) Alignment
among homologous regions carrying H49/calpain gene XM_798170 (TcChr39-P) and XM_797964 (calpain-like), and pseudogene
Tc00.1047053511443.10 and H49/calpain XM_801211 belonging to TcChr39-S. Panel C) Detailed representation of region C demonstrating
alignment among H49/calpain XM_804900 (TcChr39-P) and calpain gene XM_801212 and H49/calpain genes XM_797134 and XM_809239. Calpain/
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chromosomal bands (data not shown). The physical link between

H49 repeats and CysPc domain was confirmed by genomic

Southern blot hybridization (data not shown).

Expression and cellular location of H49/calpain
To confirm the transcription of H49/calpain genes in

epimastigotes, a series of RT-PCR amplifications was performed

with sets of primers covering the H49 repeat and CysPc coding

sequences of H49/calpain genes (Figure S5). PCR products with

expected sizes were cloned and their identity confirmed using

sequencing. These results indicate that H49/calpain genes are

transcribed in epimastigotes.

To identify the H49/calpain proteins and their cellular location,

antibodies were raised against various recombinant proteins

carrying the catalytic CysPc domain (XP_804989), the conserved

68-aa repeats found in clone H49 (L09564) and the degenerate

repeats and calpain sequence present in XP_809993. Anti-sera to

CysPc domain, 68-aa repeats and H49 degenerate repeats were

named anti-CysPc, anti-H49 and anti-H49 deg, respectively. The

degenerate repeats share less than 80% identity with the conserved

H49 repeats and this could explain the weak cross-reaction

between these antigens detected by dot blots and western blotting.

In order to investigate the possible protein–membrane associ-

ation of H49/calpains, epimastigotes were lysed with the non-ionic

detergent Triton X-100, which solubilizes membrane proteins.

Proteins from the cytoskeleton fraction were separated by SDS-

PAGE and reacted with antibodies. On western blots, antibodies

against the conserved repeats reacted with double bands of

approximately 240 kDa in clone CL Brener and G strain

(Figure 4). Anti-CysPc antibodies reacted with one member of

the 240 kDa doublet, with three additional bands in clone CL

Brener (56, 66 and 170 kDa) and two bands in G strain (56 and

66 kDa) that correspond to calpain-like proteins without repeats.

The fact that CysPc antibodies detected only one band of the

240 kDa doublet, rather than the two bands observed with anti-

H49 antibodies, suggests the presence of a H49/calpain variant

without the CysPc domain.

Antibodies against the degenerate repeats reacted with three

proteins in the 240 kDa range and with a 170 kDa protein

(Figure 4). Calpain-like CAP5.5 and flagellar calcium binding

protein are linked to the plasma membrane via palmitic acid and/

or myristic residues [41,46]. However, acylation sites were not

identified at the amino-terminal domain of H49/calpains,

suggesting that they are not linked to cellular membranes.

To identify the cellular locations of calpain-like proteins in T.

cruzi using immunofluorescence microscopy, the same anti-sera

used for the biochemical analysis were employed. Antibodies

against the 68-aa repeats produced a clearly defined intense

staining pattern, located exclusively in the FAZ (Flagellar

Attachment Zone) (Figure 5). Immunolocalization revealed that

antibodies against H49 repeats reacted in the anterior region of

the parasite, where the flagellum becomes free (Figure 5).

Figure 6A presents the co-localization assays concerning the

H49 repeats and the CysPc domain in parasites permeabilized

with Triton X-100. The anti-CysPc antibodies reacted with

components of the cytoplasm and along the entire flagellum,

whereas anti-H49 antibodies stained the FAZ region of the

H49 genes belonging to TcChr39-P and -S are represented by dark and light purple rectangles, respectively. Sequences deposited in the T. cruzi
database as calpain-like are indicated by pink rectangles. Homologous regions are connected by gray lines. N regions (nucleotide not determined)
present in both TcChr are indicated by yellow blocks marked by the letter N. Above each panel is the schematic representation of each sequence
located in the specific alignment region between TcChr39-P and -S. The length (in bp) is indicated to the right of each gene. The symbol Q indicates a
pseudogene. The repeats are boxed and their identity to the H49 repeat is indicated at right of the figure. The specific calpain domains CysPc and III
are represented by dark and light gray rectangles, respectively.
doi:10.1371/journal.pone.0027634.g003

Figure 4. Western blotting of cytoskeletal fractions of epimastigotes of clone CL Brener (A) and G strain (B–C) with rabbit
polyclonal antibodies against the catalytic domain of calpain (CysPc), H49 conserved and degenerate (H49 deg) repeats. The
cytoskeletal fraction of Triton X-100 extracted cells was resuspended in denaturing sample buffer, and proteins were separated on 5% SDS-PAGE.
Nitrocellulose membranes were incubated with the antibodies as indicated in the Methods sections. The molecular sizes of immunoreactive proteins
and standard molecular weight markers are indicated on the left and right, respectively.
doi:10.1371/journal.pone.0027634.g004
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Figure 5. H49 repeats are located along the FAZ region in whole parasite cells. Epimastigotes (A) and trypomastigotes (B) from G strain
were fixed with paraformaldehyde (2%), permeabilized with Triton X-100 (0.1%), and incubated with anti-H49 antibodies. Immunocomplexes were
detected with anti-mouse IgG-Alexa 488 (second panel in green). In third panels are shown the merge of anti-H49 (green) and DAPI (blue). At left,
panels show the corresponding phase-contrast image and at right, merged image of the two fluorescent channels and phase-contrasting. The arrows
(at right panels) indicate the end of the FAZ region. Bar, 5 mm.
doi:10.1371/journal.pone.0027634.g005

Figure 6. H49 conserved repeats (H49) co-localize with CysPc domain (CysPc) and with degenerate repeats (H49 deg) in whole
parasite cells and in cytoskeletal fractions. A. Epimastigotes (CL Brener) were fixed with 2% paraformaldehyde, permeabilized with Triton X-100
(0.1%) and incubated with mouse anti-H49 and rabbit anti-CysPc antibodies. Primary antibodies were recognized using anti-mouse IgG-FITC
secondary antibodies (second panel, in green) and anti-rabbit IgG-Texas Red secondary antibodies (third panel, in red). B and C. Cytoskeleton
fractions of epimastigotes (CL Brener) were obtained by lysis with Nonidet P40 (0.5%) and fixed with 2% paraformaldehyde. B. Fractions were
incubated with mouse anti-H49 and rabbit anti-CysPc antibodies. Primary antibodies were recognized using anti-mouse IgG-FITC secondary
antibodies (second panel, in green) and anti-rabbit IgG-Texas Red secondary antibodies (third panel, in red). C. Samples were revealed with rabbit
anti-H49 and mouse anti-H49 deg antibodies followed by anti-rabbit IgG-Alexa 488 (second panel, in green) and anti-mouse IgG-Alexa 564 (third
panel, in red) secondary antibodies. DNA was stained with DAPI (blue). At left, panels show the corresponding phase-contrast image and at right,
merged image of the three fluorescence channels. Bar, 5 mm.
doi:10.1371/journal.pone.0027634.g006
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parasite. The epitopes recognized by anti-CysPc and anti-H49

antibodies appear to be very close, and they co-localize at several

points. This result is in agreement with the western blotting results

demonstrating the presence of H49/calpains that do not contain

the CysPc domain.

To investigate the cellular distribution of H49/calpain further,

epimastigotes were lysed with non-ionic detergent (Nonidet-40 or

Triton X-100) and the resulting cytoskeletons were analyzed using

immunofluorescence. Anti-H49 antibodies reacted with the

cytoskeleton producing a punctate pattern exclusively in the

region of the FAZ (Figure 6B). In contrast, anti-CysPc reacted with

the subpellicular cytoskeletal microtubules and along the length of

the flagellum. H49 repeats and CysPc domain were co-localized at

several points in the FAZ region (Figure 6B). The staining pattern

of anti-H49 deg antibodies was similar to that observed with anti-

CysPc antibodies in cytoskeleton preparations of epimastigotes

lysed with NP-40 (0.5%) (Figure 6C and Figure S6). Previously, we

characterized a monoclonal antibody, 4D9, which reacted with a

high molecular weight component located in the cell body of the

FAZ region [10,24,25]. In this study, the distribution of H49/

calpains was compared with the 4D9-reactive antigen in

cytoskeletal fractions (Figure S7). The monoclonal antibody 4D9

does not cross-react with H49/calpains, indicating that it

recognizes another molecular entity. Furthermore, 4D9-reactive

antigen is located in the FAZ region, as previously reported

[10,24]. The labeling pattern obtained using 4D9 was the same as

that obtained with anti-H49 antibodies, both antigens being

located at the FAZ region (Figure S7). The calpain component is

distributed throughout the cytoplasm and along the flagellum

(Figure S7).

Immunofluorescence analysis with anti-H49 antibodies dem-

onstrated that H49 conserved repeats were not detected in the

anterior end of the flagellum but were restricted to the FAZ

region. It is likely that the H49 antigen is a component of the

FAZ in T. cruzi, similar to the protein FAZ1 in T. brucei. However,

antibodies against the H49 degenerate repeats present on the

H49/calpain (XP_809993) reacted with the cytoskeleton micro-

tubules and along the flagellum including the anterior end and

FAZ regions. Therefore, the T. cruzi H49/calpain carrying

degenerate repeats (XP_809993) is related to the calpain-like

protein CAP5.5 of T. brucei. These differences suggest that

phylogenetically related H49/calpains can have different func-

tions in the parasite.

The catalytic activity of classical calpains is determined by the

presence of the catalytic triad (CHN) present in domain II (CysPc)

and the EF-hand motifs that bind calcium, present in domain IV

[47]. The calpains that differ from this configuration are classified

as "calpain-like" (CALP) [48]. The H49/calpains can be classified

as calpain-like (CALP), and two of them (XP_804109 and

XP_804989) can be annotated as putative calpain cysteine

peptidase. As demonstrated using immunofluorescence analysis,

the H49/calpains are located in the FAZ region of the parasite.

The proteins in the FAZ region of T. brucei have high molecular

weights and are expressed at low levels, hindering detection [49].

In T. brucei, the FAZ1 protein is associated with the cytoplasmic

FAZ filament [16]. This protein contains 14-aa repeats and

migrates in SDS-PAGE as high molecular weight bands

(.200 kDa) similar to H49/calpains.

Immunoblotting demonstrated that H49/calpains are retained

in the cytoskeletal fraction of clone CL Brener and G strain

epimastigotes. Moreover, anti-sera against the repeats and CysPc

domain reacted with components of the soluble fraction. Recently,

Giese et al. (2008) demonstrated the presence of a calpain-like

protein in the detergent-soluble and insoluble fractions of T. cruzi

[43]. This could be due to the translocation of cytoplasmic

calpains to the plasma membrane after cellular stimulation. Ennes-

Vidal et al. (2011) showed by ultrastructural immunolabeling that

calcium-dependent cysteine peptidases are mainly located at the

cytoplasm of epimastigotes [50].Recently, we identified seven

calpain-like proteins including two cytoskeletal associated proteins

CAP5.5 in the plasma membrane of T. cruzi epimastigotes and

metacyclic trypomastigotes [51]. Six of these calpain-like proteins

contain N-terminal fatty acid acylation motifs, indicating an

association with cellular membranes.

Function of H49/calpains
As T. brucei calpain related proteins, CAP5.5 and CAP5.5V,

H49/calpains lack the C-H-N catalytic triad, suggesting that they

do not have catalytic activity. Preliminary results using a

biochemical assay indicated that H49/calpains do not have

proteolytic activity in-vitro (data not shown). Several authors have

been suggested that loss of proteolytic capacity would have been

an early step in the evolution of calpain like-proteins in mammals

and trypanosomes as a microtubule-interacting proteins

[42,50].The H49/calpain is located in the FAZ region and

remains tightly associated with the cytoskeleton after the extraction

of cellular membranes with non-ionic detergents. On the

cytoplasmic side of the FAZ there is an electron-dense filament

positioned adjacent to a specialized group of four endoplasmic

reticulum-associated microtubules that run from the flagellar

pocket to the anterior end of the cell [7,13,52]. The FAZ filament

is connected to the flagellum by a network of filaments [53]. The

flagellum-cell body attachment is due to a tight physical

connection between the cytoplasmic filament of the FAZ and

the flagellar filament linked to the proximal domain of the PFR

[7].

Recent results from our laboratory (Mortara, RA, unpublished

results) have demonstrated that the 4D9-reactive antigen is located

in a region between the flagellum axoneme and the subpellicular

microtubules. Immunolabeling of T. cruzi cytoskeletons using

transmission electron microscopy demonstrated that labeling was

associated with filamentous elements in juxtaposition with

subpellicular microtubules, suggesting a possible association of

4D9-reactive antigen with the FAZ region. By analogy, it is

suggested that H49/calpain could have a structural role in

maintaining attachment of the flagellum to the cell body,

connecting the subpellicular microtubule system to the flagellum.

The H49/calpain could be associated with the FAZ cytoplasmic

filament, which interacts with connecting filaments and the

subpellicular microtubules.

Bisaggio et al. analyzed the effects of suramin, which affect the

synthesis and distribution of cytoskeletal proteins, on T. cruzi

trypomastigotes [24]. This inhibitor caused a significant increase

in the phenotypic expression and distribution of H49 antigen in

the region of adhesion between the cell body and the flagellum of

trypomastigotes. Morphological alterations in terms of flagellar

attachment were observed after suramin treatment in T. cruzi and

were similar to the effects caused by blocking trypanin expression

in T. brucei, and it is suggested that suramin could inhibit a T. cruzi

protein similar to T. brucei trypanin.

Supporting Information

Figure S1 Schematic overview of the genomic regions
containing the H49/calpain genes on the T. cruzi
chromosome sized scaffolds TcChr39-P and -S. Arrange-

ment of the H49/calpain gene family in chromosomal clusters

TcChr39-P and -S (‘‘S’’ chromosome assigned to the Esmeraldo
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haplotype and ‘‘P’’ to the non-Esmeraldo haplotype). Comparison

between regions from TcChr39-P and -S containing H49/

calpains. Homologous genes are connected by gray lines. H49/

calpain genes belonging to TcChr39-P and -S are represented by

dark and light purple rectangles, respectively. Sequences deposited

in the T. cruzi database as calpain-like are indicated by pink

rectangles. Locus names are written below each rectangle. The

symbol Q indicates a pseudogene. Green rectangles represent

hypothetical proteins and numbers 1, 2 and 3 inside blue

rectangles correspond to RNA processing factor 1, ABC

transporter and radial spoke protein 3, respectively. N regions

(nucleotide not determined) are indicated by yellow blocks marked

by the letter N. Above and below the alignment are regions of

TcChr39-P and TcChr39-S, respectively. Genes are drawn in

sense strand (signals +) and antisense strand (signal -).

(TIF)

Figure S2 Multiple alignment of the CysPc domain of T.
cruzi calpain-like proteins. Identical residues are highlighted

in black; dark gray, 80% identity; and light gray, 60% identity.

The accession numbers of amino acid sequences are indicated on

the right, omitting the initial letters XP. Sequences appear in the

same order as they appeared in the phylogenetic tree (Figure 2). In

this figure, the CysPc domain of the pseudogene

Tc00.1047053506925.550 was included and is indicated by

Tc00CysPc. Sequences XP_809993 and XP_806305 have three

and two CysPc domains, respectively, which are indicated by

numbers 1, 2 and 3.

(TIF)

Figure S3 Multiple alignment of the domain III of T.
cruzi calpain-like proteins. Identical residues are highlighted

in black; dark gray, 80% identity; and light gray, 60% identity.

The accession numbers of amino acid sequences are indicated on

the right, omitting the initial letters XP.

(TIF)

Figure S4 Alignment of the first, second and third
domains CysPc of H49/calpains. CysPc domains of H49/

calpains were grouped in different arms of the phylogenetic tree

(Figure 2). According to the position in chromosomes TcChr39-P

and -S, the complete sequences of these calpains were predicted

(Figure 4). The first (A), second (B) and third (C) CysPc domains

were aligned using the ClustalW method. At letter C, the third

CysPc domains are boxed in red and domain III are boxed in

blue. Identical residues are highlighted in black; dark gray, 80%

identity; and light gray, 60% identity. The accession numbers of

amino acid sequences are indicated on the right, omitting the

initial letters XP. Sequences XP_809993 and XP_806305 have

three and two CysPc domains, respectively, which are indicated by

numbers 1, 2 and 3.

(TIF)

Figure S5 RT-PCR amplification of H49/calpain se-
quences from epimastigotes (CL Brener). Left) The

primers were based on the sequence of H49 repeats and catalytic

domain (CysPc) from H49/calpains indicated in the figure. The

regions A and B containing the degenerate H49 repeat of gene

XM_804900 (XP_809993) were amplified using the primers

Calp520(1) and H49deg (1) and H49deg(2) and Calp520(2),

respectively. The regions C and D from gene XM_799896

(XP_804989), containing the catalytic domain of calpain (CysPc)

and the CysPc and H49, were amplified using the primers Tc(1)

and Tc(2), and H49(3) and Tc10(2). The region D from gene

XM_799016 (XP_804109) was amplified using the primers Tc(3)

and H49(2). Right) Electrophoresis on agarose gels demonstrating

the amplicons carrying the various regions (A–E) of H49/calpain

genes. The control was carried out with total epimastigote RNA

treated with DNase. The molecular size markers were indicated in

base pairs.

(TIF)

Figure S6 Co-localization of CysPc domain and H49
degenerate repeats in cytoskeletal fractions. Cytoskeleton

fractions of epimastigotes (CL Brener) were obtained by lysis with

Nonidet P40 (0.5%), fixed with 2% paraformaldehyde and

incubated with rabbit anti-CysPc, mouse anti-H49 deg antibodies

followed by anti-rabbit IgG-FITC (upper left panel, in green), anti-

mouse IgG- Alexa 568 (upper right panel, in red) secondary

antibodies. The lower panels present the corresponding phase-

contrast image and the merged image of the three fluorescence

channels (including DAPI, in blue). Scale bar, 5 mm.

(TIF)

Figure S7 H49 repeats and the FAZ structure (mono-
clonal antibody 4D9) in whole parasite cells. Epimastigotes

(CL Brener) were permeabilized with Triton X-100 (0.1%), fixed

with 2% paraformaldehyde and incubated with rabbit anti-H49

and monoclonal anti-4D9 antibodies. DNA was stained with

DAPI (blue). Primary antibodies were revealed using anti-rabbit

IgG-Texas Red (upper left, in red) and anti-mouse IgG-FITC

(upper right panel, green) secondary antibodies. The lower panels

present the corresponding phase-contrast image and the merged

images of the fluorescence channels and DAPI (in blue). Scale bar,

5 mm.

(TIF)

Table S1 H49/calpain genes identified in the genome
by tblastn.

(XLS)

Table S2 Oligonucleotides used in cloning and RT-PCR
experiments.

(XLS)
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