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In this study, we used proteomics and biological network analysis to evaluate the potential biological processes
and components present in the identified proteins of biopsies from cutaneous leishmaniasis (CL) patients
infected by Leishmania braziliensis in comparison with normal skin. We identified 59 proteins differently
expressed in samples from infected and normal skin. Biological network analysis employing identified proteins
showed the presence of networks that may be involved in the cell death mediated by cytotoxic T lymphocytes.
After immunohistochemical analyses, the expression of caspase-9, caspase-3, and granzyme B was validated in the
tissue and positively correlated with the lesion size in CL patients. In conclusion, this work identified
differentially expressed proteins in the inflammatory site of CL, revealed enhanced expression of caspase-9,
and highlighted mechanisms associated with the progression of tissue damage observed in lesions.
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INTRODUCTION
Leishmaniasis affects millions of individuals worldwide,
causing serious morbidity and mortality (Kedzierski, 2010).
Human cutaneous leishmaniasis (CL) caused by Leishmania
braziliensis is characterized by the development of a single
lesion at the site of the sand fly bite, strong cellular responses,
and scarce numbers of parasites in the lesions (Carvalho et al.,
2012). The presence of activating cytokines, such as IFN-g and
tumor necrosis factor-a, is decisive for the control of parasite
dissemination, but an exaggerated T helper type 1 cell
response and the presence of cytotoxic CD8 T cells have
been associated with severe inflammation and tissue
destruction in CL lesions (Faria et al., 2009, Novais et al.,
2013; Santos, Cda et al., 2013).

Proteomics can provide a global and comprehensive
approach to the identification and description of biochemical
processes, pathways, and networks at the protein level.
Several proteomic studies focusing on Leishmania infection
have explored aspects related to parasite biology and Leish-
mania–host cell interactions (Forgber et al., 2006;
Rukmangadachar et al., 2011; Matrangolo et al., 2013;

Menezes et al., 2013). This study attempts to employ large-
scale proteomic analysis to identify differences in protein
expressions in the lesions of patients. We identify 59
differentially expressed proteins between lesion from CL
patients and normal skin using two-dimensional gel
electrophoresis (2DE) coupled with mass spectrometry (MS).
Computational approaches of the biological network formed
by identified proteins highlighted pathways that may be
involved in the apoptosis, cell proliferation, and cell-cycle
mechanisms. Immunohistochemical analyses validated the
presence and involvement of caspase-9, caspase-3, and
granzyme B in the tissue injury in CL patients.

RESULTS
Proteome profiling of lesions from CL patients

Proteomic analysis was performed to investigate differentially
expressed proteins between lesions from CL patients and
normal skin. Histological analysis of CL samples showed that
the inflammatory infiltrate did not vary in composition among
the biopsies with the presence of lymphocytes, macrophages,
and plasma cells. The presence of focal necrosis in the
biopsies was also noticed (data not shown). Total protein
extracts obtained from each sample were separated by 2DE
and visualized by silver nitrate staining. Protein profiles from
the two groups of samples (CL lesions and normal skin) were
compared using the Image Master 2D platinum software.
Images of representative 2D gels are shown in Figure 1.
In each CL sample, spot detection revealed a mean of 489
protein spots (489±135 per gel), and in normal skin samples
a mean of 481 protein spots (481±96 per gel) was
observed.

Three replicates of 2DE gels were performed for each
sample with reproducible results, indicating that technical
variability was low. The biological variation between samples
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in each group was o40%, meaning 460% of coincident
matched spots in each group. Silver-stained protein spots were
distributed in all areas of the pH gradient (pH 3–10), and an
approximately even distribution was found for proteins in the
range of molecular masses from 25 to 100 kDa. The overall
distribution of proteins in 2DE gels was similar to proteome
patterns observed for other reported studies of the skin
(Haudek et al., 2009; Ong et al., 2010; Javad and Day,
2012). For identification of differentially expressed proteins,
protein spots that showed 42-fold difference in expression
between the group of CL and normal skin samples were
selected for further analysis. A total of 150 differentially
expressed spots were excised from 2DE gels from CL or
normal skin samples. Identification was performed by
matrix-assisted laser desorption/ionization time-of-flight MS.
In all, 59 proteins were identified unambiguously, whereas MS
of proteins from other spots did not provide secured
identification. Among the 59 identified proteins, 29 spots
were unique in CL patients (marked spots just in the
Figure 1a), 17 were unique in normal skin (marked spots
just in Figure 1b), and 9 were upregulated and 4 were
downregulated spots of CL biopsies related to normal skin
(marked spots in both Figure 1a and b). The protein spots were
labeled numerically and corresponded to the protein identi-
fications listed in Table 1. There are relatively high propor-
tions of unique proteins for CL or normal skin as compared
with up- or downregulated proteins. This level of expression
of proteins might indicate that CL may lead to rather
significant changes in regulatory mechanisms at the sites of
infection.

Biological network analysis of identified proteins

To explore biological processes and functions that could be
mediated by the 59 identified proteins, we performed a
computational study using GoMiner, Cytoscape, and IPA-
Ingenuity Systems analysis. The GoMiner tool clustered
identified proteins into hierarchical categories based on
biological process and molecular function. Analysis of intra-
cellular mechanisms showed that the identified proteins were
involved in regulation of cell death (SKIL, KPNA1, CDK11A,
and CASP-9), cell adhesion (BCAM, SPECC1, and DCHS2),
cell cycle (CDK11A, NEK11, HAUS5, ANKLE2, and CENP-E),
immune response (TRB, KIR2DL4, IL12RB1, and GNL1), and
homeostasis (SLC8A1 and ATP1A2). A Venn diagram was
constructed to identify common and exclusively regulated
biological processes (Kestler et al., 2005). We found a number
of proteins that are expressed by the two samples, suggesting
common mechanisms between CL lesions and normal skin
(Figure 2c). Some of the common biological functions
observed were apoptosis (CASP-9), immune response (TRB),
and biosynthetic process (BRF1) that were upregulated in CL
biopsies. In fact, there is a recruitment of T cells to the
infection site that could be reflected by an increase in the
expression of TRB (Clarêncio et al., 2006; Keesen et al., 2011).
The inflammatory response observed in the lesions led to an
increase in apoptotic process, represented by an increase
in CASP-9. In addition, some proteins were exclusively
expressed in CL biopsies (Figure 2a) or normal skin samples
(Figure 2b).

To explore the mechanisms represented by the identified
proteins, we generated networks of interactions between the
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Figure 1. Images of representative 2D gels. The images are representative of six samples showing separation of proteins extracted from lesions of (a) cutaneous

leishmaniasis (CL) patients and (b) normal skin. Directions of isoelectric focusing and SDS-PAGE are indicated on the top and on the side of the left gel

image. Spots marked only in gel (a) indicate protein spots unique in the CL samples. Spots marked only in gel (b) show the protein spots unique in normal

skin. Spots marked in gels (a, b) indicate protein spots differently regulated between the samples. The protein spots were identified by matrix-assisted laser

desorption/ionization time of flight (MALDI-TOF) mass spectrometry. List of identified proteins is given in Table 1.
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59 identified proteins and proteins and genes that may be
affected by them. The generated network showed 505 nodes
(proteins), including the 59 proteins identified by us (green
diamond symbol in Supplementary Figure S1 online) and 457
proteins identified by the MiMiplugin embedded in Cytoscape
software that interact with these ones (red ellipse symbol in
Supplementary Figure S1 online). A number of proteins have
been observed, such as IL-23, TGFBR1, TNFRI, CASP-3,
CASP-8, and GZMB.

Subnetworks represent nodes with higher connectivity
between them, as compared with other nodes. In order to
better visualize the interactions among the proteins, 13
subnetwork modules were extracted from the whole network
using a MCODE tool embedded in Cytoscape (Figure 3a and
Supplementary Figure S2a–m online). The highly ranked
modules represented protein associated with apoptosis
(Figure 3a), cellular signaling, transcription, cell cycle, and
cell proliferation (Supplementary Figure S2a–m online).
Besides that, to better elucidate the interactions among the
59 proteins identified, IPA-Ingenuity Systems was employed to
build a model of potential canonical networks and connec-
tions. The main canonical pathway identified involved cyto-
toxic T lymphocyte–mediated apoptosis of target cells
(Figure 3b). This network comprised 34 proteins. Of these,
18 proteins were differentially expressed between the samples,
9 were unique to CL biopsies (SKIL, KPNA, CHKA, RNF40,

ZBTB10, IL12RB1, KIR2DL4, PTPN-5, and IGBP, shown in
red), 5 were upregulated (BRF1, CASP9, AIDA1, TRB,
ATP1A2, shown in red), and 4 were downregulated (ALDH2,
SLC8A1, TNS3, and PALD, shown in green) proteins in CL
biopsies related to normal skin.

The biological network analysis performed in this study
complemented the limitation of identifying only a part of the
differentially expressed proteins, introducing into the analysis
proteins and genes that have not been characterized or
detected in 2D gels.

Validation of caspase-9, caspase-3, and granzyme B protein
expression

The mechanism of tissue damage and ulceration observed in
CL patients is not fully understood. The participation of
molecules Fas/FasL and TRAIL (tumor necrosis factor–related
apoptosis-inducing ligand) that activate the apoptosis pathway
has been implicated in the development of tissue injury (Rethi
and Eidsmo, 2012). It was demonstrated that the recruitment
of CD8 T cells expressing granzymes to the site of infection
contributes to the tissue destruction (Faria et al., 2009; Santos,
Cda et al., 2013). Granzyme B can act at multiple points to
initiate cell death. Targets of granzyme B include activation
of caspase-3 directly or through the mitochondrial pathway
by inducing activation of caspase-9 that in turn activates
caspase-3, amplifying the caspase cascade (Lord et al., 2003).
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Figure 2. Schematic Venn diagram of the protein spots identified. The Venn diagram shows proteins unique to (a) cutaneous leishmaniasis (CL) patients,

(b) normal skin, and (c) overlaps between biologic processes defined by the identified proteins between the samples. The diagram was built upon analysis of

the identified proteins using a GoMiner tool. ‘‘Biologic Process’’ category was selected for the analysis of affected functions.
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Proteomic and network analysis performed in this study
showed that the main canonical pathways found were
associated with apoptosis.

In order to validate this analysis, pointing out apoptosis as a
main canonical pathway, we explored CASP-9, CASP-3, and
GZMB (granzyme B) expression, the three proteins associated
with cell death pathway. CASP-9 was selected because of its
upregulation in the lesions from CL patients and mainly owing
to central positioning in the network obtained by IPA
Ingenuity System analysis (Figure 3b). Although CASP-3 and
granzyme B have not been identified in Table 1, they were
observed in the whole network (Supplementary Figure S1
online). The validation was performed by immunohistochem-
ical evaluations in biopsies from CL patients and normal skin.
The expression of capase-9 (Figure 4a), caspase-3 (Figure 4c),
and granzyme B (Figure 4e) was consistently higher in CL
lesions than in normal skin samples, as shown in Figure 4b, d,
and f. The expression of these proteins was detected mainly in
mononuclear cells presented in the inflammatory infiltrate. No
reactivity was detected using an isotype control antibody
(Figure 4g). To further investigate the relation between the
proteins identified in the proteomic analysis, correlation
studies were performed. In Figure 5, we observed a positive
correlation between expressions of caspase-9 and caspase-3
(Figure 5a), as well as caspase-9 and granzyme B (Figure 5b)
in the lesions from CL patients. However, no correlation was
observed between the expression of caspase-3 and granzyme
B (Figure 5c), suggesting the activation of the mitochondrial
pathway by granzyme B to induce cell death mechanisms in
the samples.

The activation of cell death has been implicated in tissue
damage observed in CL patients (Rethi and Eidsmo, 2012;
Santos, Cda et al., 2013). Thereafter, our next question was to
investigate the relation between tissue injury and expression of
caspase-9, caspase-3, and granzyme B. As shown in Figure 6,
there was a positive correlation between protein expression of
caspase-9 (Figure 6a), caspase-3 (Figure 6b), and granzyme B
(Figure 6c) and the lesion size observed in CL patients. These
data suggest the participation of cell death mechanism
in tissue destruction observed in CL patients infected by
L. brazilienis.

DISCUSSION
This study provides a global protein profiling comparison
between lesions from CL patients and normal skin. We did not
detect any Leishmania proteins in our proteomic analysis,
possibly because of the scarce number of parasites in lesions
caused by L. braziliensis (Bittencourt and Barral, 1991). We
identified 59 proteins differently expressed between the
samples; some of these proteins were identified only in the
lesions from CL patients and other ones were unique in the
normal skin. This fact does not mean that the proteins were
not expressed in other samples, but it does suggest that they
might be expressed to a significantly lesser extent or were
posttranslational modified. The differences in the protein
expressions were primarily associated with biological
regulation of cell death, cell cycle, cell–cell signaling,
immune response, and transport. The expression of the
proteins such as TRB, upregulated in the lesions from CL
patients, and IGBP1 and IL12RB1 unique to patients lesions,
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Figure 3. Network and canonical pathway built with 59 differentially expressed proteins. (a) Subnetwork modules associated with apoptosis extracted from the
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represented in the legend.
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Figure 4. Immunohistochemistry for caspase-9, caspase-3, and granzyme B in samples. Tissue sections of cutaneous leishmaniasis (CL) patients (n¼ 8) were

obtained and stained for (a) caspase-9, (c) caspase-3, and (e) granzyme B. Normal skin samples (n¼3) were immunostained for (b) caspase-9, (d) caspase-3, and

(f) granzyme B. (g) Isotype control is shown. All samples were counterstained with hematoxylin and examined by light microscopy. Scale bar¼ 10mm.
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which are known to affect activation of leukocytes (Germain,
2002; Staretz-Haham et al., 2003; Sakashita et al., 2011),
may indicate the persistence of inflammation in the tissue
(Clarêncio et al., 2006; Kariminia et al., 2007). Other identi-
fied proteins, CDK11A and NEK11, have been implicated in

mitotic progression and DNA damage responses (Noguchi et al.,
2002; Shi et al., 2009). It has been shown that proteins involved
in cellular stress responses interact with and regulate signaling
intermediates involved in the activation of innate and adaptive
immune responses (Muralidharan and Mandrekar, 2013).
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Large-scale analytical techniques based on functional pro-
teomics generate an enormous amount of data, creating
challenges for traditional methods of analysis (Gehlenborg
et al., 2010). Using biological network analysis, Cytoscape,
and IPA-Ingenuity Systems, the differentially expressed
proteins were organized in functional networks and potential
canonical pathway. IL-23, TNFRI, caspase-3, caspase-8, and
granzyme B were some of the proteins identified in the main
network. Indeed, these molecules have already been
described in different studies of Leishmania infection
(Medeiros et al., 2000; Carneiro et al., 2009; Tolouei et al.,
2012; Novais et al., 2013).

The activation of caspases results in cell death by apoptosis
that can be induced by granzyme B through the activation of
caspase-3 directly or through the mitochondrial pathway
inducing activation of caspase-9 (Chávez-Galán et al.,
2009). Indeed, one of the proteins upregulated in the lesions
from CL patients was caspase-9, being one of the central
proteins found in the canonical pathway by IPA-Ingenuity
Systems. Despite apoptosis being a programmed cell death
mechanism associated with an anti-inflammatory immune
response, studies in literature have implicated the activation
of this pathway with tissue damage (Tasew et al., 2010; Nylén
and Eidsmo, 2012; Cevik et al., 2013). In fact, in our
histological evaluation, we observed areas of focal necrosis.
Apoptotic cells can undergo secondary necrosis if not
rapidly cleared by phagocytes, increasing the inflammatory
response (Kono and Rock, 2008). In our study, positive
correlations were observed between expression of caspase-9
and granzyme B and between caspase-9 and caspase-3. These
data are strengthened by the association between the
expression of caspase 9, caspase 3, and granzyme B and
lesion size, displaying the participation of these proteins in
tissue damage in CL caused by L. braziliensis. Indeed, our
group demonstrated positive correlations between the
intralesional CD8 T cell expressing granzyme B and the
percentage of TUNEL-positive cells as well as the lesion size
in CL patients (Santos, Cda et al., 2013).

Taken together, this study showed an association of 59
identified proteins with biological regulation, including cell
death. Upregulation of caspase-9 and the presence of caspase-
3 and granzyme B in the lesions suggest participation of these
proteins in the mechanisms associated with the progression of
tissue damage observed in CL patients. We also observed the
expression of the proteins that were not earlier described in
the inflammatory site of CL. Therefore, our study provides a
basis for further studies of pathogenesis of this disease.

MATERIALS AND METHODS
Clinical sample collection and preparation

Skin samples were obtained from the border of 11 biopsies from

different CL patients before starting treatment. All patients lived in the

municipality of Jiquiriça (State of Bahia, Brazil) and presented a single

active lesion with 30 days of infection. CL is endemic in the state of

Bahia, and Jiquiriça is one of the most important areas of L.

braziliensis transmission (De Oliveira et al., 2003). The diagnosis

was made on the basis of clinical and histological characteristics of

skin lesion compatible with CL plus a positive result in anti-

leishmania delayed-type hypersensitivity or anti-leishmania sero-

logy. To confirm the diagnostic of CL, immunohistochemistry was

performed for Leishmania analysis using anti-Leishmania IgG

obtained in rabbits (see Immunohistochemistry section for more

details; Supplementary Figure S3 online). None of the individuals

had reported previous infection with Leishmania. All patients were

submitted to the treatment with Glucantime (Safoni-Aventis, São

Paulo, Brazil), and all lesions from CL patients healed after the

treatment and there were not confounding medical conditions.

Normal skin samples (n¼ 6) were obtained from healthy indivi-

duals by plastic surgery. For the proteomics study, six of these

samples (three biopsies from CL patients and three from normal skin)

were collected and cryopreserved. The samples were extracted

directly in the rehydration buffer (8 M urea, 2% CHAPS, 0.28%

dithiothreitol, 0.5% ampholites 3–10 pH gradient (immobilized pH

gradient)), protease inhibitor (Amersham Biosciences, Uppsala, Swe-

den), and trace of Bromophenol blue at room temperature. After

centrifugation, the supernatants were collected and quantified using

the Bradford assay. The remaining samples (8 biopsies from CL

patients and 3 from normal skin) were fixed in 10% formalin-buffered

solution, embedded in paraffin, and used for the immunohistochem-

ical analyses. This study had ethical permit approval from Centro de

Pesquisas Gonçalo Moniz (CPqGM/FIOCRUZ-Bahia), in adherence

to the Declaration of Helsinki Principles. Institutional Review Board

approval was obtained and all participants or their legal guardians

gave their written consent before entering the study.

All subjects consented by written agreement to inclusion in this

study.

2DE and detection of differentially expressed proteins

Samples were subjected to isoelectric focusing using immobilized

pH gradient Dry Strips with immobilized pH gradient, pH range 3–

10, 18 cm, linear (GE Healthcare). Samples were applied by in-gel

rehydration technique. Isoelectric focusing was performed in the

Ethan IPGphor instrument (GE Healthcare, Uppsala, Sweden) accord-

ing to the following protocol: rehydration, 10 hours, 50 V; 3 hours,

1,000 V; 1 hour, 8,000 V; 10 hours or to 50,000 Vh. After isoelectric

focusing, strips were equilibrated in 50 mM Tris-HCl, pH 8.8, 6 M

urea, 2.0% SDS, 30% glycerol with 10 mM dithiothreitol for 10 min-

utes, and then for 10 minutes in the same buffer without dithiothreitol

but with 20 mM iodoacetamide. The second-dimensional SDS-PAGE

was performed in an Ettan Dalt Six (GE Healthcare). Triplicate 2D

gels were generated for each sample, with 9 gels representing lesions

and 9 gels representing normal skin samples to ensure reproducibility.

Generated gels were stained with silver nitrate. Spot detection and

quantification were done using the Image Master Platinum v6.0 GE

Healthcare software. Student’s t-test was used to ensure statistical

significance of the spot selection (Po0.05). Proteins from the two

groups of samples (CL lesions and normal skin) that showed change in

expression pattern between lesion and normal skin samples by

42-fold of the spot volume or were unique were taken for

identification by matrix-assisted laser desorption/ionization time-of-

flight MS.

Protein identification

Protein spots were excised from the gels and subjected to in-gel

trypsin digestion using a mC18 ZipTip (Millipore Billerica, MA)

followed by MS analysis by the matrix-assisted laser desorption/
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ionization time-of-flight MS on Micromass M@LDI-Reflectron instru-

ment (Waters, Milford, MA). Embedded Micromass software (Mas-

sLynx Software v4.0) was used to process the mass spectra. Peptide

spectra were internally calibrated using autolytic peptides from the

trypsin (842.510, 1,045.564, and 2,211.105 Da). To identify proteins,

we performed searches in the NCBI nr sequence database using the

ProFound search engine (http://prowl.rockefeller.edu/prowl-cgi/

profound.exe). One missed cleavage, alkylation with iodoacetamide,

and partial oxidation of methionine were allowed. Search parameters

were set on mass tolerance o0.1 Da, isoelectric point, and molecular

weight as compared with the migration position of a spot in the 2D

gel, and ‘‘Homo sapiens’’ was selected for species search. Signifi-

cance of the identification was evaluated according to the different

parameters, included a probability value that means that a protein

identified in a database is the one that was analyzed on the basis of

experimental conditions, isoelectric point, and molecular weight of

the protein. We also used Z-score, a statistical distribution estimated

when the search result is compared with an estimated random match

population. Under these statistical analyses, the higher value of

Z-score means the higher is the probability that a particular protein

is not caused by random coincidence. Besides that, significance was

also evaluated by total number of identified peptides for the protein

matched and sequence coverage of predicted peptides.

Biological network analysis

Protein names were translated into Gene Ontology terms (Lewis et al.,

2000). Biological network analysis of obtained data was performed

using GoMiner (http://discover.nci.nih.gov/gominer/) (Zeeberg et al.,

2003), Cytoscape v2.8.1 (http://www.cytoscape.org) (Shannon et al.,

2003; Smoot et al., 2011), and Ingenuity System Pathway Analysis

program v9.0 (IPA-Ingenuity Systems, Redwood City, CA). GoMiner

provides classification of identified proteins into biologically coherent

categories and assesses these categories. Cytoscape is an open source

software platform for building and analysis of biological interaction

networks. The network was analyzed based on topological

parameters such as number of nodes and neighborhood connect-

ivity using a Cytoscape plug-in called ‘‘Network Analyzer’’ (Assenov

et al., 2008). In a given network, each gene is represented as a node,

and the interactions between the nodes are defined as edges.

MiMIplugin (http://mimiplugin.ncibi.org/) (Saito et al., 2012) was

used to extract relevant proteins and RNAs from public databases.

Network modules were extracted by MCODE v.2.1 tool (Saito et al.,

2012). IPA-Ingenuity Systems was employed to model the possible

canonical pathway/function and network involving the 59 proteins

identified. Fisher’s exact test was used to calculate the P-value

determining the network connectivity.

Immunohistochemistry

Formalin-fixed and paraffin-embedded tissue specimen sections

(5mm) were obtained, and immunohistochemistry was performed as

described previously. The following primary antibodies were used:

caspase-3 (ab4051; 1:200), caspase-9 (ab63342; 1:200), granzyme B

(ab134933; 1:50) (all from Abcam, Cambridge, UK), and anti-

Leishmania IgG obtained in rabbit (1:1,000). The specimens were

then incubated in sequence with biotinylated secondary antibody,

streptavidin–peroxidase complex (LSABþ System-HRP; Dako, São

Paulo, Brazil). The slides were visualized by 3,30-diaminobenzidine

chromogen and counterstained with hematoxylin. Isotype control

antibody (R&D Systems, Abengdon, UK) was used as negative

controls. Staining cells were counted as 1,000 cells distributed in

five different microscopic fields with a magnification power of � 400.

Digital images of tissue sections were captured using a Nikon E600

light microscope and a Q-Color 1 Olympus (Melville, NY) digital

camera. Quantification of stained areas was performed using Image

Pro-Plus software (Media Cybernetics, Rockville, MD). Spearman’s

correlation analysis tests were also applied. Analyses were conducted

using GraphPrism 5 software (GraphPad Software, San Diego, CA),

and a Po0.05 was considered significant.
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