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Abstract: Drug development has become the Holy Grail of many structural bionformatics groups. The explosion of in-

formation about protein structures, ligand-binding affinity, parasite genome projects, and biological activity of millions of 

molecules opened the possibility to correlate this scattered information in order to generate reliable computational models 

to predict the likelihood of being able to modulate a target with a small-molecule drug. Computational methods have 

shown their potential in drug discovery and development allied with in vitro and in vivo methodologies. The present re-

view discusses the main bioinformatics tools available for drug discovery and development.  
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INTRODUCTION 

 One of the most important challenges in the Post-
genomic Era is the understanding of protein networks and 
their interaction with small molecule drugs. Until the 1980s, 
most of the information related to drug mechanisms and drug 
receptors could fit in few thousands of printed pages [1]. 
However, with the recent explosion in biological and chemi-
cal information, this is no longer true. Sequencing of human 
and parasite genomes made possible to pursue the identifica-
tion of a potential portion of a genome that could be targeted 
by a drug, which is of extreme importance in the early stages 
of drug development. Based on the analysis of the first ver-
sion of a human genome, the total number of “druggable” 
target macromolecules has been estimated to be approxi-
mately 8000, of which ~5000 could be hit by small drug-like 
molecules. More recent estimates revealed only ~3000 pro-
tein targets with pharmacological potential [2].  

 On the other hand, the sequencing of parasite genomes 
opened the possibility to focus drug development initiatives 
on protein targets. These initiatives usually involve high 
throughput screening of large libraries of diverse molecular 
structures to determine if they inhibit a specific protein tar-
get, previously identified in the parasite genome sequencing. 
A typical success rate for the initial screening of possible 
drug candidates is 3-6 hit series out of 750,000 compounds. 
If the three-dimensional structure of the protein target is 
known, either through X-ray crystallography, Nuclear Mag-
netic Resonance (NMR) or homology modeling, then the  
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screening process and success rate can be significantly en-
hanced through docking simulations of the molecular struc-
ture into the active site of the protein target [2]. 

 The process of drug development involves several steps, 
from target identification and screening, hit and lead genera-
tion and optimization, preclinical and clinical studies to final 
registration of a drug [3]. Several methodologies can be em-
ployed in order to identify drug-like molecules able to inter-
fere with a protein function, including in silico, in vitro, and 
in vivo tests. In silico methodologies, also known as bioin-
formatics tools, have increased their contribution in the last 
decade. Fig. (1) illustrates the main steps involved in drug 
development using bioinformatics tools, showing a general 
scheme for virtual screening, where we start with identifica-
tion of a protein target, followed by the use of a database 
with hundreds of thousands of molecules. This dataset is 
submitted to docking simulations. The ligand-binding affin-
ity is evaluated. A smaller subset of potential hits is selected 
based on the binding affinity. The main computational steps 
involved in these processes are discussed in this review.  

SELECTION OF PROTEIN TARGET 

 Experimentally determined three-dimensional structures 
of protein targets are of extreme importance for drug devel-
opment. In the last few decades over 55,000 structures have 
been deposited in the Protein Data Bank (PDB) [4-8]. In the 
case of antiparasitic drugs there are several well-established 
protein targets that had their structures solved, either by X-
ray crystallography or NMR methods. Enzymes of shikimate 
pathway [9-15], protein kinases [16], and purine nucleoside 
phosphorylases [17-28] are few examples of these protein 
targets. In addition, many similar protein targets, identified 
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in parasite genomes may be modeled using experimental 
determined structures as templates [29-34]. This richness of 
structural information opens the possibility to engage several 
virtual screening projects, focused either on specific protein 
targets or on specific parasites. 

SELECTION OF SMALL-MOLECULE DATABASE 

 The Internet has fast become the first choice for all kind 
of searches. The increasing quantity of chemistry-related 
resources now available provides chemists with a direct path 
to the discovery of information, earlier provided only via 
library services and limited to commercial and costly re-
sources. The diversity of information available online is ex-
panding at a dramatic rate and a shift to publicly available 
resources offers significant opportunities in terms of the 
benefit to science and society. We describe here the most 
used databases available for virtual screening projects. 

 PubChem is one of the most used small molecule data-
base in virtual screening initiatives. This database is a scien-
tific showcase of the National Institutes of Health (NIH) 
Roadmap Initiatives (http://nihroadmap.nih.gov). It is a pub-
lic molecular information repository which was constructed 
to facilitate information exchange and sharing data deposits 
among the NIH funded ten Molecular Libraries Screening 
Centers Network (MLSCN) [35]. The database system is 
maintained by the National Center for Biotechnological In-
formation (NCBI) and can be accessed on the internet at 
http://PubChem.ncbi.nlm.nih.gov. The focus of this database 
is on the chemical, structural and biological properties of 
small molecules, particularly their application as diagnostic 
and therapeutic agents.  

 PubChem is divided into dynamically growing primary 
databases. First, PubChem Compound database, which has 
over 10 million entries of pure and characterized chemical 
compounds. Second, PubChem Substance, with approxi-
mately 15.8 million entries of mixtures, extracts, complexes 
and uncharacterized substances [36]. PubChem continues to 
grow in stature, content and capability. 

 Information about molecules deposited in PubChem da-
tabase and bioactivity data deposited by all MLSCN centers 
have generated many research opportunities for the scientific 
community to exploit the available data in PubChem in order 
to optimize the structure-activity relationships and pharma-
cology, pharmacokinetics, metabolism and toxicology pro-
files of target compounds both in vitro and in silico. Many of 
the molecules present in this database had antiparasitic ac-
tivities [35]. 

 The PubChem databases link not only to other Entrez 
databases such as PubMed and PubMed Central but also to 
Entrez Structure and Protein, to provide a bridge between the 
macromolecules of genomics and the small organic mole-
cules of cellular metabolism. They are searchable using, in 
addition to text queries, structural queries based on chemical 
Smiles, formulas or 3D chemical structures provided in a 
variety of formats [37].  

 PubChem can be searched by alphanumeric text vari-
ables, such as names of chemicals, property ranges or by 
structure, substructure or structural similarity. The system 
has an important role as a central repository for chemical 
vendors and content providers enabling evaluation of com-
mercial compound libraries and saving biomedical research-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Main steps involved in drug development using bioinformatics tools. 
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ers from the work associated with gathering and searching 
commercial databases.  

 Another useful database is called eMolecules [38]. It is a 
free online database that offers suppliers and information for 
over 10 million unique chemical structures. The database is 
assembled from data supplied by over 150 suppliers and pro-
vides a path to identify a vendor for a particular chemical 
compound. By providing access to compounds for purchase 
they are providing a free access online service similar to 
those of commercial databases, such as Symyx Available 
Chemical Directory [39], CAS’ ChemCats [40] and Cam-
bridgesoft’s ChemACX [41] as well as a number of other 
providers [42]. This database is considered the world’s most 
comprehensive openly accessible search engine for chemical 
structures. 

 It is also worth to mention a database called DrugBank, 
which was designed to serve as a comprehensive, fully 
searchable in silico drug resource that linked sequence, struc-
ture and mechanistic data about drug molecules (including 
antiparasitic drugs) with sequence, structure and mechanistic 
data about their drug targets [43]. Fundamentally, DrugBank 
is a dual purpose bioinformatics-chemoinformatics database 
with a strong focus on quantitative, analytic or molecular-
scale information about both drugs and drug targets [1]. As a 
clinically oriented drug encyclopedia, DrugBank is able to 
provide detailed, up-to-date, quantitative, analytic or molecu-
lar-scale information about drugs, drug targets and the bio-
logical or physiological consequences of drug actions. As a 
chemically oriented drug database, DrugBank is able to pro-
vide many built-in tools for viewing, sorting, searching and 
extracting text, image, sequence or structure data. Since its 
initial release, DrugBank has been used in a wide range of 
applications including in silico drug discovery [44], drug 
“rejuvenation” [45], drug docking or screening [46], drug 
metabolism prediction [47], drug target prediction [48], and 
general pharmaceutical education. 

 The database is hosted by the University of Alberta, Can-
ada [42], and in the version 1, that was released in 2006, 
DrugBank presented >4100 drug entries, corresponding to 
>12 000 different trade names and synonyms. These drug 
entries were chosen according to the following rules: the 
molecule must contain more than one type of atom, be non-
redundant, have a known chemical structure and be identi-
fied as a drug or drug-like molecule by at least one reputable 
data source [1]. DrugBank also supports an extensive array 
of visualizing, querying and search options including a struc-
ture similarity search tool and an easy-to-use relational data 
extraction system [1]. 

 The DrugBank team has employed enormous efforts to 
facilitate the drug discovery and drug development and 
hoped that DrugBank will serve as a useful resource to not 
only members of the pharmaceutical research community but 
to educators, students, clinicians and the general public [43]. 

 Several virtual screening initiatives have employed ZINC 
database. This database has a library of 727,842 molecules, 
the number of molecules is growing, each with 3D structure, 
using catalogs of compounds from vendors (the size of this 
library continues to grow). The molecules have been as-
signed biologically relevant protonation states and are anno-

tated with properties such as molecular weight, calculated 
LogP, and number of rotatable bonds [49].  

 The users of this database can access it through several 
criteria, e.g. the molecular weight, polar desolvation, apolar 
desolvation, H-acceptors, H-donors, rotatable bonds, xLogP, 
net charge or the user can draw the own molecular structure, 
using the Java Molecular Editor (JME) [50], and search for 
similarities. The Database Browser displays molecules in a 
table containing ZINC registration code, a 2D sketch, pur-
chasing information, and molecular properties such as calcu-
lated LogP and number of rotatable bonds, clicking on a 
vendor’s catalog number links to the vendor’s e-commerce 
Website, if available. The following options are also avail-
able: (a) download individual molecules or the set of all 
molecules matched in SMILES, mol2, SDF, and DOCK 
flexi-base formats, (b) download a table of molecular proper-
ties including purchasing information for analysis in a 
spreadsheet, and (c) create a subset for docking or download 
[49]. 

 One interesting feature of ZINC is a collection of pre-
defined subsets of molecules. These subsets were defined 
based on physicochemical criteria in order to facilitate vir-
tual screening initiatives. Another useful option is the possi-
bility to create your own subset. This option allows that a 
useful subset may be used for other group interested in the 
same problem.  

 All previously described databases can be easily ac-
cessed, and 3D structures may be downloaded. In the case of 
virtual screening projects focused on the discovery of anti-
parasitic drugs all databases are useful, especially ZINC, 
which can be used to build specific subset of molecules to be 
used in molecular docking simulations. 

MOLECULAR DOCKING 

 Molecular docking is a computer simulation methodol-
ogy to predict the conformation of a receptor-ligand com-
plex. Each docking algorithm makes use of one or more spe-
cific search algorithms, which are the methods employed to 
predict the possible conformations of a binary complex. It 
can also be defined as a simulation process where a ligand 
position is estimated in a predicted or pre-defined binding 
site. Molecular docking simulations may be used for repro-
ducing experimental data through docking validations algo-
rithms, where protein-ligand or protein-protein conforma-
tions are obtained in silico and compared to structures ob-
tained from X-ray crystallography or nuclear magnetic reso-
nance. Furthermore, docking is one of main tools for virtual 
screening procedures, where a library of several compounds 
is “docked” against one drug target and returns the best hit. 
The source of these compounds was described in the previ-
ous section.  

 Speed and accuracy are key features for obtaining a suc-
cessful result in docking simulations. There are several dock-
ing programs, such as DOCK [51], AUTODOCK [52, 53], 
GOLD [54, 55], FLEXX [56, 57], ZDOCK [58], M-ZDOCK 
[58], MS-DOCK [60], Surflex [61], MCDOCK [62], and 
others. The docking program can search for best fit between 
two or more molecules taking into account several parame-
ters, obtained from receptor and ligand input coordinates as: 
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geometrical complementarity, regarding atomic VDW radius 
and charge, receptor or ligand structure flexibility; or consid-
ering interatomic interactions, such as hydrogen bonds and 
hydrophobic contacts. As result, docking applications return 
the predicted orientations (poses) of a ligand in the target’s 
binding site. Usually the posing process returns several pos-
sible conformations. Scoring functions, which are able to 
evaluate intermolecular binding affinity or binding free en-
ergy, are employed in order to optimize and rank results, 
obtaining the best orientation after the docking procedure. 

 Docking applications can be classified by their search 
algorithms, which are defined by a set of rules and parame-
ters applied to predict the conformations. When we consider 
the flexibility of the ligand and/or the receptor docking algo-
rithms can be classified in two large groups: rigid-body and 
flexible docking. Rigid-body docking method does not take 
into account the flexibility of neither ligand nor receptor, 
limiting the specificity and accuracy of results, considering 
essentially geometrical complementarities between two mole-
cules. Flexible docking methods can consider several possi-
ble conformations of ligand or receptor, as well as for both 
molecules at the same time, at a higher computational time 
cost. Docking applications usually make use of one or more 
of the following methods: fast shape matching (SM) [64], 
incremental construction (IC) [56, 57], Monte Carlo simula-
tions (MC) [62], distance geometry (DG) [65], evolutionary 
programming (EP) [66, 67], genetic algorithms (GA) [52, 
63], tabu search (TS) [68, 69] and simulated annealing (SA) 
[70, 71].  

 One key point in the development of docking algorithms 
is the accuracy of the docking simulation. The accuracy may 
vary depending on what target is being tested and what kind 
of molecules composes the screening library. Highest speed 
and highest accuracy are ideal, although opposite features for 
virtual screening through docking simulations. Methods 
which are more complex, considering many physicochemical 
and thermodynamic properties, tend to present higher accu-
racy. However, these methods consume more computational 
time. Likewise, methods which take into account simpler 
parameters, as shape matching algorithms, are able to predict 
docking conformations in fast speed, however at lower accu-
racy rate. 

 Generally, docking algorithms predict several orienta-
tions (poses) for the ligand inside the binding site. In virtual 
screening, this process is repeated for a small-molecules da-
tabase and results are ranked according to the degree of bind-
ing affinity between ligand and receptor (selection of best 
docking results) (Fig. (1)). Among other factors, the accu-
racy of docking hits depends on the quality of scoring func-
tions, which are used in result analysis. There are several 
scoring functions available [72, 73-80]. Recently, many scor-
ing functions have been compared and their accuracy have 
been tested [81, 82]. 

 Scoring functions are mathematical approximating meth-
ods for estimating binding affinity, which is a main tool for 
lead optimization of virtual screening results, finding the 
highest-affinity ligand against a target. Its accuracy can be 
validated in docking refinement tests, if the scoring method 
is able to exclude docking false positive hits (“decoys”), fit-

ting experimental data [83]. It also has shown to be useful in 
methods for localization of protein’s unidentified binding 
sites [84-86], prediction of protein-protein binding affinity 
[87-89] and specific optimizations for proteins from a same 
structural family also are available [90]. In addition, it has 
been demonstrated the empirical scoring functions are capa-
ble of predicting the best docking results, when compared 
with a crystallographic structure [90]. 

 The performance of methods for virtual screening has 
been widely explored, where different docking algorithms 
have been shown to be successful when combined together 
in one virtual screening protocol [91], as well as adaptations 
and tests of known algorithms have been developed in order 
to optimize virtual screening speed and accuracy [92-94]. 
Furthermore, many scoring functions have been improved 
and combined to obtain a correctly ranking of docking re-
sults [79, 95, 96]. It indicates that some of the most impor-
tant sources of improvement for virtual screening are in de-
signing smarter strategies for the setup of virtual screening 
library or post processing of docking simulations and its re-
sults, as well as developing more accurate or specific fast 
scoring functions. 

EVALUATION OF LIGAND-BINDING AFFINITY 

AND SELECTION OF THE BEST DOCKING RE-

SULTS 

 The last two steps in the schematic diagram shown in 
Fig. (1) are related to the evaluation of ligand-binding affin-
ity, initially aiming to estimate ligand-binding affinity and 
finally to select the best docked structure. Computational 
analysis of protein-ligand systems is one of the open prob-
lems in the field of computational chemistry, even with all 
development reached in the last decade. Specifically, the 
direct calculation of ligand-binding affinities, using solely 
information contained in the atomic coordinates of the pro-
tein-ligand complexes, is of extreme relevance for the proc-
ess of scanning virtual libraries of small molecules in order 
to identify new medications and biological probes. Indeed, 
the discovery of a new lead compound that binds tightly to a 
protein is the main objective of early-stage drug discovery 
and also of chemical genomics projects seeking inhibitors to 
elucidate gene function [97]. This scenario strongly indicates 
the need of precise and reliable methodologies to computa-
tional evaluate protein-ligand interaction. This computational 
methodologies would be of little applicability or even useless 
without experimentally determined affinities to correlate 
with the predicted affinities. The experimental determined 
affinities are used as guidelines to calibrate these empirical 
scoring functions. 

 Evaluation of ligand-binding affinities can be addressed 
using empirical scoring functions, based on approximations 
that use few terms such as intermolecular hydrogen-bonds, 
van der Waals interaction, deformation effect, hydrophobic 
interaction, entropy and others. This approach to the study of 
ligand-binding affinity started with the pioneering work of 
Böhm [98-101]. Specificity of a ligand for a protein depends 
on several features, such as intermolecular hydrogen bonds, 
van der Waals contacts, and shape and charge complemen-
tarity between ligand and protein [102-108]. Therefore, as-
sessing intermolecular hydrogen bonds from crystallographic 
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data is of pivotal importance for determining specificity of 
ligand against a protein.  

 The majority of the empirical scoring functions in current 
use are based on the model where binding affinity can be 
decomposed in terms that reflect the various contributions to 
the binding. This hypothesis can be used to build empirical 
scoring functions to estimate Gibbs free energy of binding 
( Gbinding). 

 In the proposition of new empirical scoring functions it is 
necessary to use a training set of crystallographic structures 
of binary complexes of proteins and ligands, where experi-
mental information about the binding affinities is available. 
The empirical scoring function is built using a training set to 
obtain weights for each term present in the scoring function. 
Multivariate regression analysis is then applied to find the 
best fit between the predicted and experimental protein-
binding affinities. Although empirical scoring functions can 
be interpreted based on physical principles underlying binary 
complex formation, much of the intermolecular interaction 
detail is lost. 

 In spite of many problems in the understanding of the 
structural features important for binding affinity, most of the 
experimental available data indicates that additive functions 
for protein-ligand interactions might be a good approach for 
the development of empirical scoring functions. These func-
tions may be expressed in Gibbs free energy of binding, as in 
the PEARLS [109] or in pKd as used for XSCORE [77] and 
POLSCORE [80]. With atomic coordinates (x,y,z) available 
for protein-ligand complexes, the analysis of the binding can 
be estimated as a sum of interactions multiplied by weighting 
coefficients (cj), as indicated by the following equation: 

pKd = c0 + cj f j (x,y,z)
j=1

N

 

where pKd is the –log Kd where Kd could also be either KM 
or Ki, c0 is a regression constant, fj’s are functions that ac-
counts for intermolecular interactions. 

 Evaluation of protein-ligand affinity by means of compu-
tational methodologies has demonstrated to be extremely 
useful for virtual screening projects. Their applications are 
not limited to the evaluation of protein-ligand affinity only, 
but also to the identification of best docking results. Applica-
tion of empirical scoring function to rank best results ob-
tained in molecular docking simulations showed the ability 
of these empirical functions to predict the correct position for 
the ligand for several different ligands [28, 81, 82, 90]. 

Recent developments opened the possibility to test several 
empirical scoring functions implemented in a single pro-
gram. In addition, the use of the cross-term empirical scoring 
function implemented in the program POLSCORE was able 
to predict the orientation of ligands for complexed structures 
with results better than a popular empirical scoring function 
implemented in the program XSCORE [77] and DrugScore 
[110]. Furthermore, the use empirical scoring function that 
ranks better for each crystallographic structure, to analyze 
molecular docking results, indicates that the use of this 
methodology gives better results than XSCORE and Drug-

Score [110]. One of the weaknesses of empirical scoring 
methods is the low reliability for unknown systems. Strictly 
speaking, neither traditional scoring function nor the cross-
term function present a direct physical basis. Further devel-
opments in the experimental determined protein-ligand af-
finities through precise methods, such as Isothermal Titration 
calorimetry (ITC), especially organized in databases [111], 
may furnish addition experimental information to help in the 
development of more realistic empirical scoring functions. 

FINAL REMARKS 

 Parasite genome projects are rich sources of biological 
information that could be employed to identify potential pro-
tein targets. Once a protein target is identified the next steps 
involve massive use of bioinformatics tools to elucidate 
three-dimensional structure, identify binding pockets, select 
small molecule databases, and carry out virtual screening. 
The success of a virtual screening procedure depends not 
only on the docking simulation capability of posing a ligand 
inside a given protein binding site, but also on a set of other 
processes. One of the first steps that are used in most of suc-
cessful virtual screening procedures consists in a pre proc-
essing of virtual screening library.  

 When there is enough information about a given target 
binding site properties, such as how it interacts with sub-
strate or which amino acids are the most important for bind-
ing and specificity, the setup of a new specific library of 
molecules can be carried out by filtering a larger library, 
selecting the molecules that have features that provide a 
higher chance to bind to the target. The criteria for selecting 
a wide spectrum different molecule of subsets of compounds 
lie in the similarity principle. When we consider that struc-
turally-similar small molecules are prone to exhibit similar 
activity the maximum coverage of the activity space should 
be reached by choosing a structurally diverse set of mole-
cules. A diverse subset of molecules of a diverse combinato-
rial library should be more likely to present molecules with a 
wider spectrum of biological activities and should reduce the 
number of molecules that are structurally similar and have 
the same activity, which is called “redundant” molecules 
[112]. After this first setup, library can be filtered again. It 
can be carried out by a fast rigid-body docking screening, 
which may eliminate the geometrically inappropriate ligands 
by shape complementarities search. Following this strategy, 
MS-DOCK, a rigid docking tool based on DOCK, proposes 
a shape complementarity algorithm as a first filtering proce-
dure for a multi-step virtual screening. 

 Development of a new generation of antiparasitic drugs 
will benefit greatly from the application of bioinformatics 
tools, from protein target identification to molecular docking 
simulations. Post-processing of docking results is also a key 
factor of virtual screening procedure. Thus, after rigid-body 
docking search, the remaining compounds can be screened 
by flexible docking search methods and analyzed with scor-
ing functions. A combination of different scoring functions 
can be applied in order to improve the accuracy. Although 
being more CPU-time demanding, this methodology may 
return results with considerable higher accuracy. Since thou-
sands of compounds must be tested against the target in a 
short period of time, experimental methodology would be 
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impracticable and molecular docking combined with binding 
affinity evaluation has been established as a key method for 
virtual screening [113-122]. 
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ABBREVIATIONS 

DG = Distance geometry  

EP = Evolutionary programming  

GA = Genetic algorithms  

IC = Incremental construction 

ITC = Isothermal Titration calorimetry 

MC = Monte Carlo  

PDB = Protein Data Bank 

SA = Simulated annealing  

SM = Shape matching 

VDW = Van der Waals 

TS = Tabu search (TS)  

Gbinding = Gibbs free energy of binding 
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