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Despite the abundance of information on cerebral malaria (CM), the pathogenesis of this disease is not
completely understood. At present, two nonexclusive dominant hypotheses exist to explain how the neu-
rological syndrome manifests: the sequestration (or mechanical) hypothesis and the inflammatory
hypothesis. The sequestration hypothesis states that sequestration of Plasmodium falciparum-parasitized
red blood cells (pRBCs) to brain capillary endothelia causes obstruction of capillary blood flow followed
by brain tissue anoxia and coma. The inflammatory hypothesis postulates that P. falciparum infection
releases toxic molecules in the circulation, inducing an imbalanced systemic inflammatory response that
leads to coagulopathy, brain endothelial cell dysfunction, accumulation of leukocytes in the brain micro-
circulation, blood brain barrier (BBB) leakage, cerebral vasoconstriction, edema, and coma. However, both
hypotheses, even when considered together, are not sufficient to fully explain the pathogenesis of CM.
Here, we propose that the development of acute liver failure (ALF) together with BBB breakdown are
the necessary and sufficient conditions for the genesis of CM. ALF is characterized by coagulopathy
and hepatic encephalopathy (HE) in a patient without pre-existing liver disease. Signs of hepatic dysfunc-
tion have been shown to occur in 2.5–40% of CM patients. In addition, recent studies with murine models
demonstrated that mice presenting experimental cerebral malaria (ECM) had hepatic damage and brain
metabolic changes characteristic of HE. However, the occurrence of CM in patients with mild or without
apparent hepatocellular liver damage and the presence of liver damage in non-CM murine models indi-
cate that the development of ALF during malaria infection is not the single factor responsible for neuro-
pathology. To solve this problem, we also propose that BBB breakdown contributes to the pathogenesis of
CM and synergizes with hepatic failure to cause neurological signs and symptoms. BBB dysfunction
would thus occur in CM by a mechanism similar to the one occurring in sepsis and is in agreement with
the inflammatory hypothesis. Nevertheless, differently from in the inflammatory hypothesis, BBB leakage
would facilitate the penetration of ammonia and other toxins into the brain parenchyma, but would not
be sufficient to cause CM when occurring alone. We believe our hypothesis better explains the pathogen-
esis of CM, does not have problems to deal with the exception data not explained by the previous hypoth-
eses, and reveals new targets for adjunctive therapy.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Cerebral malaria (CM) is a life-threatening complication of Plas-
modium falciparum malaria that remains a major public health
problem in Africa and South East Asia [1]. The World Health Orga-
nization defines CM as the presence of P. falciparum parasitemia in
conjunction with a coma persisting for at least 1 h after termina-
tion of a seizure or correction of hypoglycemia and without the
presence of other causes of encephalopathy [2]. CM mortality rate
remains high (10–20% in children) despite artemisinin-based anti-
malarial treatment [3,4]. In addition, the disease causes significant
long-term neuro-cognitive deficits in 10–20% of survivors [5–7].

The pathogenesis of CM has been studied extensively over sev-
eral decades [8,9]. Despite the abundance of information generated
on the disease, its pathogenesis remains largely unclear. There are
currently two nonexclusive dominant hypotheses to explain how
CM manifests: the sequestration (or mechanical) hypothesis and
the inflammatory hypothesis [8,10–12]. Although both hypotheses
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claim to explain, at least partially, the pathogenesis of CM, no
adjunctive therapy has emerged from either hypothesis to address
the clinical management or prevention of disease [13].

The sequestration hypothesis is based on the phenomena of
adhesion of red blood cells (RBCs) parasitized byP. falciparum tro-
phozoites and schizonts to both brain capillary endothelia and
uninfected RBCs leading to sequestration and rosette formation,
respectively [11]. These events would result in obstruction of cap-
illary blood flow, focal brain tissue anoxia and decreased removal
of waste products, which is thought to lead to coma [9,14]. Seques-
tration results from the binding of P. falciparum erythrocyte mem-
brane protein 1 (PfEMP-1), present on the membrane of parasitized
RBCs (pRBCs), with endothelial cell receptors such as intercellular
adhesion molecule 1 (ICAM-1) [15,16]. Parasitized and uninfected
RBCs also become less deformable during P. falciparum infection
[14] which, together with rosetting, leads to mechanical plugging
of capillaries. Studies showing that patients infected with P. falcipa-
rum clones prone to brain sequestration are more susceptible to
CM development than patients infected with non-neurotropic
clones corroborate this hypothesis [17,18]. However, the seques-
tration hypothesis does not explain some facts: (a) the absent or
low correlation between parasitemia and mortality [19,20]; (b)
the low rates of neurological deficits after recovery from coma in
CM patients when compared to other neurological pathologies that
cause brain anoxia [21,22]; (c) the increasing number of case re-
ports of CM by infection with Plasmodium vivax, which is generally
believed to neither sequester nor decrease RBC deformability [23–
26]; (d) the potential for P. falciparum to adhere to the microvascu-
lature of other organs such as the heart and the small intestine
without causing significant pathology [11].

The inflammatory hypothesis postulates that P. falciparum pRBC
lysis releases both parasite-derived toxins and host intracellular
molecules in the circulation inducing a systemic inflammatory re-
sponse that leads to coagulopathy, brain endothelial cell dysfunc-
tion, accumulation of leukocytes in the brain microcirculation,
blood brain barrier (BBB) leakage, cerebral vasoconstriction and
edema [10,12,13,27,28]. These pathological alterations activate
microglia and damage astrocytes and neurons, leading to coma.
Parasite toxins (glycosylphosphatidylinositol [GPI], hemozoin)
and intracellular molecules (heme) contain pathogen-associated
molecular patterns (PAMPs) that are recognized by pattern recog-
nition receptors present in cells of the innate immune system such
as monocytes and neutrophils as well as on endothelial cells [29–
31]. Activation of these cells induces the secretion of pro-inflam-
matory cytokines like TNF-a, IFN-c, and LT-a. Activated innate im-
mune cells together with pro-inflammatory cytokines act by
recruiting CD4+ and CD8+ T cells, which exacerbates the process
by leading to the production of more pro-inflammatory cytokines
[12,30]. This inflammatory response is beneficial at first, reducing
parasite growth and activating catabolic pathways to eliminate
parasite toxins and host molecules that can be dangerous when
present in high amounts [30,32]. However, at later stages, the
inflammatory response is not properly regulated and causes dam-
age to the host [31,32]. High levels of hemoglobin released in the
plasma following parasite replication in RBCs leads to the genera-
tion of free heme, a toxic metabolite which scavenges nitric oxide
(NO), causing endothelial disturbances and damage to the BBB
[31,33,34]. Activated CD8+ T cells also induce endothelial cell
impairment by perforin-mediated mechanisms, contributing to
blood–brain barrier (BBB) leakage and brain edema and leading
to entry of cytokines and malaria antigens into the brain environ-
ment [35]. Endothelial activation also induces the overexpression
of adhesion molecules (ICAM-1), allowing pRBC, platelet, and leu-
kocyte adhesion to endothelia. Stimulation of endothelial cells by
pro-inflammatory cytokines also increases the production of endo-
thelin-1, a potent vasoconstrictor that, in the absence of NO, would
cause brain ischemia [36–38]. In addition, activated monocytes
activate intravascular coagulation components and platelets, lead-
ing to the consumption of clotting factors, which then predisposes
to hemorrhages [12]. This pro-coagulant state also contributes to
the formation of rosettes, which would be considered analogous
to mini-thrombi [12]. Other mediators such as cd T cells, low levels
of anti-inflammatory cytokines, microparticles and prostaglandins
produced by the parasite seem to be involved in the pathogenesis
by contributing to increased inflammation and endothelial cell
activation [13,36,39–41]. The inflammatory hypothesis is mainly
based and supported by human studies showing association be-
tween inflammatory mediators and development of CM and by
experimental studies with mouse models of CM induced by Plas-
modium berghei ANKA [13,39]. However, the inflammatory hypoth-
esis also cannot fully explain the pathogenesis of CM for the
following reasons: (a) high levels of inflammatory mediators are
found during non-lethal P. vivax infection and in strains of mice
resistant to experimental CM (ECM) development when infected
by P. berghei ANKA (PbA) [12,42]; (b) anti-inflammatory agents
do not improve and, in some instances, exacerbate the clinical
course of disease in humans [43,44]; (c) BBB leakage is present
in non-CM patients and in non-ECM murine models [45]; (d) there
is not a clear definition of the sequence of events during the course
of disease and the precise contribution of each process to adverse
outcome in CM patients [13].

These data suggests that both hypotheses, even when consid-
ered together, are not sufficient to fully explain the pathogenesis
of CM. We hypothesize that the development of acute liver failure
(ALF) together with BBB breakdown are the only necessary and suf-
ficient conditions for the genesis of cerebral malaria. In the present
article, we describe how this hypothesis could better explain the
pathogenesis of CM.
Hypothesis

ALF causes hepatic encephalopathy, a condition present in cerebral
malaria

ALF is defined by the presence of coagulopathy (International
Normalized Ratio [INR] > 1.5) and hepatic encephalopathy (HE) in
a patient without pre-existing liver disease [46,47]. Coagulopathy
occurs mainly because of a decrease in the synthesis of clothing
factors and thrombocytopenia during ALF [47]. HE is defined as
any degree of altered mentation in a patient with ALF and can
range from mild confusion to seizures and coma [47,48]. Although
the precise mechanism of HE is not completely understood, studies
indicate that loss of the liver detoxifying function causes hyperam-
monemia, which results in an accumulation of this toxic metabo-
lite in the brain together with its detoxification product
glutamine [46,48]. This disruption in brain ammonia metabolism
and consequent increase in glutamine concentration inside astro-
cytes is believed to cause cerebral edema, increased intracranial
pressure and possibly brain parenchyma herniation [48]. In addi-
tion, other molecules such as myo-inositol, phosphocholine and
taurine are thought to be involved in the pathogenesis of HE
[48]. Disease progression contributes to altered expression of glu-
tamate and glutamine transporters. Therefore, hepatic dysfunction
per se can cause increased propensity for hemorrhages, brain dys-
function and coma.

Hepatic dysfunction ranging from mild to fulminant has been
described in P. falciparum and P. vivax malaria with an incidence
between 2.5 and 40% [49–52]. Different degrees of hepatic dys-
function and jaundice have also been shown to occur in CM pa-
tients and are associated with poor prognosis in some studies
[53–55]. Although a relationship between liver damage and CM
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was not found in previous studies with adult patients [56,57], a
strong association between increased hemozoin-laden Kupffer
cells (a sign of liver inflammation) and CM was recently shown
in Malawian children [53]. Cerebral edema, a hallmark of ALF,
has also been observed in CM patients [4,58].

Data from human studies have been corroborated by findings in
murine models of ECM. P. berghei ANKA infection causes liver dam-
age in ECM-susceptible mice [59,60]. Hepatic damage is evident by
the presence of activated, pigment-containing leukocytes adhering
to the endothelium of sinusoids and large vessels of the liver,
hypertrophic Kupffer cells saturated with malarial pigment, and
moriform vacuolization of hepatocytes in liver histology of ECM
mice [60]. In agreement with these findings, ECM mice show an in-
crease in hepatic transaminases (AST and ALT) and modulation of
the cytochrome P450 enzymatic activity during P. berghei ANKA
infection [59,61,62]. More strikingly, studies using magnetic reso-
nance spectroscopy show that there is a disturbance in brain
metabolism in ECM mice characterized by increased glutamine
and decreased myo-inositol and glycerophosphocholine, a pattern
characteristic of hepatic encephalopathy [63–65]. ECM-susceptible
mice also present brain edema and astrocyte swelling when in-
fected with P. berghei ANKA, both hallmarks of ALF [36,63,66].

Taken together, these data indicate that acute hepatic dysfunc-
tion occurs in ECM and strongly suggest its occurrence in CM pa-
tients. In addition, this hepatic dysfunction causes brain
metabolic alterations characteristic of HE in ECM. Therefore, we
consider that the occurrence of ALF in CM patients may be the
cause of the development of neurological signs and coma.

Mechanisms by which liver damage could occur in CM

The mechanism by which malaria infection causes liver damage
is not completely known. Reduction in portal venous flow as a con-
sequence of micro-occlusion by pRBC and rosettes, intrahepatic
cholestasis due to reticulo-endothelial blockage, hepatic microvilli
dysfunction, apoptosis and oxidative stress due to an intense
inflammatory response to the parasite are some possibilities [51].
In fact, one study showed a significant correlation between the
amount of pRBC in the liver and the level of serum bilirubin and
the enzyme aspartate transaminase (AST) in adults with severe
malaria [57]. However, an association between pRBC sequestration
in the liver or histologic evidence of hepatocellular damage and CM
development was not found in children [53].

Studies that investigated the pathogenesis of liver damage dur-
ing ECM showed that it is associated with infiltration of cdT cells
and CD4+ T cells that produce interferon-c, IL-12 and IL-18 and is
independent of CD8+ T cell accumulation [59,62]. Interestingly,
the blockage of CTLA-4, a negative regulator of T cell function,
exacerbates liver and brain pathology in ECM-susceptible mice
and induces ECM in resistant mice [62,67,68]. Accordingly, inter-
feron-c, IL-12 and IL-18 are essential for the development of
ECM [67,69,70] and are associated with susceptibility to CM in hu-
mans [32,71,72]. In addition, studies with non-ECM models indi-
cate that natural killer (NK) T cells, neutrophil activation,
decreased levels of IL-27 and IL-22, and free heme overload due
to hemolysis with posterior production of free radicals are involved
in hepatic damage caused by murine malaria infection [73–76].

These data allow us to propose that the following mechanisms
are involved in the pathogenesis of liver failure during CM: the re-
lease of pro-inflammatory mediators in the plasma (GPI, hemozoin,
free heme) during hemolysis activates endothelial and Kupffer
cells altering their normal anti-inflammatory/tolerogenic profile
and creating a pro-inflammatory microenvironment in the liver.
In response to activation, Kupffer cells release IL-12 and IL-18,
thereby activating CD4+ and NK T cells [73,77]. Upon activation,
CD4+ and NK T cells produce IFN-c, TNF-a and other Th-1 cytokines
that further activate Kupffer cells in a positive feedback loop that
increases the inflammatory response in the liver. Activated NK T
cells also act by killing hepatocytes via perforin/granzyme cyto-
lytic-mediated mechanisms [73]. In addition, the high amounts
of free heme in the plasma, released after oxidation of free hemo-
globin, activates liver endothelial cells that increase the expression
of adhesion molecules such as ICAM-1, VCAM-1, CxCl-1 and CxCl-2
[74] and stimulates the migration of leukocytes to the organ. Free
heme also accumulates in hepatocytes increasing the production of
reactive oxygen species inside these cells which causes oxidative
damage and induces apoptosis [74]. Further studies are needed
to confirm whether all these mechanisms occur in ECM models
and patients with CM.

ALF could explain the presence of coagulopathy and thrombocytopenia
in CM

Coagulopathy occurs in CM patients and ECM-susceptible
mice [12,51,78]. Decreased levels of coagulation factors in serum
together with consequential increased propensity for bleeding
during thrombocytopenia correlates with the development of
brain petechial hemorrhages in CM and ECM [12]. The mecha-
nism behind the development of coagulopathy in CM patients
is not completely understood. One hypothesis is that endothelial
activation induced by the inflammatory response generated by
the parasite causes a pro-coagulant state with posterior con-
sumption of coagulation factors and activation of platelets dur-
ing severe malaria [78]. The problems with this hypothesis are
extensively discussed elsewhere [78], but the main criticism is
that it is based on studies examining adult patients with severe
malaria, not pediatric patients with CM. On the other hand, the
presence of coagulopathy and thrombocytopenia in CM patients
could be explained, or at least potentiated, by a decrease in he-
patic function. In fact, the liver synthesizes most of the proteins
involved in coagulation and produces thrombopoietin, which
regulates platelet production from megakaryocytes in the bone
marrow [79]. Consequently, ALF patients have decreased levels
of clotting factors, a tendency to bleed, and around 40% of them
are thrombocytopenic [79]. Moreover, intravascular activation of
coagulation also occurs in patients with ALF [79]. Therefore, we
suggest that the presence of ALF contributes to the pathogenesis
of coagulopathy and the characteristic petechial hemorrhages in
the brain of CM patients.

BBB breakdown contributes to the development of encephalopathy
during CM

The occurrence of CM in patients with mild or without appar-
ent hepatocellular liver damage [53,56,57] and the presence of li-
ver damage in non-CM murine models [56,57,73,74,76,77]
indicate that the development of ALF during malaria infection is
not the single factor responsible for neuropathology. One may,
however, consider that BBB breakdown contributes to the patho-
genesis of CM and synergizes with hepatic failure to induce neu-
rological signs and symptoms. In this way, subjects presenting
high levels of BBB dysfunction would need only mild hepatic
damage to develop encephalopathy. In agreement, the opposite
would also be true where subjects presenting low levels of BBB
dysfunction would need severe hepatic damage to develop neuro-
logical signs.

BBB dysfunction occurs in CM and ECM [80]. The possible
mechanisms causing BBB leakage in CM have been reviewed else-
where [80–82]. Briefly, it is thought that adhesion of pRBC to the
brain microvasculature causes brain endothelial cell activation
with posterior inflammation. The local inflammation causes (or
leads to) BBB leakage by decreasing the expression of tight junc-
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tions in the endothelia, causing apoptosis of endothelial cells, and
activating CD8+ T cells which exert a direct cytotoxic effect against
endothelial cells expressing parasite-derived antigens in an MHC
class I context. This hypothesis, however, states that sequestration
is triggering the process and, consequently, presents the same
problems listed for the sequestration hypothesis.

We propose that BBB dysfunction occurs in CM by a mecha-
nism similar to the one occurring in sepsis [83,84] and is in
agreement with the inflammatory hypothesis [10,12,13,28]. We
hypothesize that CM pathophysiology involves an ischemic pro-
cess, secondary to impairment of cerebral perfusion, not mainly
derived from pRBC sequestration, and a neuro-inflammatory pro-
cess that includes endothelial activation, alteration of the blood–
brain barrier and passage of neurotoxic mediators. In fact, data
from studies in sepsis show that BBB dysfunction can be derived
from a systemic inflammatory response [83]. Therefore, brain
endothelial activation, which occurs because of the release of
toxic molecules into plasma during hemolysis (GPI, hemozoin,
free heme) would contribute to cerebral microcirculatory dys-
function, increasing the production of vasoconstrictive mediators
and inhibiting molecules that induce vasodilation. This process
would cause a state of global brain ischemia as shown in recent
studies with ECM [27,63,85–88]. At the same time, endothelial
activation would also trigger a local inflammatory response by
increasing the expression of adhesion molecules, decreasing the
expression of tight junctions, and producing pro-inflammatory
cytokines. This would initiate the sequence of events described
in the inflammatory hypothesis that would ultimately causes
opening of the BBB. Contrarily to the proposed in the inflamma-
tory hypothesis, we consider that BBB leakage alone would not
lead to the development of CM, but would, however, facilitate
the diffusion and penetration of ammonia and other toxins de-
rived from hepatic failure into the brain parenchyma leading to
the development of neurological signs and symptoms.

In fact, under physiologic conditions, cerebral uptake of ammo-
nia is mainly restricted to diffusion of the unprotonated form
(NH3); this is known as the diffusion hypothesis [89]. This occurs
because the protonated form of ammonia (NH4

+) does not easily
cross membranes and the vast majority of brain endothelia do
not present fenestrations. Opening of the BBB could, however, in-
crease the diffusion of NH4+ into the brain parenchyma, thereby
increasing its tissue concentration and triggering HE. This rationale
could explain the presence of CM in patients with mild or without
apparent hepatocellular liver damage, as mild hepatic damage
could be enough to cause HE in the presence of BBB leakage. The
same rationale could explain why, in some malaria murine models,
liver damage occurs without a full-blown ECM picture. In these
cases, BBB leakage would not occur or be too mild to cause coma.
This should explain why ECM-susceptible mice infected with P.
berghei NK65 do not develop neurological disease [59,73,77]. In
this model, hepatic dysfunction occurs as well as low levels of
BBB leakage [73,77,90]. Although P. berghei NK65-infected mice
do not demonstrate full-blown ECM, they present brain metabolic
disturbances characteristic of encephalopathy [91] and similar to
the ones that occur in P. berghei ANKA-infected mice [64]. The dif-
ference between the two models could, therefore, be better ex-
plained by the degree of BBB dysfunction and it is not possible to
consider P. berghei NK65-infected mice totally free of
encephalopathy.

In addition, although still a matter of debate, ALF seems to
cause disruption of the BBB [89,92]. It is possible to hypothe-
size, therefore that, if ALF is the cause of encephalopathy in
CM, it also contributes to the development of BBB leakage. It is
important to emphasize, however, that BBB dysfunction second-
ary to ALF should be a secondary mechanism during malaria
infection.
Evaluation of the hypothesis

It is not known if the dysfunction in ammonia metabolism char-
acteristic of HE also occurs in the brain of CM patients. Although it
is accepted that ECM models reproduce key characteristics of the
disease in humans, one must be cautious to generalize conclusions
based on findings in animal models [93,94]. Our hypothesis is
mainly based on results from studies in ECM models, and human
studies are needed to validate it.

In two studies, an association was not found between signs of
liver damage and development of CM in adult patients in Thailand
[56,57]. This could be explained by different degrees of BBB leak-
age in the study population. In both studies, CM and non-CM pa-
tients presented signs of liver damage in equal proportions and
the authors concluded that liver damage is not associated with
CM. However, CM patients may have also presented BBB leakage.
As we postulated that BBB leakage facilitates the development of
CM, the presentation of neurological disease in the same popula-
tion could vary by the degree of BBB leakage. The same rationale
can be used to explain the presence of only mild signs of histologic
hepatocellular damage in one study with Malawian children pre-
senting CM [53].

There are studies showing that clones of P. vivax can adhere to
brain endothelial molecules (ICAM-1) and form rosettes [95–97]
These data could be used to explain the cases of CM caused by this
specie of plasmodium. However, as far as we know, there are no
studies definitively demonstrating an association between P. vivax
adhesion in the brain microvasculature and development of CM
[97].
Predictions of the hypothesis

ALF associated with BBB leakage explains the vast majority of
neuropathology which occurs in malaria

Accepting that the presence of ALF and BBB leakage are the only
conditions involved in the pathogenesis of CM would address the
uncertainties associated with the sequestration and inflammatory
hypotheses.

The absent or low correlation between parasitemia and mortal-
ity [19,20] can be explained by the fact that both liver and BBB dys-
function in the hypothesis are not only caused by direct parasite-
damage to these organs, but also by the host immune response
to molecules released in the circulation due to hemolysis. In fact,
the immune response is subject to multiple genetic and environ-
mental controls that can be better determinants of the outcome
in CM than the levels of parasitemia.

The presence of low rates of neurological deficits after recovery
from coma in CM patients [21,22] could be attributed to the fact
that ischemia is not the main determinant of neurologic dysfunc-
tion in our hypothesis. Ischemia, derived from vasoconstriction,
contributes to BBB leakage, however neurological damage results
from the accumulation of ammonia and other neurotoxins. In addi-
tion, although not a common feature, neurologic deficits have been
shown to occur after recovery from ALF [46], similar to in CM.

Our hypothesis does not consider that pRBC sequestration to
the brain microvasculature is necessary for the development of
CM. Such rational has the advantage of explaining the cases of
CM caused by plasmodium species that does not have preference
to adhere in the brain microvasculature such as P. vivax [23–26]
and P. berghei ANKA. These species cause liver failure and systemic
inflammation conditions that, when occurring together, would be
enough to develop neurological damage. In addition, dissociation
of sequestration from cerebral pathology would also explain why
P. falciparum adheres to the microvasculature of other organs such
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as the heart and the small intestine without causing significant
pathology [11].

Our hypothesis also addresses the issue of why anti-inflamma-
tory agents do not improve or, in some instances, even exacerbate
the clinical course of disease in CM [43,44]. In ALF, anti-inflamma-
tory agents have proven effective as a prophylactic treatment for
preventing liver damage, but there is no evidence that these agents
are effective therapeutically for the treatment of established liver
damage [46]. In accordance, anti-inflammatory interventions have
been shown to prevent ECM, but few of them have been tested as
adjunctive therapy in murine models [93]. N-acetylcysteine is a
well-established treatment for paracetamol-induced ALF that has
been tested in patients with severe malaria and showed no benefit
[98]. However, N-acetylcysteine is a very specific treatment for
paracetamol intoxication, and there is no evidence that it works
for other forms of ALF [46].

Conditions that decrease hepatic function or predispose to BBB
dysfunction would predispose to CM development

A direct consequence from our hypothesis is that subjects with
decreased hepatic function would be predisposed to the develop-
ment of CM. In fact, a study with Vietnamese adults showed that
CM patients had a greater risk of being positive for hepatitis B sur-
face antigen relative to other manifestations of severe malaria [99].
In addition, co-infection with murine hepatitis virus induces ECM
in P. berghei ANKA-infected BALB/c mice, a non-CM model (Martins
Y.C., Carvalho L.J., Daniel-Ribeiro C.T., unpublished data). In agree-
ment, the use of hepatotoxic drugs for the treatment of CM would
be detrimental.

Using an analogous rationale, it is possible to predict that sub-
jects predisposed to BBB dysfunction would be more susceptible to
the development of CM. This prediction is difficult to test in hu-
mans, but is easily testable in experimental models of BBB break-
down [84,100]. For example, mice deficient in tight junction
proteins such as occludin or claudin [101,102] would be more sus-
ceptible to the development of ECM when compared with wild-
type mice.

New possibilities for CM therapy

Our hypothesis also opens an entire new field for discovery of
adjunctive treatments for CM. Therapies to prevent or treat ALF
would have great potential to improve survival in CM patients.
Unfortunately, except for n-acetylcysteine, treatments for ALF
and HE are only experimental [46,48]. Lactulose and rifaximin
are effective therapies for HE in chronic liver failure, but do not
seem to work in ALF [46,48]. The use of methionine sulfoximine
to prevent the accumulation of glutamine in astrocytes demon-
strated efficacy in both in vivo and in vitro models of ALF and could
be easily tested in ECM models [48].
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