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Abstract

An international study was performed by 26 experienced PCR laboratories from 14 countries to 

assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of 

TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples 

from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and 

kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. 

Reportable range, analytical sensitivity, limits of detection and quantification, and precision were 

estimated according to international guidelines. In addition, inclusivity and exclusivity were 

estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing 

units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 

blood samples provided by the participant laboratories, including samples from acute and chronic 

patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA 

qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 

0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high 

concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA 

qPCRs. This effort is a major step toward international validation of qPCR methods for the 

quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate 

biomarker for diagnosis and treatment monitoring for patients with Chagas disease.

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, affects mostly the poor 

populations in 21 countries of the Americas, where close to 7 to 8 million people are 

infected, 25 million are at risk, and 10 thousand deaths are recorded annually (World Health 

Organization, www.who.int/mediacentre/factsheets/fs340/en, last accessed November 1, 

2014).1 In recent years, this neglected tropical disease is becoming a global concern because 

of the increasing migration from Latin America to nonendemic countries from Europe and 

North America.2
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Complex interactions between the genetic background of the parasite and the host and 

environmental and epidemiologic factors determine the outcome of the infection. In the 

acute phase of CD the symptoms are variable, and in most cases resolve spontaneously after 

some weeks. Appropriate treatment can eliminate the parasite during this phase, but the 

infection is only recognized in 1% to 2% of infected persons during the acute phase. In the 

chronic phase, approximately 70% of seropositive persons are asymptomatic, whereas 30% 

ultimately develop serious cardiac and/or digestive disorders several years or decades later, 

and necrotizing inflammatory injuries in the central nervous system in cases of CD 

reactivation under immunodepression. Each year, 2% to 3% of symptomatic persons start to 

present manifestations that can rapidly evolve to sudden death. However, the factors that 

govern the progression of chronic CD remain unknown, and no prognostic markers are 

available.3

Accurate diagnostics tools and surrogate markers of parasitologic response to treatment are 

priorities in CD research and development.4 To develop an accurate laboratory tool for 

diagnosis and treatment follow-up, several difficulties need to be addressed, such as the low 

and intermittent number of circulating parasites during the chronic phase of infection and 

parasite genotype diversity, because six discrete typing units (DTUs), TcI to TcVI, are 

unevenly distributed in different endemic regions.5 Quantitative real-time PCR (qPCR)-

based assays may fill these gaps, but their application in the clinical practice requires prior 

analytical and clinical validation studies.6,7 So far, a few real-time PCR strategies have been 

developed for T. cruzi DNA detection and quantification in CD patients.8–11

As part of the Small Grants Programme (joined initiative of Communicable Diseases 

Research/Pan-American Health Organization) and The Special Programme for Research and 

Training in Tropical Diseases/United Nations Development Program/United Nations 

Children’s Fund/World Bank/World Health Organization, an international study was 

performed by 26 experienced PCR laboratories from 14 countries to assess the performance 

of duplex qPCR strategies on the basis of TaqMan probes for detection and quantification of 

the parasite loads in blood samples of CD patients.

Materials and Methods

Ethics Statement

The studies in which the samples were collected were approved by the ethical committees of 

the participating institutions, according to the principles expressed in the Declaration of 

Helsinki. Written informed consent forms were signed by the adult study subjects and from 

parents/guardians on behalf of all minor subjects. All samples were pre-existent at the time 

of this international study and were anonymized before being processed.

Spiked Blood Samples

Seronegative human blood samples were spiked with cultured epimastigotes of Sylvio X10 

and CL-Brener stocks (TcId and TcVI, respectively) and were immediately mixed with one 

volume of guanidine hydrochloride 6 mol/L EDTA 0.2 mol/L buffer, pH 8.00 (GE).
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Patients and Blood Specimens

Peripheral blood samples from 156 CD patients were distributed into eight groups according 

to their geographic origin, as follows. Group 1 (G1) included samples from four seropositive 

patients from Mexico, two patients with acute CD (G1a) and two patients with 

asymptomatic chronic CD (G1b). Group 2 (G2) included samples from two patients from 

French Guiana with acute CD acquired by oral transmission. One patient was positive and 

the other patient was negative for IgG serologic studies. Both patients experienced cardiac 

symptoms and were infected with TcI. Group 3 (G3) included samples from five 

seropositive patients from Bolivia; two patients with acute CD acquired by oral transmission 

(G3a) and three patients with asymptomatic chronic CD acquired from vectors or 

congenitally (G3b). Group 4 (G4) included samples from five seropositive patients from 

Venezuela with acute CD acquired by oral transmission. Two of these patients were infected 

with TcI. Group 5 (G5) included samples from 13 seropositive patients from Colombia with 

asymptomatic chronic CD acquired from vectors or congenitally. Five of these patients were 

infected with TcI. Group 6 (G6) included samples from 21 Bolivian seropositive patients, 

resident in Spain, with chronic CD acquired from vectors or congenitally. One patient 

experienced digestive symptoms and the others were asymptomatic. Group 7 (G7) included 

samples from 31 seropositive patients from Brazil with chronic CD and the following 

clinical manifestations: asymptomatic (n = 5), cardiac (n = 17), digestive (n = 2), and 

cardiodigestive (n = 7). Thirteen patients were infected with TcII. Group 8 (G8) included 

samples from 75 seropositive patients from Argentina with chronic CD and the following 

clinical manifestations: asymptomatic (n = 27), cardiac (n = 34), digestive (n = 1), and 

cardiodigestive (n = 13). Fifty-one patients were infected with TcV or TcVI or combinations 

of TcII, TcV, and TcVI.

In addition, samples from 50 persons from Argentina with negative serology for T. cruzi 

were included as negative controls to address the specificity of the procedures.

DNA Extraction

The blood samples were obtained and immediately mixed with an equal volume of GE 

(GEB). After 48 to 72 hours at room temperature GEB samples were boiled for 15 minutes 

(except for G3 and G5 groups and seronegative samples) and stored at 4°C for DNA 

extraction and PCR analysis.

GEB samples were processed with the High Pure PCR Template Preparation kit (Roche 

Diagnostics Corp., Indianapolis, IN) as described in Duffy et al.9 Those samples with cycle 

threshold (Ct) values lower than the Ct values for the most concentrated point of the 

standard curve were properly diluted in seronegative human blood treated with GE, and 

DNA extraction and qPCR procedures were repeated. To build the standard curves for 

quantification of parasitic loads, DNA from spiked blood samples were obtained in the same 

way as reported for the clinical samples. The DNA eluate was stored at −20°C until use in 

qPCR analysis.
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Duplex Real-Time PCR Procedures

Two duplex qPCR procedures were compared, Satellite DNA (SatDNA) qPCR and 

kinetoplastid DNA (kDNA) qPCR assays. The former targets the satellite sequence of the 

nuclear genome of the parasite and the sequence of an internal amplification control (IAC) 

as described in Duffy et al,9 and the latter is a modification of the method reported by 

Qvarnstrom et al11 which targets the conserved region of the minicircle parasite sequences 

with the addition of primers and TaqMan probe for the IAC.9 Both reactions were performed 

with 5 μL of re-suspended DNA, using FastStart Universal Probe Master Mix (Roche 

Diagnostics GmbHCorp., Mannheim, Germany) in a final volume of 20 μL.

Optimal cycling conditions for both qPCR assays were a first step of 10 minutes at 95°C, 

followed by 40 cycles at 95°C for 15 seconds and 58°C for 1 minute. The amplifications 

were performed using Rotor-Gene 6000 (Corbett Life Science, Cambridgeshire, United 

Kingdom) or ABI7500 (Applied Biosystems, Foster City, CA) devices.

Standard curves were plotted with 1/10 serial dilutions of total DNA obtained from a GEB-

seronegative sample spiked with 105 parasite equivalents per milliliter of blood (par. eq./

mL). TcId- and TcVI-DNA–based standard curves were used to quantify parasitic loads in 

G1a, G1b, G2, G3a, G4, and G5 and in G3b, G6, G7, and G8 samples, respectively.

Duplex Real-Time PCR Assays Performance

Terms—On the basis of the MICROVAL protocol,12 the analytical validation of both 

qPCR methods included the following parameters. i) Selectivity is defined as a measure of 

the degree of response from target and nontarget microorganisms and comprises inclusivity 

and exclusivity. Inclusivity is the ability of an alternative method (each qPCR assay in this 

case) to detect the target pathogen from different strains (DTUs in this case), and exclusivity 

is the lack of response from closely related but nontarget strains (other trypanosomatids in 

this case). ii) Reportable range is a set of values of measurands for which the error of a 

measuring instrument is intended to lie within specified limits. iii) Limit of detection (LOD) 

is the smallest amount that the method can reliably detect to determine the presence or 

absence of an analyte. iv) Precision is the closeness of agreement between independent test/

measurement results obtained under stipulated conditions. v) Limit of quantification (LOQ) 

is the smallest amount that the method can reliably measure quantitatively.

The above-mentioned parameters were evaluated in the framework of the international study 

as described in the sections below.

Inclusivity—Both qPCR assays were tested with genomic DNA obtained from a panel of 

T. cruzi stocks belonging to the six different DTUs, plus TcI stocks representative of three 

different TcI Spliced Leader Intergenic Region (SL-IR)–based groups (TcIa, TcId, and 

TcIe), in concentrations that ranged from 0.0625 to 10 fg/μL tested on duplicates: TcI [K98 

(TcIa SL-IR–based group), G (TcId group), and SE9V (TcIe group) stocks]13–16; TcII (Tu18 

stock), TcIII (M5361 stock), TcIV (CanIII stock), TcV (PAH265 stock), and TcVI (CL-

Brener stock).17
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Exclusivity—Serial dilutions of purified DNAs from Trypanosoma rangeli and Leishmania 

major, Leishmania mexicana and Leishmania amazonensis that ranged from 0.1 fg/μL to 

1000 pg/μL were assayed on duplicates by both qPCRs.

Reportable Range—A panel of GEB samples spiked with Sylvio X10 (TcId) and CL-

Brener (TcVI) stocks, spanning 105 to 0.0625 par. eq./mL was prepared. After DNA 

purification, each dilution was amplified on triplicate by both qPCR assays. Assigned 

(theoretical) versus measured values were converted to Log10 par. eq./10 mL and plotted for 

linear regression analysis.

LOD—The LOD was calculated as the lowest parasitic load that gives ≥95% of qPCR 

detectable results, according to the Clinical and Laboratory Standards Institute guidelines.18 

It was measured from two panels of GEB samples spiked with the CL-Brener stock; one 

panel was boiled for 15 minutes before preparing serial dilutions,7 and the other panel was 

diluted without prior boiling. For both panels, eight replicates from GEB dilutions that 

contained 0.125, 0.25, 0.5, and 1 par. eq./mL for SatDNA qPCR and 0.0625, 0.125, 0.25, 

and 0.5 par. eq./mL for kDNA qPCR were purified and amplified during five consecutive 

days. The LOD was determined by Probit regression analysis with Minitab 15 Statistical 

Software (Minitab Inc., State College, PA).

Precision—Precision experiments were performed with spiked GEB samples at 

concentrations of 0.5, 10, and 103 par. eq./mL (0.699, 2, and 4 Log10 par. eq./10 mL) for 

SatDNA qPCR and 0.25, 10, and 103 par. eq./mL (0.398, 2, and 4 Log10 par. eq./10 mL) for 

kDNA qPCR, assayed on duplicates during 20 consecutive experiments, one run per day, 

according to the Clinical and Laboratory Standards Institute guidelines.19 The estimates of 

within-laboratory precision SDs (St) were calculated with the following formula: 

, where B is the SD of the daily means and Sr is the estimate of 

repeatability SD (within-run precision).

LOQ—For both qPCR methods, the LOQ was derived from a 20% threshold value for the 

CV of measurements obtained in the precision experiments, as described in Schwarz et al.20 

Assuming an exponential decrease in CV, a curve for the relation between CV and Log10 

par. eq./10 mL was fitted with SigmaPlot 10.0 (Systat Software Inc., San Jose, CA).

Quality Controls for Analysis of Clinical Specimens

A negative control and two positive controls that contained different concentrations of T. 

cruzi DNA (namely a high-positive control and a low-positive control near the limit of 

detection) were included in every run as recommended.6

Internal Amplification Control

A pZErO-2 recombinant plasmid that contains an inserted sequence of Arabidopsis thaliana 

aquaporin was used as a heterologous extrinsic IAC.8
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RNase P Assay

To check for DNA integrity, clinical samples were tested with TaqMan RNase P Control 

Reagents Kit (Applied Biosystems) in an ABI7500 Real-Time PCR device.

T. cruzi Genotyping

SatDNA qPCR quantifiable samples collected from laboratories that did not perform T. cruzi 

DTU typing (G1, G3, and G6) were genotyped with PCR-based strategies targeted to 

nuclear genomic markers, as described in Burgos et al.21

Evaluation of Parasitemia with Hemoculture

The 15 samples provided by the laboratory of Disciplina de Parasitología, Universidade 

Federal do Triângulo Mineiro (Uberaba, Brazil), were evaluated by hemoculture. The assay 

was performed according to the method described in Chiari et al.22 Immediately after 

collection, 30 mL of blood was centrifuged at 4°C to remove plasma. The packed cells were 

washed by centrifugation at 4°C in liver infusion tryptose medium. The sedimented 

erythrocytes were resuspended in 30 mL of liver infusion tryptose medium and uniformly 

distributed in six test tubes. Cultures were maintained at 28°C and homogenized weekly. 

The culture was microscopically examined 30, 60, and 90 days after culture in 10-μL 

aliquots of suspension.

Statistical Analysis

The Cohen κ coefficient23 was used to compare the clinical sensitivity of SatDNA and 

kDNA qPCRs for the detection of T. cruzi DNA in samples from chronic CD patients. The 

unpaired t-test was used to compare the means of parasitic loads of quantifiable samples 

from acute versus chronic CD patients and asymptomatic versus symptomatic chronic CD 

patients for both qPCR methods. In addition, nonparametric analysis of variance was used to 

compare the parasitic loads of quantifiable samples grouped according to their T. cruzi 

genotypes for each qPCR assay. Bland-Altman bias plot6 was used to analyze the closeness 

of the agreement between the quantifiable results of both qPCR methods. Finally, the paired 

t-test was used to compare the means of IAC Ct values of both qPCR assays, and the Tukey 

criterion24 was used to detect samples with outlier Ct values of IAC (Ct > 75th percentile + 

1.5× interquartile distance of median Ct), which indicated PCR inhibition or material loss 

during sample DNA extractions.

Results

Analytical Validation of qPCR Methods

The analytical validation results obtained for both qPCR assays are shown in Table 1. For 

the inclusivity, qPCR methods were assayed with DNA from strains that represented the six 

T. cruzi DTUs, plus TcI stocks representative of three different TcI SL-IR–based groups 

(TcIa, TcId, and TcIe).

kDNA qPCR gave the same analytical sensitivity of 0.0625 fg/μL DNA, the lowest 

concentration tested, for all T. cruzi stocks analyzed. SatDNA qPCR gave an analytical 

sensitivity of 0.0625 fg/μL DNA for stocks representative of TcIa, TcII, TcIII, TcV, and 
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TcVI; 0.25 fg/μL DNA for stocks belonging to TcId and TcIV; and 1 fg/μL DNA for the 

TcIe stock.

Exclusivity was assayed in T. rangeli and Leishmania spp. Both qPCR methods were 

nondetectable when up to 1000 pg/μL DNA, the highest concentration tested, from 

Leishmania stocks was analyzed. In the case of T. rangeli, 10 fg/μL DNA could be 

amplified by kDNA qPCR, whereas SatDNA qPCR required an input of at least 10 pg/μL T. 

rangeli DNA to obtain a detectable PCR result.

The reportable range was determined with 10 spiked GEB samples that contained serial 

dilutions of TcId- and TcVI-cultured epimastigotes. Linear regression analysis yielded the 

equation y =1.013x − 0.058 (R2 =0.992) and y =1.001x − 0.005 (R2 = 0.998) for SatDNA 

qPCR, and y = 0.813x + 0.824 (R2 =0.969) and y =1.011x − 0.048 (R2 =0.984) for kDNA 

qPCR and for TcId and TcVI representative stocks, respectively. Accordingly, the reportable 

range was from 105 to 1 par. eq./mL for TcId stock and from 105 to 0.25 par. eq./mL for 

TcVI stock, for both qPCR methods.

The LOD was determined for TcVI DTU. It was 0.16 par. eq./mL (95% CI, 0.13–0.24 par. 

eq./mL) and 0.23 par. eq./mL (95% CI, 0.18–0.35 par. eq./mL) for kDNA qPCR in boiled 

and nonboiled samples, respectively (P = 0.013). For SatDNA qPCR the LOD was 0.46 par. 

eq./mL (95% CI, 0.36–0.64 par. eq./mL) and 0.70 par. eq./mL (95% CI, 0.54–1.01 par. 

eq./mL) in boiled and nonboiled samples, respectively (P = 0.044). The LOD of kDNA 

qPCR was lower than that of SatDNA qPCR for both boiled (P = 0.013) and nonboiled 

samples (P = 0.044).

Estimates of precision were calculated for nonboiled GEB samples spiked with TcVI stock. 

The precision was higher for kDNA qPCR (CV = 31.98%) than for SatDNA qPCR (CV = 

46.60%) at concentrations closer to the LOD, but it was higher for SatDNA qPCR (CV = 

6.00% and 1.72%) than for kDNA qPCR (CV = 8.79% and 2.92%) for concentrations of 10 

and 1000 par. eq./mL, respectively.

The LOQ was derived from a 20% threshold value of the CVs obtained in the precision 

experiments. Linear least squares regression for the equation, y = y0 + axe−bx, resulted in the 

best fit (R2 = 1.0) for both qPCRs. On the basis of the derived equation (y = 1.61 + 

157.75xe−1.81x and y =1.79 + 43.39xe−0.91x), the absolute LOQ20%CV was estimated in 1.53 

par. eq./mL and 0.90 par. eq./mL for SatDNA and kDNA qPCRs, respectively.

Comparison of qPCR Results in Blood Samples

The performance of both qPCR methods was compared with DNA obtained from 156 GEB 

samples that covered different epidemiologic and clinical settings. In addition, 50 GEB 

samples from persons with negative serology for T. cruzi were tested. No amplification was 

detected for any of these negative controls with the use of both SatDNA and kDNA qPCR 

methods (clinical specificity, 100%).

The results obtained for the different patients’ groups, including their geographic origin, 

routes of transmission, phase of CD, T. cruzi DTUs (only performed for samples with 
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parasitic loads above SatDNA qPCR LOQ), qPCR positivity, and median parasitic loads, are 

summarized in Table 2.

Acute CD—This group comprised 11 CD patients, 10 positives and 1 negative for 

serologic studies. All of them were qPCR detectable with the use of both SatDNA and 

kDNA qPCR methods (clinical sensitivity for acute CD, 100%). All cases also gave 

quantifiable parasitic loads by both qPCR methods, except one patient from Venezuela that 

was nonquantifiable with the use of SatDNA qPCR. The sample from the single 

seronegative patient from French Guiana presented 3.71 and 4.75 Log10 par. eq./10 mL for 

SatDNA and kDNA qPCRs, respectively. Most of these patients were infected by the oral 

route, and DNA from DTUs TcI or TcIV was detected in their samples. Only the patients 

from French Guiana presented cardiac symptoms.

Chronic CD—This group comprised 70 asymptomatic persons and 75 patients with cardiac 

and/or digestive syndromes. Except for the patients from Bolivia and Colombia who 

acquired the infection from vectors or congenitally, the transmission route in the remainder 

was unknown. Parasite genotyping revealed that the chronic CD patients were infected with 

all T. cruzi DTUs, except TcIII and TcIV.

For chronic CD patients, 117 and 122 of 145 samples were detectable with the use of 

SatDNA and kDNA qPCRs, clinical sensitivity equaled 80.69% and 84.14%, respectively; 

113 of these samples were detectable by both qPCR methods, and 4 and 9 samples were 

detectable only by SatDNA or kDNA qPCRs, respectively; κ index was 0.691 (95% CI, 

0.535–0.847). Moreover, 38 of 117 (32.48%) and 56 of 122 (45.90%) qPCR detectable 

samples were quantifiable with the use of SatDNA and kDNA qPCRs, respectively.

The details of the 13 samples with discordant qPCR results are shown in Table 3; because of 

the low parasitic loads of these samples, in each case the genotype was assumed to be that of 

the group to which the sample belonged.

The nine kDNA qPCR detectable and SatDNA qPCR nondetectable samples belonged to 

four cardiac patients from Argentina and five asymptomatic cases from Bolivia, four of 

them living in Spain, infected with TcV, TcVI, or combinations of TcII, TcV, and TcVI. The 

four samples that were SatDNA qPCR detectable but nondetectable with the use of kDNA 

qPCR included samples from two cardiac patients from Brazil infected with TcII, one 

Colombian asymptomatic case infected with TcI, and one Argentinean asymptomatic case 

infected with TcV, TcVI, or combinations of TcII, TcV, and TcVI. Only two of these 

samples were boiled, the Bolivian sample that was kDNA qPCR detectable and SatDNA 

qPCR nondetectable and the Colombian sample that was SatDNA qPCR detectable and 

kDNA qPCR nondetectable. The parasitic loads of all these samples were below the LOQ of 

the corresponding qPCR detecting method; moreover, all four SatDNA qPCR detectable and 

kDNA qPCR nondetectable and five of the nine kDNA qPCR detectable and SatDNA qPCR 

nondetectable samples presented parasitic loads below the LOD of the corresponding qPCR 

assay (Table 1).

Ramírez et al. Page 9

J Mol Diagn. Author manuscript; available in PMC 2016 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1 illustrates the comparative analysis of parasitic loads from quantifiable clinical 

samples on the basis of the CD phase of patients (Figure 1A), and the clinical status (Figure 

1B) and T. cruzi DTUs (Figure 1C) of chronic CD patients, obtained by each qPCR assay.

Acute CD patients had higher parasitic loads (median, 4.03; interquartile range, 2.72 to 7.20 

Log10 par. eq./10 mL) than chronic CD patients (1.90; 1.61 to 2.46 Log10 par. eq./10 mL) 

with the use of SatDNA qPCR (P = 0.0086). Likewise, with the use of kDNA qPCR the 

acute CD patients also had higher parasitic loads (4.67; 3.05 to 6.76 Log10 par. eq./10 mL) 

than the chronic CD patients (1.68; 1.31 to 2.28 Log10 par. eq./10 mL) (P = 0.0026) (Figure 

1A).

The comparative analysis of the parasitic loads of chronic CD patients according to their 

clinical status (Figure 1B) did not show any significant differences between the parasitic 

loads of asymptomatic persons [(2.17; 1.65 to 2.48 Log10 par. eq./10 mL) and (1.97; 1.34 to 

2.77 Log10 par. eq./10 mL)] and symptomatic patients [(1.77; 1.45 to 2.13 Log10 par. eq./10 

mL) and (1.56; 1.21 to 2.01 Log10 par. eq./10 mL)] either for SatDNA (P = 0.2977) or 

kDNA (P = 0.1914) qPCRs, respectively.

Similarly, no significant differences were observed between the parasitic loads from chronic 

CD patients infected with TcI (2.47; 2.30 to 2.58 Log10 par. eq./10 mL), TcII (1.86; 1.65 to 

2.00 Log10 par. eq./10 mL), and TcV, TcVI, or combinations of TcII, TcV, and TcVI (1.74; 

1.49 to 2.11 Log10 par. eq./10 mL), with SatDNA qPCR. However, with the use of kDNA 

qPCR, the patients infected with TcI had higher parasitic loads (2.55; 2.08 to 2.87 Log10 par. 

eq./10 mL) than patients infected with TcV, TcVI, or combinations of TcII, TcV, and TcVI 

(1.59; 1.33 to 2.11 Log10 par. eq./10 mL) (not significant), and with TcII (1.09; 1.03 to 1.78 

Log10 par. eq./10 mL) (P < 0.01) (Figure 1C).

The degree of agreement between the quantifiable results obtained by both qPCR methods 

from clinical samples is represented in Figure 2 as a Bland-Altman bias (difference) plot. As 

shown, the mean bias was determined to be 0.33 Log10 par. eq./10 mL, indicating a 

systematic bias of 2.1-fold parasite equivalents per 10 mL between both methods. However, 

the bias was not statistically significant because the 95% CI (1.55 to −0.89 Log10 par. eq./10 

mL), expressed in Figure 2 as bias ± 2 SD, contains zero (no difference).

Analysis of Exogenous and Endogenous Amplification Controls

The IAC amplification was used for quality control throughout the procedure, from the 

DNA extractions to qPCR assays. Higher Ct values of IAC were obtained for the clinical 

samples with the use of SatDNA qPCR (19.05; 18.53 to 19.41) than kDNA qPCR (18.90; 

18.40 to 19.25) (P < 0.0001); threshold Cts for outlier values were 20.72 and 20.52, 

respectively. However, the same three samples with IAC Ct outliers (24.89, 21.00, and 

21.49, and 24.74, 20.98, and 21.45) were identified for both SatDNA and kDNA qPCRs, 

respectively. These three samples were detectable for T. cruzi DNA by both qPCRs, but 

their parasitic loads were below the LOQ of the corresponding qPCR assay (Table 1); except 

for the one with the lowest Ct values of IAC (21.00 and 20.98) which presented a parasitic 

load of 0.94 par. eq./mL (0.97 Log10 par. eq./10 mL) with the use of kDNA qPCR.
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In addition, to evaluate DNA integrity of GEB samples, RNase P analysis was performed in 

a separate amplification reaction. All clinical samples were PCR detectable for this 

endogenous control with Ct values (22.32; 21.20 to 23.27) between cycle 19 and 27.

Comparison of qPCR Findings with Hemoculture

The parasitic loads of a subset of 15 GEB samples from Brazilian CD patients were 

compared with hemoculture results performed at the time the samples were collected (Table 

4). Despite the time passed, an overall agreement was found between parasitic loads 

obtained by both qPCR methods and hemoculture results: the three samples with 

quantifiable parasitic loads corresponded to patients with five or six positive hemoculture 

results of a total of six replicates, whereas the three samples with nondetectable parasitic 

loads corresponded to patients with negative results by hemoculture assay, except one case 

with only one positive hemoculture result (Table 4).

Discussion

Analytical Validation of qPCR Methods in Different T. cruzi DTUs

This study presents the analytical validation and evaluation of two duplex qPCR methods on 

the basis of TaqMan probes designed for detection and quantification of T. cruzi DNA in 

human blood samples. The study was performed in the context of an international study 

organized in an attempt to establish standard operative procedures for quantification of 

parasitic loads in blood samples, using two methods ranked among the best ones by a 

previous qualitative PCR international study.7

This study involved the evaluation of DNA samples from parasite stocks representative of 

the different T. cruzi DTUs, including three distinct TcI SL-based groups. Analytical 

validation was performed with seronegative blood spiked with known numbers of cultured 

epimastigotes and treated with GE buffer. Furthermore, blood samples from diverse clinical 

settings of different geographic regions and harboring different parasite DTUs were assayed. 

The parasitic loads of these samples were compared with the same DNA extraction 

protocols, qPCR amplification procedures, master mixes, PCR thermocyclers, and quality 

controls in the same laboratory.

Analytical sensitivity was more uniform among the different T. cruzi DTUs for kDNA 

qPCR than for SatDNA qPCR, because this latter method was less sensitive for some TcI 

and TcIV strains, indicative of lower gene dosage in their genomes.8,25 Thus, in practice it 

would be advisable to construct standard qPCR curves with the use of regional strains 

representative of the prevailing DTUs in the affected population.

Parasitic Loads in Different Clinical Groups

As expected, parasitic loads in acute CD samples were higher than in chronic CD cases, 

reaching concentrations of up to 8 Log10 par. eq./10 mL for both qPCR methods. The four 

samples with the highest parasitic loads belonged to Mexican and Bolivian acute CD 

patients infected with TcI and TcIV, respectively. Accurate quantification of these samples 

was achieved after diluting them 1:10,000 in seronegative human GEB before doing the 
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final DNA extractions and qPCR amplifications. One of the two acute CD samples from 

French Guiana belonged to a seronegative patient with suspicion of orally acquired T. cruzi 

infection on the basis of clinical and epidemiologic findings.26 The qPCR positivity of this 

case points to the usefulness of molecular diagnostic methods for detecting acute CD cases 

before seroconversion.

Parasitic loads in chronic CD patients ranged from nonquantifiable to values of 3.67 and 

4.84 Log10 par. eq./10 mL with the use of SatDNA and kDNA qPCRs, respectively. We 

observed differences in the parasitic loads between chronic CD patients infected with TcI 

(eight asymptomatic persons from Colombia plus one from Mexico) and TcII (11 

symptomatic patients from Brazil), when they were analyzed with kDNA qPCR. This 

finding is in agreement with previous observations obtained by Moreira et al27 with the use 

of a Sybr Green SatDNA qPCR assay in samples from Colombian and Brazilian 

symptomatic chronic CD patients recruited for the BENEFIT (Benznidazole Evaluation for 

Interrupting Trypanosomiasis) trial. Nevertheless, no differences were observed between the 

parasitic loads of asymptomatic and symptomatic chronic CD patients for the samples tested 

in our study. This is in agreement with previous observations that showed no correlation 

between T. cruzi parasitemia and clinical manifestations.28,29 However, studies in the 

murine model reported that T. cruzi reinfections leading to an increase of parasitemia could 

be related to the variability and severity of the clinical course of CD.30

Bland-Altman analysis was performed to summarize the agreement between parasitic loads 

obtained by both qPCR methods by calculating the bias and by estimating the mean 

difference and the SD of the differences. It is also common to determine the limits of 

agreement, which are by convention set at the 95% CI of the difference between the 

methods, usually specified as bias ± 2 SD. If the 95% CI for the mean difference includes 

zero, such as in our study, there is statistically no evidence of bias.6

Some samples presented discordant qPCR results by either of the methods tested; kDNA 

qPCR detected more samples than SatDNA qPCR, which is reasonable because the former 

method had higher analytical sensitivity (lower LOD). Moreover, in most of the discordant 

samples the parasitic load was below the LOD, and in all cases below the LOQ, of the 

corresponding qPCR assay that gave detectable results.

In this study, correlation between parasitic loads and frequency of positive hemocultures 

was also observed, strengthening the notion that detectable PCR results are indicative of live 

parasites.31

Use of Internal Amplification Controls

Previous studies for screening and quantification of parasitic loads of T. cruzi with the use of 

different real-time PCR approaches included a host DNA sequence, such as RNase P human 

gene, as an internal control.8,10,27 This type of endogenous control is useful for qualitative 

purposes, as in the validation of the use of archival samples. In the present study, for 

instance, the RNase P assay was useful for checking the DNA integrity of GEB samples 

stored for >10 years. Nevertheless, we do not recommend the use of endogenous controls for 

quantitative purposes because the content of human blood cells can be highly variable, 
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depending on the nutritional, metabolic, and immunologic status of the persons.9 Therefore, 

a normalized amount of DNA of a plasmid that contains a heterologous sequence was added 

before DNA extractions and was used as an internal amplification control to monitor the 

whole procedure. Indeed, in our study, the IAC was useful to detect three samples with 

outlier Ct values.

Application of qPCR Methods in Different Scenarios of T. cruzi Infection

Comparison of the analytical parameters for both qPCR methods suggests that kDNA qPCR 

possesses higher sensitivity for detection and quantification of samples with low parasitic 

loads. However, in some Central and South American countries, such as Venezuela, 

Guatemala, Panama, Colombia, El Salvador, and some regions of Brazil, where T. rangeli 

might cause a false-positive diagnosis of T. cruzi infection,32 SatDNA and not kDNA qPCR 

should be the qPCR-based method of choice (Table 1). Furthermore, qualitative and 

quantitative SatDNA real-time PCR approaches were recently used in clinical trials with 

new antiparasitic drugs and proved to be useful to detect treatment failure.33,34

Clinical sensitivities of both qPCR methods when tested in samples from chronic CD 

patients (80.69% and 84.14% for SatDNA and kDNA qPCRs, respectively) were similar to 

those obtained by the four best performing methods selected in a previous international PCR 

study for T. cruzi detection.7 However, these sensitivities are not good enough for the 

application of PCR as confirmatory testing of blood donors or clinic patients who are 

serologically positive. Future prospective studies must be conducted to determine the 

optimal real-time PCR-based algorithm for diagnosis of T. cruzi infections in other 

epidemiologic and/or clinical scenarios, such as in early detection of congenital or oral 

transmission, and reactivation of infection in immunocompromised patients due to organ 

transplantation or HIV coinfection. Finally, the availability of these standardized and 

validated qPCR methods opens up new possibilities to monitoring patients in clinical trials 

with trypanocidal drugs,27,33,34 contributing to improve the quality of life of CD patients.
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Figure 1. 
Comparative analysis of parasitic loads obtained by SatDNA (open circles) and kDNA 

(open triangles) qPCR assays for quantifiable samples from CD patients. Distribution of 

parasitic loads on the basis of the CD phase (A), the clinical status (B), and T. cruzi DTUs 

(C) of chronic CD patients. **P < 0.01. CD, Chagas disease; DTU, discrete typing unit; 

kDNA, kinetoplastid DNA; par. eq./10 mL: parasite equivalents in 10 mL of blood; qPCR, 

quantitative real-time PCR; SatDNA, Satellite DNA.
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Figure 2. 
Bland-Altman bias (difference) plot analysis as a measure of the degree of agreement 

between the quantifiable results obtained by SatDNA and kDNA qPCR assays for samples 

from Chagas disease patients. kDNA, kinetoplastid DNA; par. eq./10 mL, parasite 

equivalents in 10 mL of blood; qPCR, quantitative real-time PCR; SatDNA, Satellite DNA.
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Table 1

Analytical Validation Results Obtained for qPCR Assays

Validation Parameters SatDNA qPCR* kDNA qPCR

Inclusivity (detectable qPCR), fg/μL

 TcIa 0.0625 0.0625

 TcId 0.25 0.0625

 TcIe 1 0.0625

 TcII 0.0625 0.0625

 TcIII 0.0625 0.0625

 TcIV 0.25 0.0625

 TcV 0.0625 0.0625

 TcVI 0.0625 0.0625

Exclusivity (nondetectable qPCR), pg/μL

 T. rangeli 1 0.001

 L. major 1000 1000

 L. mexicana 1000 1000

 L. amazonensis 1000 1000

Reportable range, par. eq./mL

 TcId 105–1 105–1

 TcVI 105–0.25 105–0.25

Limit of detection, par. eq./mL

 Boiled 0.46 0.16

 Nonboiled 0.70 0.23

Precision, CV %

 0.25 par. eq./mL ND 31.98

 0.5 par. eq./mL 46.60 ND

 10 par. eq./mL 6.00 8.79

 1000 par. eq./mL 1.72 2.92

Limit of quantification, par. eq./mL 1.53 0.90

*
Data for SatDNA qPCR were taken from Duffy et al.9

kDNA, kinetoplastid DNA; ND, not done; par. eq./mL, parasite equivalents in 1 mL of blood; qPCR, quantitative real-time PCR; SatDNA, Satellite 
DNA.
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