Dantas et al. BMC Infectious Diseases (2015) 15:306

DOI 10.1186/512879-015-1057-y BMC

Infectious Diseases

RESEARCH ARTICLE Open Access

Genetic diversity and molecular ® e
epidemiology of multidrug-resistant
Mycobacterium tuberculosis in Minas Gerais

State, Brazil

Nayanne Gama Teixeira Dantas', Phillip Noel Suffys®, Wania da Silva Carvalho®, Harrison Magdinier Gomes?,
sabela Neves de Almeida’, Lida Jouca de Assis®, Claudio José Augusto®, Michel Kireopori Gomgnimbou®?,
Guislaine Refregier®, Christophe Sola® and Silvana Spindola de Miranda'"

Abstract

Background: We aimed to characterize the genetic diversity of drug-resistant Mycobacterium tuberculosis (MTb)
clinical isolates and investigate the molecular epidemiology of multidrug-resistant (MDR) tuberculosis from Minas
Gerais State, Brazil.

Methods: One hundred and four MTb clinical isolates were assessed by 1S6710-RFLP, 24-locus mycobacterial
interspersed repetitive units variable-number tandem repeats (MIRU-VNTR), TB-SPRINT (simultaneous spoligotyping
and rifampicin-isoniazid drug-resistance mutation analysis) and 3R-SNP-typing (analysis of single-nucleotide
polymorphisms in the genes involved in replication, recombination and repair functions).

Results: Fifty-seven different 1S6710-RFLP patterns were found, among which 50 had unique patterns and 17 were
grouped into seven clusters. The discriminatory index (Hunter and Gaston, HGDI) for RFLP was 0.9937. Ninety-nine
different MIRU-VNTR patterns were found, 95 of which had unique patterns and nine isolates were grouped into
four clusters. The major allelic diversity index in the MIRU-VNTR loci ranged from 0.6568 to 0.7789. The global HGDI
for MIRU-VNTR was 0.9991. Thirty-two different spoligotyping profiles were found: 16 unique patterns (n = 16) and
16 clustered profiles (n = 88). The HGDI for spoligotyping was 0.9009. The spoligotyped clinical isolates were
phylogenetically classified into Latin-American Mediterranean (66.34 %), T (14.42 %), Haarlem (5.76 %), X (1.92 %), S
(1.92 %) and U (unknown profile; 8.65 %). Among the U isolates, 77.8 % were classified further by 3R-SNP-typing as
44.5 % Haarlem and 33.3 % LAM, while the 22.2 % remaining were not classified. Among the 104 clinical isolates, 86
were identified by TB-SPRINT as MDR, 12 were resistant to rifampicin only, one was resistant to isoniazid only, three
were susceptible to both drugs, and two were not successfully amplified by PCR. A total of 42, 28 and eight isolates
had mutations in rpoB positions 531, 526 and 516, respectively. Correlating the cluster analysis with the patient data
did not suggest recent transmission of MDR-TB.

Conclusions: Although our results do not suggest strong transmission of MDR-TB in Minas Gerais (using a classical
100 % MDR-TB identical isolates cluster definition), use of a smoother cluster definition (>85 % similarity) does not
allow us to fully eliminate this possibility; hence, around 20-30 % of the isolates we analyzed might be MDR-TB
transmission cases.
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Background

Multidrug-resistant (MDR) tuberculosis (TB) is an in-
creasingly serious global public health threat that re-
quires robust, efficient and quick actions to improve the
control and spread of drug-resistant clinical isolates. TB
isolates with resistance to isoniazid (INH) and rifampin
(RIF), defined as MDR-TB, are prone to sequential accu-
mulation of mutations in the target genes that confer re-
sistance to them [1].

Brazil ranks sixteenth among the world’s 22 countries
with high TB burdens; here, the TB prevalence is 92,000
cases, the incidence rate is 35.4 per 100,000 per year,
and the mortality rate is 4.9 per 100,000 of the popula-
tion according to World Health Organization estimates
[2]. Minas Gerais State has the fourth lowest TB inci-
dence (17.9/100 000/year) in Brazil [3]. Although the
current prevalence of primary MDR-TB is relatively low
in Brazil, it has potential to become a major public
health issue, because resistance to more than one drug
has been shown to be strongly associated with house-
hold contact, as suggested in a recent study conducted
in Amazonia [4].

Mycobacterium tuberculosis complex (MTBC) genotyp-
ing methods have been widely used for investigating epi-
demics involving MDR-TB [5]. These methods help to
define the recent transmission factors for MDR-TB
isolates and enable better control programs to be ini-
tiated to avoid MDR-TB expansion at local or global
population levels.

Among the various genetic markers available for study-
ing genetic polymorphism in drug-resistant M. tubercu-
losis (MTD), restriction fragment length polymorphism
(RFLP) analysis of the IS6110 insertion sequence is a “gold
standard” for MTBC typing [5-7]; this method has been
used widely to identify and investigate TB transmission
and re-infection rates, and was used at the end of the
1990s to identify cross-contamination in laboratories [7].

However, the IS6110-RFLP technique has many disad-
vantages in routine practice: it is laborious, requires
trained staff, replies on microgram quantities of purified
DNA, and has poor discriminatory power when applied to
isolates with low IS6110 copy numbers [5, 6, 8]. The
method based on mycobacterial interspersed repetitive
units variable-number tandem repeats (MIRU-VNTR) has
progressively replaced [S6110-RFLP. MIRU-VNTR, a very
powerful technique, provides adequate discrimination be-
tween MTD clinical isolates and is comparable to 1S6110-
RFLP in terms of its accuracy for estimating TB outbreaks
and for use in phylogenetic investigations [5, 8-13].
MIRU-VNTR analysis also generates readily comparable
numerical values, a useful feature for interlaboratory stud-
ies; hence, over the last 10 years it has come into standard
use in TB research [9], but may progressively be replaced
by whole genome sequencing (WGS) [14].
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Spacer oligonucleotide typing (spoligotyping), another
well-established (1996) technique, is based on the poly-
morphisms found in the clustered regularly interspersed
short palindromic repeats (CRISPR) of MTh. Spoligotyping
detects the presence or absence of 43 spacer sequences in
the CRISPR region of MTb [5, 15, 16]. Spoligotyping data
can be expressed in an octal or binary format. Additionally,
spoligotyping requires small amounts of crude or purified
DNA and its results are as portable as MIRU-VNTR, mak-
ing data from it easily shared between laboratories. Spoli-
gotyping has provided a lot of highly informative results
on the phylogeographic distribution of genotypic diversity
in MTb. Furthermore, spoligotyping in combination with
MIRU-VNTR has excellent discriminatory power for clus-
ter analysis of tubercle bacilli genomics, making it a valu-
able tool for the epidemiology and evolutionary biology of
MTb [17-19]. However, because the discriminatory power
of spoligotyping is generally inferior to that of 1S6110-
based RFLP, it cannot be used alone for molecular epi-
demiology studies [20-22].

The use of single-nucleotide polymorphisms (SNPs) as
markers of genetic variation for phylogenetic analysis has
been described in many studies [23-28]. Because SNPs
offer important advantages for high-throughput analyses,
they are the markers of choice in genetics research, like-
wise are regions where deletions in the genome occur
[29]. Despite MTBC structural genes exhibiting very low
levels of polymorphism among strains [30-33], higher
polymorphism levels were found recently in several genes
among which were those involved in replication, recom-
bination and repair functions (3R genes) [34]. Indeed, the
high-throughput 3R-SNP-typing method is able to classify
undefined spoligotype signatures making it an efficient,
easy to use tool for evolutionary studies on MTBC clinical
isolates [23].

For genetic characterization of TB drug resistance,
molecular detection tests currently search for known
mutations in different TB-specific target genes [33]. For
MDR-TB, the most frequent mutations associated with
RIF and INH resistance can be assessed by sequencing,
line-probe assays or other methods [28, 29]. RIF resist-
ance is mainly (95 %) caused by the 81-bp rifampin
resistance-determining region (RRDR) of the rpoB gene
[35, 36]. INH resistance is often caused by mutations in
katG (codon 315), inhA (positions -15 and -8 in the
inhA promoter sequence), and in other genes [35, 37].
Phenotypic TB culture-based drug susceptibility testing
(DST), however, remains the gold standard for diagnosis
of MDR-TB [38]. Tuberculosis-spoligo-rifampin-isoniazid
typing (TB-SPRINT), a 59-plex multiplexed microbead-
based, high-throughput DNA array method, provides sim-
ultaneous spoligotyping and mutation analysis of the most
common resistance-associated SNPs for RIF (rpoB RRDR
direct and indirect coverage) and INH resistance (katG,
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inhA) [36, 38—40]. This method will soon be replaced by
an improved 77-plex version (TB-SPRINT-plus) capable
of identifying mutations in target genes conferring resist-
ance to some second-line drugs (Molina et al., unpub-
lished observations).

Here, we aimed to investigate the genetic profile of
MDR-TB clinical isolates from Minas Gerais, a Brazilian
state, using the following four molecular techniques:
IS6110-RFLP, MIRU-VNTR, TB-SPRINT and 3R-SNPs-

typing.

Methods

Clinical isolates and drug susceptibility testing

One hundred and four MDR-TB clinical isolates were col-
lected from 2008 to 2013 in Minas Gerais, Brazil, each
one corresponding to a unique TB patient. All the isolates
were obtained by culture of respiratory samples and repre-
sent distinct local laboratories in Minas Gerais. The iso-
lates were referred to the Ezequiel Dias Foundation
(FUNED) for culture, identification and drug susceptibility
testing. Samples were transferred to the Research Labora-
tory of Mycobacteria of the Faculty of Medicine of the
Federal University of Minas Gerais (UFMG) where they
now belong to the MTb clinical isolate collection. The
samples are representative of MDR-TB in Minas Gerais.
All the clinical isolates were from patients diagnosed with
MDR-TB by the BACTEC™ MGIT™ 960 System [41].
Demographic data were obtained from the Information
System on Diseases of Compulsory Declaration of Brazil
(otherwise known as SINAN).

Genomic DNA extraction

MTb genomic DNA was extracted from mycobacterial
colonies subcultured on Lowenstein-Jensen (L]) medium.
One loopful of mycobacterial colonies was collected in a
tube containing 500 pL of TE buffer (10 mM Tris-Cl,
1 mM EDTA) and then incubated at 80 °C for 60 min.
Lysozyme 10 mg/mL (70 pL) was added to each tube,
followed by incubation at 65 °C for 15 min with occasional
mixing, after which 5 M NaCl (100 pL) and 10 % cetyltri-
methylammonium bromide (CTAB) (100 pL) were added
to each sample. After adding 70 uL of 10 % SDS and 6 pL
of proteinase K (10 mg/mL) the samples were vortexed
briefly and then incubated at 65 °C for 15 min. Chloro-
form/isoamyl alcohol (24:1v/v) (700 pL) was added to
each tube, and the solution was centrifuged for 20 min at
12,000 rpm at 4 °C in a microcentrifuge. The supernatant
was transferred to a new 1.5 mL microcentrifuge tube,
450 uL of ice-cold isopropanol was added, and the tube
was inverted 20 times to precipitate the nucleic acids.
Samples were incubated overnight at -20 °C and then
centrifuged at 12,000 rpm for 30 min at 4 °C in a micro-
centrifuge, after which the supernatant was discarded. The
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pellet was air-dried for 2 h and then resuspended in 60 pL
of TE buffer (10 mM Tris-Cl, 1 mM EDTA).

Genotyping methods

IS6110-RFLP

DNA samples were typed by IS6110-RFLP analysis in ac-
cordance with the standardized protocol described by
van Embden et al. [7] and van Soolingen et al. [42]. The
reference strain used was Mt 14323.

MIRU-VNTR

The standard 24 MIRU-VNTR loci method [18] was
performed based on agarose gel electrophoresis. The
simplex PCR product size was determined as previously
reported [43].

TB-SPRINT

High-throughput TB-SPRINT was performed at the In-
stitute of Genetics and Microbiology at the University
Paris-Sud, France, on a Luminex 200™ flow cytometry
device (Luminex Corp, Austin, TX) as previously de-
scribed, using a microbead-based DNA array method
[44—46]. The TB-SPRINT analysis was performed ac-
cording to the standardized protocol recommended by
Gomgnimbou et al. [37].

3R-SNP typing

The 3R-SNP typing was performed as described by Abadia
et al. [23]. This seven gene multiplex-PCR method uses
primers designed on the dual-priming oligonucleotide
principle, which has been shown to strongly increase the
mutated to wild-type signal ratio [47].

Bioinformatic cluster analysis

All results (except 1S6110-RFLP) were entered into
Excel® spreadsheets, and then transferred to BioNumerics™
software version 6.6 (Applied Maths, Sint-Martens-Latem,
Belgium). IS6110 RFLP fingerprints were digitalized and
compared using the Dice coefficient and the unweighted-
pair group method using average linkage (UPGMA)
according to the manufacturer’s instructions [44]. MIRU-
VNTR data were analyzed using the categorical coefficient
and UPGMA [45]. TB-SPRINT and 3R-SNP-typing data
were analyzed in BioNumerics™ using the Jaccard index
and UPGMA [37]. Spoligotyping data were also analyzed
using the minimum spanning tree (MST) method, as
shown in Fig. 1. A composite data set for the four
methods mentioned above and a composite dendro-
gram were also built (Fig. 2) [46]. Cluster definition was
based on identical patterns using the above four
methods (tighter definition) or by setting the percent-
age similarity at >85 % (smoother definition) [48, 49].
The recent transmission index was determined by com-
puting the n and (n minus 1) index [50, 51].
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Fig. 1 Minimum Spanning Tree (MST) obtained from the spoligotyping dataset (n =104 MDR-TB isolates) identified from 2008 to 2013 in Minas
Gerais, Brazil. Color code indicates major subclades found within the Lineage 4 (Euro-American), LAM, T, H, X, S and U
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Spoligotyping patterns were assigned a SIT (spoligotyping-
international-type) using the SITVITWEB website (http://
www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/) [19].
MIRU-VNTR data were analyzed using the MIRU-
VNTRplus website (http://www.miru-vntrplus.org/).

The VNTR allelic diversity index (h) was used to
evaluate the allelic diversity of the various VNTR loci.
The value of h was calculated using the formula de-
scribed by Selander et al. [52]. The discriminatory power
of each typing method was also computed and compared
by the Hunter-Gaston discriminatory index (HGDI) [53,
54]. The HGDI was calculated using the discriminatory
power calculator available at http://insilico.ehu.es/mini_
tools/discriminatory_power/index.php.

To correlate the molecular and patient data, an ana-
lysis of basic demographic patient data (city and address)
and familiar data (mother’s name) was performed.

Ethics statement

The study was approved by the Ethics Committee of the
Federal University of Minas Gerais (number 122.941;
CAAE 06611912.8.0000.5149). Isolates from this study
were obtained by culturing stock clinical isolates.

Results and discussion
This is the first molecular characterization of MDR-TB
clinical isolates from Minas Gerais State. The study is

based on 104 clinical isolates obtained from patients in
Minas Gerais State with MDR-TB-positive cultures be-
tween 2008 and 2013. The isolates, from 46 cities in the
State of Minas Gerais, are considered to be representative
of the MDR-TB strains in this region of Brazil. The mean
age of the patients was 43.24 years and the male-to-female
ratio was 1.66:1. Drug susceptibility testing (BACTEC™
MGIT™ 960 System method) showed all of 104 isolates
were resistant to rifampin and isoniazid at least.

1S6110-RFLP typing

The IS6110 copy number from each isolate was assessed
from the number of bands hybridizing with the probe.
The 104 clinical isolates were typed and a total of 67 fin-
gerprint patterns were obtained (65 %). The majority of
them (94.03 %) had multiple IS6110 copies (7-15). This
high degree of IS6110 polymorphism is in accordance
with the results observed in drug-susceptible clinical iso-
lates and suggests a recent low rate of MDR-TB transmis-
sion [55—60]. That we observed a low frequency of isolates
with low IS6110 copy numbers (5.97 %) demonstrates the
excellent discriminatory power of IS6110-RFLP in our set-
ting. Thirty-seven isolates (35 %) lacked 1S6110-RFLP pro-
files, probably resulting from poor DNA quantity. Fifty-
seven different IS6110 RFLP patterns were identified, 50 of
which were unique, and 17 isolates were found in seven
clusters (HGDI = 0.9937).


http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.miru-vntrplus.org/
http://insilico.ehu.es/mini_tools/discriminatory_power/index.php
http://insilico.ehu.es/mini_tools/discriminatory_power/index.php

Dantas et al. BMC Infectious Diseases (2015) 15:306

Page 5 of 11

A B C

‘Componite AR Aversge_UPOMA RFLP. otr spoligoas

|
|

|

242382
243362
243282
22331243272
14321343262
23431243262

1
m

3223023472
43282

0ol

10 I B |
11

T

il

AmaiiEm [T B e

I

number; i city of isolation; j: (SIT) Spoligo-international-type label

Fig. 2 Results Matrix of the 104 studied clinical isolates. a: final composite dendrogram built using UPGMA using five results data set (b: 1S6770-
RFLP; ¢ MIRU-VNTR; d: spoligotyping; e: RIF-INH SNPs typing; f: 3R-SNPs-typing; g: subclade color code of Fig. 1; h: (Key) Unique Clinical isolate

Koy city st
[ SRAMNGZO0B001SS BeloHorzonte 42
@
”
)
o
2
[ SRAMNGZ0B00K09 BeloHorzonte 20
[ SRAMNGI0E0%0  BeloHorzonte 20
BRANNGIOIONOTS? BeoHorzonte 20
B
)
B
2
B
)
[l SRAMNGIO0B00630 BeloHorzonte 20
I SRAMNGZO10T21 NI )
(G200801538 Coronel Fabiiiano 20
BRANNGD01001127 iz de Fora 2
J SRAMNGZO0B00121  Uberaba
I SRAMNGZO0B00663 BeloHorzonte 17
BRANNG201100162 Betm s
BRANNGZ01000168 BeoHorizonte 17
BRANNGIOTI0T66 BeoHorizonte 53
I SRANNG2008002T0 BeloHorzone 53
I SRAUNGI0R010N7 SentaBaers 33
BRANNG201000428  Setm @
BRANNGIOIO003%9 BeoHorzonte 42
[l SRAMNGIOTIO1187 BeoHorzonte 42
[ SRAMNG200900912 BeloHorzonte 42
BRANNGIU0S016S1 BeoHorzonte 42
BRANNGI0000828 BeoHorizonte 42
[l SRAMNGIOOB0STE BeloHorizonte 42
BRANNG201000468 iz de Fora «
BRANNGZ00B006S3 BeoHorizonte 20
BRANNG200901642 Govermacor Vaiad
BRANNGIOIONOTTE Montes Ciaros 17
Santa Luzia ”
SkoscodeiRel 17
SeoHororte 42
£eo Horizon «
Govermador Vaiscares 175
sz e Fora «
BeoHoronte 20
Cuvelo 2070
Santa Luzia ”
EeloHorzonts 177
Marana 180
BeloHotzonte  Ophan
BooHoronte 93
SeoHoronte 83
Sete Lagoss 0
I BRAMNGZO1101054. Araguan 1241
BRANNGZ01001184. Pogos deCaldas 1491
BRANNGIOTIOOTS! BeloHorzonte 753
BRANNGZ01000230 BeoHorizonte 53
BRANNGIOI001051 BeoHorizonte 42
BRAMNG201304406  Belo Orents &
BRANNGZ01000740  Rabia 28
SRANNG0000S83 BeoHorizonts 42
BRANNG200900357  Ponte Nova «
BRANNGZ00800470. Santa Luis «
BRANNGZ0000SS8 BeoHorizonte 42
BRANNGIOIO01309 BeoHorzonte 42
BRANNGZOT100243  Montes Claros 1800
BRANNG200B0S87 BeoHorzonte  Ophan
BRANNGZOT100711 Hatira £
BRANNG200901254  Govermadeor Valadares 42
BRANNG201100109  patiga 209
[ SRAMNGZO0900200  Murise s
[ SRAMNGIOI0007S BeloHorzonts 1491
BRANNGZ01001047  Nova Era 1491
BRANNG200800001  abira 153
BRANNGZ00B01612 BeloHorizonte 83
I BRANNG201301885  patinge a7
BRANNG201301900  Leopoidina st
BRANNGZ01313675 5
BRANNGZ00B00626 BeoHorizonte 53
Il SRAMNG201302870  kabis 5
rabito 5
Lagoa da prata
Gataguses u
[ SRANNG20II0OTIO Beioorzone 34
I SRAVNG200301105 BeloHorzonte 137
I BRANNG201100171  Amenara 157
BRANNG0000272 BeloHorizonte 47
[ BRAWNG2010480  BeloHorzome 383
RAMNG20000806  Seo Horzonte 50
BRANNG201100158  Betm %
[ SRAVNG200801443 BeloHorzone 53
BRANNGZ00901009 BeoHorizonte 50
BRANNG200901255  Nova Lima @
[ SRANNG20OR00764 BeloHorzonte 53
[ SRAMNGZ00B00477  SBo JoBoDeiRel 46
BRANNGZ00800642 Sko Jobo DelRel 46
BRANNG200900509 Pouso Aegre Unknown
I SRAMNGZO1000195  Belo Horizonte
I SRAMNGZO0B03T7 BeloHorzonte 17
BRANNGZ0001497 BeloHorzonte 42
BRANNGZ0000843 BeoHorizonte 53
[ SRAMNGZ0B00154 BeloHorzorte 93
[ SRAMNGI0B00189 BeloHorzonte 42
I SRAMNGZ00S00018  Tecfio Otoni omen |

MIRU-VNTR

The 104 isolates were successfully typed and 99 different
MIRU-VNTR patterns were found. Among these
patterns, 95 were unique, and nine isolates belonged to
four clusters (HGDI=0.9991). Lineage signature was

performed by MIRU-VNTRplus best-match labeling
using 24 global MIRU-VNTR loci and the following six
main lineages/sublineages were observed: Cameroon
(3.85 %), CAS/Delhi (0.96 %), Haarlem (17.3 %), LAM
(73.08 %), S (1.92 %) and T2-Uganda (2.88 %). The high
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HGDI of the 24-MIRU-VNTR confirms the importance
of using this technique, either in association with RFLP
or with spoligotyping [17, 18, 51, 60—62].

The allelic diversity of each MIRU-VNTR locus in our
setting was evaluated and classified into highly
(HGDI >0.6), moderately (0.6> HGDI <0.3) or poorly dis-
criminative (HGDI <0.3) [52], as summarized in Table 1.
The highest allelic diversity indexes were for Qub 26,
Mtub 04, MIRU 26, MIRU 16, Qub 11, and MIRU 10.
The allelic diversity index was low (2<0.3) for five of
the 24 loci. As supported by this study and others, par-
tial MIRU-VNTR genotyping could be sufficient to
define epi-linked clusters after first-line and high-
throughput spoligotyping [63]. Ali et al. described seven
loci with the highest discriminatory level that could be
used preferentially to investigate possible transmission
events [61].

Table 1 Allelic diversity of each MIRU-VNTR locus and their
discriminatory power

Locus Allelic diversity Allele’s quantity Discriminatory
(hy @ Power®

Qub 26 0.7789 7 High
Mtub 04 0.7702 6 High
MIRU 26 0.7679 6 High
MIRU 16 0.7422 6 High
Qub 11 06975 7 High
MIRU 10 0.6568 6 High
Mtub34 0.5917 5 Moderate
MIRU 23 0.5830 6 Moderate
MIRU 40 0.5791 7 Moderate
MIRU 27 0.5624 4 Moderate
Mtub 39 04901 5 Moderate
Mtub 30 04462 4 Moderate
Qub 4156 04360 4 Moderate
Mtub 21 04199 4 Moderate
Mtub 29 04154 4 Moderate
MIRU 31 04147 6 Moderate
ETRC 0.3482 4 Moderate
ETRA 0.3308 4 Moderate
ETRB 03278 2 Moderate
MIRU 39 0.2678 3 Low
MIRU 2 0.1755 2 Low
MIRU 20 0.1755 2 Low
MIRU 4 0.1113 3 Low
MIRU 24 0.0194 2 Low

n=104 MTb isolates
Calculated as described by Selander et al. [52]
PDiscriminatory power: high (h > 0.6), moderate (0.3 <h >0.6) and low (h <0.3)
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TB-SPRINT typing

All the clinical isolates were successfully typed by spoligo-
typing and were classified phylogenetically into five line-
ages and 11 sublineages, as shown in Table 2. Thirty-two
different spoligotyping patterns were found; 16 of them
had unique patterns, and 88 isolates were grouped into 16
clusters (HGDI=0.9009). A minimum spanning tree
(MST) was built (Fig. 1). The single lineage is lineage four
(Euro-American) with a majority of LAM, T, H and a
minority of S and X2. The two major sublineages (LAM:
n=69 and T: n =15) are in central positions of the MST
(Fig. 1). They show tight links between patterns and repre-
sent the major proportion of the clinical isolates in the
Minas Gerais State (17 = 84/104 or 80.76 % of the clinical
isolates). The continuous transmission of MTB in certain
settings is strongly affected by the prevailing population
structure of tubercle bacilli [63], which induces the pre-
dominance of a homogeneous group, such as the LAM
family in South America and similarly for the Beijing fam-
ily in Asia [19, 57, 64—66]. LAM, T and H clinical isolates
are more likely to become MDR in Brazil [67, 68].

A further characterization of the RIF-INH typing
scheme (16-plex) was performed for 102 of 104 (98.7 %)
isolates, either on the 81 base-pair RRDR for RIF or in
inhA and katG for INH. For two isolates, none of the
positions tested were amplifiable. For the isolates typed
at the RRDR locus, 98 (96.07 %) had mutated genotypes,
among which 78 (764 % of total) carried defined
targeted mutations conferring RIF resistance. However,
20 isolates with undefined RIF mutations were detected
and four samples had no mutations. A total of 42, 28
and eight isolates had mutations at rpoB positions 531
(38 samples rpoB 531TTG and four samples rpoB
531TGG), 526 (19 samples rpoB 526GAC and nine
samples rpoB 526TAC) and 516 (eight samples rpoB
516GTC), respectively, and only one of these samples
carried mutations in the three rpoB positions. Out of
102 isolates typed at loci known to be involved in
INH resistance, 87 (85.29 %) had a mutated genotype
at either katG315 or within the inhA promoter.
Among them, 82 (94.2 %) carried the following de-
fined mutations conferring INH resistance: 54 samples
harbored katG 315ACC (65.85 %), four samples katG
315AAC (4.87 %), nine samples inhA-15 (10.97 %), 14
samples harbored a double katG 315ACC + inhA-15
mutation and one sample harbored a double katG
315AAC + inhA-15 mutation. These results are in ac-
cordance with other first-line TB drug resistance
studies in Brazil [67, 69, 70]. Altogether, out of 102
isolates typed for both loci, 86 were resistant to both
drugs (INH and RIF). Forty-five different RIF-INH
profiles were obtained for the isolates and 25 of them
had a unique profile, while 17 profiles clustered into
72 isolates (HGDI = 0.9561).
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Table 2 Phylogenetical classification of multidrug-resistant
Mycobacterium tuberculosis (n = 104) by TB-SPRINT method
(Continued)

Lineage n (%) Sublineage  n (%)  SIT number  n (%)
LAM 69 (66.4 %) SIT 34 100 %
LAM 1 19 Unknown 9 (8.7 %)
SIT 20 895%  Orphan 1 (0.9 %)
SIT 753 10.5 %
LAM 2 8 3R-SNP-typing
SIT17 100%  For some spoligotyping patterns (n =9), it was not pos-
LAM 3 4 sible to assign their lineages/sublineages. To assign such
SIT 1491 75 9 isolates (called “U” isolates in SpolDB4 and/or SITVIT-
R 95 04 WEB), a 3R-SNP scheme was used successfully to solve
77.8 % of the cases [23]. The patterns found were Haar-
LAMA 3 lem (n=4) and LAM (n = 3), and these signatures were
SIT €0 66.7%  confirmed by MIRU-VNTR typing. Only two samples
SIT 1530 333%  remained unclassified.
LAM 5 5 Out of 104 isolates, the 3R-SNP-typing method
ST 93 60 % allowed us to find mutations in 94 (90.38 %) isolates
ST 216 20 % associated with four specific genotype families: LAM
(n=67), Haarlem (n=12), X n=2), T2 (n=1) and an
ORPHAN 20°% unknown lineage (n=12). The ten isolates remaining
LAM 6 2 (9.62 %) did not amplify successfully. Use of the 3R-
SIT 64 50 % SNP-based method helped to clarify the infra-specific
SIT 176 50 % taxonomy of our sampling, thus improving our confi-
LAM 9 8 dence in the evolutionary analysis of our data [23, 71].
SIT 1800 36 % . o
Comparison of the discriminatory powers of the
SIT 177 36 % .
genotyping methods
SIT 2070 36%  The discriminatory powers of the 1S6110-RFLP, MIRU-
SIT 1176 36%  VNTR, TB-SPRINT (spoligotyping and RIF-INH-typing)
SIT 1536 36%  and 3R-SNP methodologies are shown in Table 3. Use of
ST 42 82 9% a combination of different techniques is important for
T 15 (144 % improved epidemiological and phylogeographical inter-
pretation of molecular results [17, 18, 51, 61, 62].
m 1 MIRU-VNTR has the highest discriminatory power
SIT'53 705%  followed by IS6110-RFLP and TB-SPRINT. 3R-SNP-
SIT73 59%  typing has a lower discriminatory power because only
SIT 317 50%  seven SNPs were used in the current format.
SIT 393 59 %
Molecular epidemiology in the Minas Gerais State
SIT 51 11.8 % gy X o
Among the 104 clinical isolates, 71 displayed a low similar-
12 ! ity index (<85 %) and 33 a high similarity index (85 %).
SIT 317 100%  Twelve clusters without any obvious epidemiological link
Haarlem 6 (5.8 %) were observed. According to the (n minus 1) or n Recent
H1 2 Transmission Index [50, 51] definition (where there is the
ST 47 100%  choice to diminish or not to diminish all the clusters by
H3 4 one index case) and using the smooth cluster definition
(>85 %), the maximum transmission rate of MDR-TB in
SIT'50 100% " Minas Gerais State would be (33 minus 12/104), or 20 %
X 2(1.9%) using the (n minus 1) method, and 33/104 or 31 % using
S 2(1.9 %) the n method. However, if we assume a 100 % identity

cluster definition, no 100 % identity cluster was found,
which suggests that no cases of MDR-TB transmission
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Table 3 Discriminatory index of 1S67710-RFLP, MIRU-VNTR, TB-SPRINT (Spoligotyping and RIF-INH typing), 3R-SNPs

Typing method Number No. of different profiles No. of uniques profiles No. of Clusters HGDI?
IS6110-RFLP 67 57 50 7 0.9937
MIRU-VNTR 104 99 95 4 0.9991
RIF-INH-typing 102 47 25 17 0.9561
Spoligotyping 104 32 16 16 0.9009
3R-SNPs 96 13 5 8 0.5466

Calculated as described by Selander et al. [52]

occurred in Minas Gerais State. Our results clearly point
to an extended classical “stone in the pound” epidemio-
logical analysis of the 12 suspected clusters, for which
MDR-TB transmission remains likely [72].

Our results are possibly explained by the fact that
MDR-TB transmission in Minas Gerais is individually
acquired (i.e., there are no primary MDR-TB cases). An
alternative explanation is that many cases of MDR-TB
were missed, but this seems unlikely because the sam-
pling is representative of MDR-TB cases in Minas
Gerais. The situation for Minas Gerais differs from that
of other Brazilian studies [67, 73] in that the other stud-
ies did not use all the techniques used herein, which
may have increased the discriminatory power of our ana-
lysis. This discordance could also be explained by the
global differences in TB prevalence between different re-
gions of Brazil.

When looking more closely at the geographical origin
of the samples from Minas Gerais, we could identify
only one factor that made us suspicious of an epidemio-
logical link (in eight patients from the same city). Our
results suggest that clustered genotypes indicative of re-
cent MDR-TB transmission should be interpreted with
caution, unless direct evidence of epidemiological links
between clustered cases can be demonstrated [74].

Despite the low number of samples, this collection of
MTBC isolates is likely to be representative of the con-
firmed MDR-TB cases in Minas Gerais State. One limi-
tation of the present study, however, is the absence of
clinical epidemiological data. Also, contact tracing for
individual patients could not be performed.

Future long-term studies are necessary to identify the
possible risk factors for the emergence of drug resistance
and/or treatment failure. Additionally, longitudinal stud-
ies in regions of Brazil with a high incidence of MDR-TB
are now urgently needed.

Conclusions

To sum up, use of four different discriminant genotyping
techniques (IS6110-RFLP, MIRU-VNTR, TB-SPRINT and
3R-SNP-typing) provided useful data for phylogenetic
evaluation and fine taxonomic characterization of MDR-
TB clinical isolates from Minas Gerais State, Brazil. The
most common MDR-TB isolates belonged to the LAM

lineage and approximately two thirds of them did not pro-
vide evidence for recent transmission of MDR-TB. Our
data indicate that MDR-TB in Minas Gerais State is caused
by clinical isolates that were not transmitted in recent years
or that the outbreak is driven by individually acquired re-
sistance and endogenous reactivation. This situation con-
trasts with the findings from other Brazilian studies, which
all reported a high transmission rate for MDR-TB. Such an
important issue requires locally-adapted solutions and
state-specific control measures in Brazil. Continuous sur-
veillance of MDR-TB transmission could be improved by
introduction of new diagnostic tools and epidemiological
research using WGS methods.
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