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Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-
Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine
candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular im-
mune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported ap-
proach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PVRMC-CSP, a recombi-
nant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain
human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to
repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high
yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immu-
nogenicity of PVRMC-CSP in groups of six inbred strains of mice. PvVRMC-CSP was able to induce robust antibody responses in
all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a simi-
lar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional
CD4" and CD8* PyYRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immuniza-
tion with PVRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PVRMC-
CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These fea-
tures make PvRMC-CSP a promising vaccine candidate for further development.

lasmodium vivax is the most widespread species of Plasmo-

dium, causing up to 50% of the malaria cases occurring out-
side sub-Saharan Africa, with an estimated 2.48 billion people
living in areas with risk of malaria transmission (1-4). Unlike
Plasmodium falciparum, P. vivax is able to persist in a latent stage
called hypnozoite within infected parenchymal liver cells. Activa-
tion of hypnozoites weeks or months after the primary infection
leads to new blood stage infections, causing relapses and oppor-
tunities for further transmission (5).

A vaccine targeting the P. vivax preerythrocytic stages prevent-
ing the entry of sporozoites into hepatocytes or inhibiting the liver
stage development could block the production of hypnozoites.
The most-characterized antigen and one of the few vaccine candi-
dates for P. vivax tested in clinical trials is the circumsporozoite
protein (CSP). CSP is an attractive target, since anti-CSP antibod-
ies derived from naturally infected patients or from volunteers
exposed to irradiated sporozoites have the ability to inhibit the
infection of hepatic cells by sporozoites in vitro (6). Unlike P.
falciparum, this protein is expressed in the course of the P. vivax
exoerythrocytic stage development (7) and is also expressed by
hypnozoites (8). P. vivax CSP (PvCSP) is characterized by a highly
immunogenic central repetitive domain composed by 19 short
blocks of nine tandem amino acid repeats. These repeat sequences
exhibit three different variants (VK210, VK247, and P. vivax-like)
that show a universal distribution. The central domain is flanked
by two nonrepetitive N- and C-terminal regions containing small
stretches of highly conserved sequences that contain T and B cell
epitopes (9-11).

Four phase I clinical trials have been reported using P. vivax
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CSP-based vaccines. The first two trials were conducted in the
early 1990s using recombinant proteins expressed in Escherichia
coli or Saccharomyces cerevisiae (12, 13). These proteins were
poorly immunogenic and unable to elicit inhibitory antibody re-
sponses (12, 13). The next two clinical trials used long synthetic
peptides representing the immunogenic regions present in CSP
(14, 15). The immune responses in both trials were predominantly
toward the N-terminal peptide, and a peptide combination
achieved a seroconversion rate of 73%, with low antibody titers
against the native protein (15).

The poor immunogenicity of PvCSP vaccine formulations and
the differences in its recognition could be explained by genetic
restriction. In fact, preclinical trials have shown that the immune
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response to P. vivax CSP in mice is genetically restricted (16). In
humans, seroepidemiological studies have shown that antibody
responses against the PvCSP repeats are modulated by HLA class
II molecules (17).

The HLA modulation of the antibody response provides evi-
dence of the vital role of the cellular response against malaria. In
mouse models, protection against sporozoite challenge seems to
be initiated by CD8* T cells following immunization with irradi-
ated sporozoites and by CD4™ T cells following immunization
with a peptide (18). The protective role of CD8* T cells in humans
has also been observed following vaccination with transgenic viral
vectors expressing P. falciparum multiepitope string fused to
thrombospondin-related anonymous protein (PfME-TRAP)
(19). High frequencies of CD4" T cells and gamma interferon
(IFN-vy)-secreting T cells have also been correlated with protec-
tion in humans after immunization with the P. falciparum CSP-
based RTS,S (20). Nevertheless, IFN-vy alone is not enough to
predict a protective response, as the production of interleukin 2
(IL-2), tumor necrosis factor alpha (TNF-a) (21), and multifunc-
tional T cells also seems to be correlated with protection and
memory responses (22).

We have previously designed and expressed Plasmodium yoelii
chimeric recombinant proteins that contain cognate predicted
human T cell epitopes genetically linked in tandem to a well-
characterized B cell epitope as an approach to improve the cellular
immunogenicity of vaccine candidates (23, 24). Following this
rationale, we report here the design of a chimeric P. vivax CSP
recombinant protein (PvRMC-CSP). This chimera includes two
predicted putative promiscuous T cell epitopes, derived from the
C-terminal region of the native CSP protein, arrayed in tandem
and genetically fused to an immunodominant B cell epitope de-
rived from the N-terminal region that includes region I (25), fol-
lowed by amino acid sequences representing the two major vari-
ant repeats, VK210 and VK247. To determine whether such a
chimeric protein expressed in Escherichia coli has the ability to
overcome the genetic restriction of the immune response to P.
vivax CSP reported in mice, we characterized the immunogenicity
of PVRMC-CSP in several inbred strains of mice. Our data indicate
that this chimeric protein is highly immunogenic irrespective of
the major histocompatibility complex (MHC) haplotype eliciting
high antibody responses and high frequencies of multifunctional
CD4" and CD8™ T cell responses. To our knowledge, this is the
first evidence that a nonvectored vaccine based on CSP can induce
robust T cell responses in mice. In addition, we showed that
plasma samples derived from individuals naturally exposed to
malaria contain high levels of acquired antibodies that recognize
the chimeric PvCSP.

MATERIALS AND METHODS

Design and biochemical characterization of the P. vivax chimeric CSP.
A 636-bp PVRMC-CSP gene was codon optimized and synthesized by
Geneart (Regensburg, Germany) (Fig. 1A and B). This synthetic gene
encodes a chimeric protein that includes the following: (i) M-A on the N
terminus to provide the start signal and decrease degradation in E. coli (A)
and two additional amino acids (VD) downstream introduced by the
cloning strategy (Fig. 1A); (ii) two PvCSP Sall regions predicted to contain
promiscuous T cell epitopes (GenBank accession no. AAA29529.1), E.-
L;,o and Aj,5-Ns,5; (iii) the segment containing amino acids Gs,-Gg,
represents a sequence that includes the conserved region I and is reported
to be the target of most of the antibody reactivity elicited by immunization
with the complete N-terminal region of the P. vivax CSP (25); (iv) amino

3750 iai.asm.org

Infection and Immunity

acid sequences representing different variants of the type 1 repeat se-
quence (VK210), two copies of the octapeptide GDRAGQPA (GenBank
accession no. AAA29535.1) present in North Korean isolates described by
Arnot et al. (26) interspaced between two copies of the nonapeptide GD
RADGQPA, followed by three copies of the nonapeptide GDRAAGQPA
(27); (v) three copies of the nonapeptide ANGAGNQPG representing the
type 2 repeat sequence (VK247) (27); (vi) GPGPG spacers, inserted be-
tween the described sequences to enhance stability and antigen processing
(28). The synthetic gene was digested with Ncol and Xhol and cloned in
pET24d(+), which expresses the protein with a C-terminal His, tag. The
chimeric construct was transformed into E. coli BL21(DE3) cells (Nova-
gen, Madison, WI), and protein expression was induced with 1 mM iso-
propyl-B-p-thiogalactopyranoside (IPTG) for 3 h. The 213-amino-acid
protein, including the His tag added to the protein via the expression
vector, was purified with a nickel-nitrilotriacetic acid (Ni-NTA) affinity
column according to the manufacturer’s instructions (Qiagen, Valencia,
CA) and further purified by size exclusion chromatography performed on
a fast protein liquid chromatograph (FPLC) (AKTAprime Plus; GE
Health Care) instrument using a Sephadex G-75 column.

The protein was analyzed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) under nonreducing conditions on 4 to
20% polyacrylamide gels (Lonza, Allendale, NJ). For Western blots, fol-
lowing electrophoresis, the proteins were blotted onto nitrocellulose
membranes following standard procedures as described previously (23,
29). The membranes were then incubated with anti-CSP species-specific
monoclonal antibodies (2F2 [P. vivax allelic form VK210] and 2E10.E9 [ P.
vivax allelic form VK247]) obtained from the Malaria Research and Ref-
erence Reagent Resource Center [MR4; ATCC, Manassas, VA]), or anti-
His tag antibody at 0.2 pg/ml or polyclonal antibodies derived from rab-
bits immunized with the chimeric protein (Fig. 1C). The endotoxin levels
of the protein were evaluated using the E-Toxate (Limulus amebocyte
lysate) kit, following the manufacturer’s instructions (Sigma, St. Louis,
MO).

Synthetic peptides. A library of 49 15-mer synthetic peptides over-
lapped by 11 residues and spanning the complete P"RMC-CSP chimeric
protein sequence was commercially synthesized by the multiple solid-
phase technique (Sigma-Aldrich, St. Louis, MO) (Table 1). Peptide pools
were used to characterize cellular reactivity: PVRMC-CSP peptide pool A
included 13 peptides mainly representing the sequence E,..-Ls,o
PvRMC-CSP pool B included 14 peptides representing a region down-
stream of E,¢5-Ls;, and upstream of the repeats; PVRMC-CSP pool C
included 14 peptides that represents the VK210 repeat sequences, and
PvRMC-CSP pool D included 8 peptides that represent the VK247 repeat
sequences. To test antibody reactivity by an enzyme-linked immunosor-
bent assay (ELISA), the following linear peptides representing the variant
repeats included in the chimeric protein were synthetized by RS Synthesis
(Louisville, KY): VK210AD (GDRADGQPA);, VK210AA (GDRAAGQP
A);, North Korean (GDRAGQPA);, and VK247 (ANGAGNQPG),
(Table 1).

Mice. Female A/] (H-2%), DBA/1J (H-29), and SJL/J (H-2°) mice, 6 to
8 weeks of age, were purchased from the Jackson Laboratory (Bar Harbor,
ME). Female BALB/c (H-29), C3H (H-2¥), and C57BL/6 (H-2®) mice, 6 to
8 weeks of age, were purchased from Charles River (Wilmington, MA).
The animals were subcutaneously immunized on days 0, 20, and 40 in the
base of the tail and in the interscapular area, using 20 g of the PVRMC-
CSP protein emulsified in Montanide ISA 51 (Seppic, Fairfield, NJ). Con-
trol groups of mice received phosphate-buffered saline (PBS) alone emul-
sified in the same adjuvant. All animal protocols were approved by Emory
University’s Institutional Animal Care and Use Committee and followed
accordingly.

ELISAs. (i) Mouse ELISAs. The fine specificity of the antibodies elic-
ited by immunization with PVRMC-CSP in mice was determined by
ELISA using Immulon 4HB plates (Thermo Scientific, Waltham, MA)
coated with one of the following: 1 pg/ml of PVRMC-CSP or synthetic
peptides representing the individual repeat variants or individual overlap-
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FIG 1 (A) Schematic representation of the recombinant protein reported here. PVRMC-CSP includes the regions of the native CSP that contain predicted
promiscuous T cell epitopes E,¢s-Ls,, and Aj,5-Ns,; interspaced with a GPGPG spacer and genetically fused to sequences that are the target of protective
antibodies. These sequences include the following: (i) G;,-Gg, from the N-terminal PvCSP including the native region I; (ii) two copies of the octapeptide
GDRAGQPA, flanked by one copy of the nonapeptide GDRADGQPA followed by three copies of the GDRAAGQPA sequence (representing the different
variants of the VK210 allelic repeat); and (iii) three copies of the nonapeptide ANGAGNQPG (representing the VK247 allelic repeat variant). The two copies of
the octapeptide GDRAGQPA were derived from a North Korean isolate (AAA29535.1) (26). GPGPG spacers were also inserted between the three B cell domains
(striped boxes). (B) Sequence of the PVRMC-CSP protein. The amino acid sequence is shown in single-letter code. The sequences of the allelic repeat variants are
shown on a gray background. (C) Coomassie blue stain after SDS-PAGE separation of the purified protein (lane 1). Western blot analysis of the purified
PVvRMC-CSP stained with purified IgG antibodies produced in rabbits after immunization with the chimeric protein (lane 2), monoclonal antibody 2F2 that
recognizes the VK210 allelic repeat variant (lane 3), monoclonal antibody 2E10 that recognizes the VK247 allelic repeat variant (lane 4), or an anti-6X His tag
monoclonal antibody (lane 5). The positions of molecular weight markers (in thousands) (Bio-Rad) are indicated to the left of the gel. (D) Heparan sulfate
binding assay. PVRMC-CSP, but not PvMSP1, binds to heparan sulfate in a dose-dependent manner.

ping peptides representing the N-terminal region G;,-Gs,, diluted in PBS
as described previously (23). Optical densities (ODs) were determined
using a VERSAmax ELISA reader (Molecular Device Corporation, Sunny-
vale, CA) with a 405-nm filter. The cutoff was the highest dilution of sera
having an OD greater than the mean plus 3 standard deviations obtained
using preimmune sera. Results are presented as the reciprocal of the end-
point dilution.

(ii) Human ELISAs. To evaluate reactivity of naturally acquired anti-
bodies against PVRMC-CSP, plasma samples were selected from 251 in-
dividuals from communities in Rondonia, a state in the western Amazon
region of Brazil, where malaria is endemic. In the last 5 years, P. vivax
malaria accounted for more than 70% of all malaria cases in the region as
reported (30, 31). The majority of the studied population consists of rain-
forest natives who have resided in the region where malaria is endemic for
more than 25 years or transmigrants from several areas of Brazil where
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malaria is not endemic who have lived in Rondonia for 10 years or more.
The study was reviewed and approved by the Oswaldo Cruz Foundation
Ethical Committee institutional review board (IRB) no. 138/01 and
354/06 and the National Ethical Committee of Brazil.

Human plasma samples were tested using Maxisorp 96-well plates
(Nunc, Rochester, NY) coated with 200 ng of the recombinant protein.
After overnight incubation at 4°C, the plates were washed with PBS con-
taining 0.05% Tween 20 (PBS-Tween) and blocked with PBS-Tween con-
taining 5% nonfat dry milk (PBS-Tween-M) for 1 h at 37°C. Individual
plasma samples diluted 1:100 in PBS-Tween-M were added to duplicate
wells, and the plates were incubated at 37°C for 1 h. After four washes with
PBS-Tween, peroxidase-conjugated goat anti-human total IgG (Sigma-
Aldrich) diluted by 1:1,000 was added, and the plates were incubated and
washed as described above. Finally, o-phenylenediamine and hydrogen
peroxide were used to reveal bound antibodies. The absorbance was read
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TABLE 1 Peptides used for immunological assays

Assay and peptide used Sequence

ELISA
VK210AD
VK210AA
VK247
North Korean

(GDRADGQPA),
(GDRAAGQPA),
(ANGAGNQPG),
(GDRAGQPA),

Flow cytometry

Pool A overlapping E,¢5-Ls MAVDEYLDKVRATVG
EYLDKVRATVGTEWT
KVRATVGTEWTPCSV
TVGTEWTPCSVTCGV
EWTPCSVTCGVGVRV
CSVTCGVGVRVRRRV
CGVGVRVRRRVNAAN
VRVRRRVNAANKKPE
RRVNAANKKPEDLTL
AANKKPEDLTLNDLG
KPEDLTLNDLGPGPG
LTLNDLGPGPGAGIF
DLGPGPGAGIFNVVS

GPGAGIFNVVSNSLG
GIFNVVSNSLGLVIL
VVSNSLGLVILLVLA
SLGLVILLVLALFNG
VILLVLALFNGPGPG
VLALFNGPGPGGDAK
FNGPGPGGDAKKKKD
GPGGDAKKKKDGKKA
DAKKKKDGKKAEPKN
KKDGKKAEPKNPREN
KKAEPKNPRENKLKQ
PKNPRENKLKQPGGP
RENKLKQPGGPGPGG
LKQPGGPGPGGDRAD

Pool B overlapping A;,5-N,,5 and G;,-Gg,

Pool C VK210 repeats GGPGPGGDRADGQPA
PGGDRADGQPAGDRA
RADGQPAGDRAGQPA
QPAGDRAGQPAGDRA
DRAGQPAGDRAGQPA
QPAGDRAGQPAGDRA
DRAGQPAGDRADGQP
QPAGDRADGQPAGDR
DRADGQPAGDRAAGQ
GQPAGDRAAGQPAGD
GDRAAGQPAGDRAAG
AGQPAGDRAAGQPAG
AGDRAAGQPAGDRAA
AAGQPAGDRAAGQPA
Pool D VK247 repeats PAGDRAAGQPAGPGP
RAAGQPAGPGPGANG
QPAGPGPGANGAGNQ
PGPGANGAGNQPGAN
ANGAGNQPGANGAGN
GNQPGANGAGNQPGA
GANGAGNQPGANGAG
AGNQPGANGAGNQPG
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at 492 nm using a Spectramax 250 ELISA reader (Molecular Devices,
Sunnyvale, CA). The results for total IgG were expressed as reactivity
indexes (RI) that were calculated by dividing the mean optical density of
tested samples by the mean optical density plus 3 standard deviations of 5
nonexposed controls tested on each plate. Subjects were scored positive
for serum IgG to a particular antigen if the RI was higher than 1 (30, 31).

Heparan sulfate binding. Heparan sulfate binding assay was per-
formed as previously described by Yadava et al. (32) with some modifica-
tions. Briefly, Immulon 4HBX plates (Thermo Scientific, Waltham, MA)
were coated with 100 pl/well of a 10-pg/ml solution of heparan sulfate
from bovine kidney (Sigma-Aldrich) diluted in water. The plates were
incubated overnight at 37°C. Control wells were incubated with 10 pg of
bovine serum albumin (BSA)/ml. The plates were washed with a 0.05%
Tween 20 (Sigma-Aldrich) in PBS solution and blocked with a 1% solu-
tion of BSA in PBS for an hour at room temperature. PVRMC-CSP was
diluted in PBS starting at 5 wg/ml, and serial dilutions were plated. The
plates were then incubated for 2 h at room temperature. Control wells
were incubated with similar dilutions of a recombinant P. vivax MSP-1
protein purified using similar protocols. Binding of P"RMC-CSP to hepa-
ran sulfate was detected by the addition of mouse antibodies against
PvRMC-CSP or antibodies against the recombinant P. vivax MSP-1 ob-
tained 20 days after the final immunization for 2 h, followed by anti-
mouse IgG labeled with horseradish peroxidase (anti-mouse IgG-HRP)
for an hour. The plates were then incubated at room temperature and
washed between steps. The reaction was developed by using 2,2"-azino-
bis(3-ethylbenthiazolinesulfonic acid) (ABTS) (KPL, Gaithersburg, MD),
and ODs were read at 405 nm using a VERSAmax ELISA reader (Molec-
ular Device Corporation) after 45 min.

ELISPOT assays. The frequency of PVRMC-CSP-specific T cells was
initially determined by IFN-y- and IL-4-specific enzyme-linked immu-
nosorbent spot (ELISPOT) assays conducted ex vivo using spleen cells
obtained 20 days after the third immunization. The assays were per-
formed in nitrocellulose microplates (Millipore, Bedford, MA) coated
with rat anti-mouse IFN-y or rat anti-mouse IL-4 (Pharmingen, San Di-
ego, CA) as described previously (23). Freshly isolated spleen cells from
six mice were pooled, and triplicate aliquots at 1 X 10° cells/well were
plated. T cells were activated by the addition of 10 pg/ml of PYRMC-CSP
recombinant protein. Concanavalin A (ConA) was used as a positive con-
trol, and splenocytes collected from animals immunized with Montanide
ISA 51 and incubated ex vivo with PvRMC-CSP were used as a negative
control to test specificity. The plates were incubated for 24 h for IFN-vy
ELISPOT assays and for 48 h for IL-4 ELISPOT assays. Spot-forming cells
(SFC) were calculated after background subtraction of control wells incu-
bated with medium alone.

Flow cytometry assays. Flow cytometry multiparametric analysis of
PVRMC-CSP-specific T cells was done using an eight-color panel. The
panel was used to simultaneously analyze IL-2, IFN-vy, and TNF-a at the
single-cell level in T cells derived from splenocytes obtained 11 days after
a single boosting immunization with P"RMC-CSP. A library of 49 syn-
thetic peptides representing the complete amino acid sequence of the
chimeric protein was used for ex vivo stimulation (Table 1). The cells were
stimulated for 6 h with peptide pools or PPRMC-CSP at 2 g/ml at 37°C
in the presence of GolgiPlug (BD Biosciences, San Jose, CA). The cells
were then incubated with LIVE/DEAD aqua stain (Life Technologies)
followed by surface staining with anti-CD3 (peridinin chlorophyll protein
[PerCP]-Cy5.5), anti-CD4 (Alexa Fluor 700), and anti-CD8« (allophyco-
cyanin [APC]-Cy7) for 30 min. The cells were then fixed, permeabilized,
and stained with antibodies against IFN-y (APC), TNF-a (phycoerythrin
[PE]), and IL-2 (fluorescein isothiocyanate [FITC]). All the monoclonal
antibodies were obtained from BioLegend (San Diego, CA). Flow cytom-
etry analyses were performed using an LSRII flow cytometer (BD Biosci-
ences, San Jose, CA), and data were analyzed using Flow]Jo (version 9.4.1;
Tree Star, Ashland, OR). Analyses of multifunctional T cell responses were
done using a Boolean analysis in FlowJo. The lymphocytes were initially
gated on the LIVE/DEAD channel, and then CD3* CD4" and CD3™
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CD8™ antigen-specific cytokine-secreting T cells were identified (see Fig.
S2 in the supplemental material). The frequency of antigen-specific cyto-
kine-producing cells was determined by subtracting the percentage of
cytokine-producing T cells after incubation with medium alone from the
percentage of cytokine-producing T cells after incubation with PYRMC-
CSP or the corresponding peptide pools. A threshold for a positive cyto-
kine response was set above the background, and the values for samples
that did not meet this requirement were set at zero.

Statistics. Statistical analysis and graphs were made using GraphPad
Prism 5.0 software (GraphPad Software Inc., San Diego, CA). For analysis
of the antibody and cellular responses, data were log transformed to con-
form to the normality and variance requirements of parametric testing
and compared using one-way analysis of variance (ANOVA) with post hoc
Bonferroni’s multiple-comparison posttest. To evaluate ELISPOT re-
sponses, each group was compared with a control group composed of
naive mice from the same strain using Student’s t test.

RESULTS

Design, expression, and characterization of the chimeric pro-
tein PVRMC-CSP. Both antibodies and cellular immune re-
sponses against Plasmodium CSP have been reported to be in-
volved in protection (33, 34). We have previously reported the use
of chimeric recombinant proteins based on P. yoelii antigens as an
effective delivery system to induce balanced protective immune
responses in mice. The chimeric recombinant proteins were de-
signed to optimize the immune response by the genetic linkage of
PvCSP regions predicted to contain promiscuous human class II' T
cell epitopes arrayed in tandem to linear B cell epitopes. Such
topology was associated with a significant improvement of the
immune response and protective efficacy against P. yoelii (23).
Although chimeric vaccine constructs based on PvCSP have been
reported, our approach is unique in that we aim to develop a
universal strategy for the optimal delivery of subunit vaccines.
According to this strategy, regions of the protein predicted to bind
a large number of MHC class II alleles are fused to protein seg-
ments known to contain protective B cell epitopes, eliminating in
this manner regions of low immunological value. Using the
graphical interphase generated by the ProPred server (35) and in
silico analysis, we predicted regions with potential binding capac-
ity to reference sets of class I and class II using the Immune
Epitope Database and Analysis Resource (IEDB) consensus tool
(36—44). The regions contained between amino acids 265 and 310
and amino acids 325 and 343 are predicted to be recognized by
multiple MHC class II alleles (see Fig. S1 in the supplemental
material). Peptides within PvCSP capable of binding to MHC class
I molecules predicted by the IEDB server (http://www.iedb.org/)
are present mainly in the signal peptide (amino acids 1 to 19) and
in the C-terminal region (amino acids 260 to 340) (Fig. S1). On
the basis of this information, we designed the chimeric recombi-
nant protein PYRMC-CSP that comprised the two predicted re-
gions at the C-terminal region of the PvCSP (E,¢5-Ls;, and As,s-
N,,3) genetically fused to a previously described B cell epitope that
includes region I and sequences that represent the major allelic
forms of the repeat region (Fig. 1). The selected sequences are
predicted to bind between 5 and 21 human MHC class II alleles in
the IEDB reference set that includes 27 alleles.

PvRMC-CSP was purified from E. coli lysates by metal chelate
chromatography using a Ni-NTA resin. After initial metal chelate
purification, the recombinant construct was further purified using
analytical gel filtration chromatography on Sephadex G-75; the
purified protein migrated as a single peak. SDS-PAGE analyses
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showed a single band with an apparent mobility of 25 kDa. The
biochemical identity of the recombinant protein was established
by Western blot analysis using a panel of antibodies recognizing
different components of the chimera (Fig. 1C). The monoclonal
antibodies 2F2 and 2E10.E9, which recognize the VK210 and
VK247 alleles, recognized the chimeric protein and the anti-His
tag monoclonal antibody (Fig. 1C). Purified polyclonal antibodies
produced in rabbits by immunization with PvRMC-CSP were
used as a positive control of reactivity (Fig. 1C), while purified
polyclonal antibodies from naive rabbits were used as a negative
control of specificity. To assess the presence of bacterial impurities
in our construct, endotoxin levels were measured by using Limu-
Ius amebocyte lysate assay. Endotoxin levels were less than 25 en-
dotoxin units (EU)/mg of protein.

A heparan sulfate binding assay was performed to confirm that
the modification on the PvCSP structure in our protein did not
affect the functionality of the CSP conserved domains, since the
binding of CSP to heparan sulfate proteoglycans on the surfaces of
hepatocytes is the main event in the rapid and specific localization
of sporozoites to the liver after the infectious anopheline bite (45).
Our results indicate that PYRMC-CSP binds to heparan sulfate in
a dose-dependent manner (Fig. 1D).

Humoral response in mice immunized with PvRMC-CSP.
Murine antibody responses to recombinant PvCSP have been re-
ported to be genetically restricted (16). To test whether the struc-
tural changes incorporated in our chimeric protein can act to
overcome this limitation, six inbred strains of mice were used to
test the immunogenicity of PVRMC-CSP. All serum samples taken
before immunization showed no antibodies against P"VRMC-CSP
(Fig. 2A). After a single immunization, the A/J strain had higher
anti-PvRMC-CSP titers than the other mouse strains ranging be-
tween 1:81,920 and 1:327,680 and were significantly higher than
the titers induced in BALB/c mice (ranging between 1:1,280 and
1:40,960 [P < 0.01]) and the SJL mice (ranging between 1:320 and
1:81,920 [P < 0.01]). After the second immunization, the anti-
body titers in the different strains of mice were boosted. The A/J
mice continued to produce the highest titer of antibodies with
significantly higher IgG titers compared to SJL (P < 0.01) and
DBA (P < 0.05) mice. After the third immunization, all responses
were boosted, and the SJL mice produced significantly lower titers
than the C57BL/6, DBA, and C3H mice did (P < 0.05) (Fig. 2B).
However, antibody titers in SJL mice were >49-fold higher than
titers obtained after the first immunization and comparable to
those recorded for A/J and BALB/c mice.

After confirmation of the broad antibody responses induced by
immunization with PVRMC-CSP, the next step was to assess the
capacity of the antibodies elicited in mice to recognize the differ-
ent allelic forms of the P. vivax central repeats using synthetic
peptides representing the major alleles. All of the mouse strains
tested produced antibodies against the variants of the central re-
peats tested. The antibody titers against VK247 were lower in all
the mouse strains tested (Fig. 2C). Nonetheless, this response was
higher than 1:320 in all strains tested and reached titers of 1:81,920
in A/] and CH3 mice.

A segment of P. vivax CSP N-terminal region that includes re-
gion I is also a known target for protective antibodies. Therefore, this
segment was included in PVRMC-CSP. To map the epitopes at which
the B cell response is directed, we tested several overlapping peptides
representing the PvCSP N-terminal amino acids Gs,-Gg,. As pre-
dicted, most antibodies recognized the conserved region I (KLKQP).
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However, the presence of this epitope alone was not enough to induce
high antibody titers. Based on the peptide producing the highest an-
tibody response, it seems that a peptide sequence (KKAEPKNPREN)
preceding region I is required for efficient recognition (Fig. 2D). It is
also important to note that all mouse strains tested were able to rec-
ognize the peptide containing region I and the upstream N-terminal
sequence with levels ranging between 1:20,480 in SJL mice and
1:327,680 in C57BL/6 mice, showing that the peptide recognition
does not depend on the mouse MHC haplotype.

To assess the ability of the antibodies induced by P"RMC-CSP
to recognize the CSP protein in its native form, and given the
limited availability of P. vivax sporozoites, only pools of sera ob-
tained from C57BL/6 mice (one of the strains that produced high
mean antibody titers against the recombinant protein after com-
pletion of the immunization regimen) were tested for reactivity
against P. vivax VK210 sporozoites by immunofluorescence. Se-
rum samples reacted with sporozoites at titers ranging between
1:20,480 and 1:40,960 (data not shown).

Cellular response in mice immunized with PvRMC-CSP.
Cellular responses have been shown to play a significant role in
protection against a sporozoite challenge. The cellular reactivity to
PvRMC-CSP was initially tested ex vivo by measuring cytokine
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production of restimulated splenocytes with the chimeric protein
20 days after the final immunization via an ELISPOT assay. [FN-vy
production in all mice tested ranged between 313 and 760 spot-
forming cells (SFC)/10° splenocytes. The frequency of IFN-y SFC
were significantly higher for all the strains of mice tested com-
pared to cells obtained from the corresponding placebo immu-
nized mice of the same strain which produced between 0 and 72
SFC/10° splenocytes (Fig. 3A). These comparative experiments
confirmed the specificity of the cellular reactivity was in response
to PVRMC-CSP and was not caused by potential traces of residual
endotoxin. C3H mice produced significantly higher IFN-y SFC
than the other strains with the exception of SJL (BALB/c mice, P <
0.01; C57BL/6 mice, P < 0.05; A/] mice, P < 0.01; DBA mice, P <
0.001). Interestingly, although SJL produced significant lower an-
tibody titers compared to other strains, this strain produced the
second highest frequency of SFC after C3H mice (P < 0.01).

To further characterize the cellular reactivity induced by im-
munization with PYRMC-CSP, IL-4-secreting cells were also de-
termined by an ELISPOT assay. The frequencies of IL-4-secreting
cells in immunized mice were significantly higher than in the con-
trol mice after stimulation with PvRMC-CSP in all strains tested
with the exception of C57BL/6 (Fig. 3B). The frequency of IL-4-
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secreting SFC in PVRMC-CSP-immunized mice ranged between
25 and 133, and the SFC of the placebo-immunized mice ranged
between 3 and 7. After ex vivo stimulation with P"RMC-CSP, the
IFN-v/IL-4 ratios ranged from 9.1 to 12.1 for C57BL/6, A/], and
C3H mice and from 4.1 to 4.9 for BALB/c, DBA, and SJL mice.

Frequency and functionality of CD4* T cells after immuni-
zation with PVRMC-CSP. Since the ELISPOT assay is unable to
differentiate the source of cytokine production or the quality of
the cellular immune response (i.e., numbers of multifunctional T
cells), flow cytometry and intracellular cytokine staining were per-
formed to further characterize the cellular response induced by
PvRMC-CSP (see Fig. S2 in the supplemental material). The fre-
quencies of CD4™ T cells producing IFN-v, IL-2, or TNF-a after
ex vivo stimulation with PVRMC-CSP are presented in Fig. 4A.
Based on these results, different levels of CD4* responses depen-
dent on the mouse strain can be inferred. BALB/c mice could be
considered high responders, as they produce significantly higher
numbers of CD4 " IFN-y-secreting cells than the other strains do.
Accordingly, DBA and C57BL/6 mice could be considered me-
dium responders, while C3H, SLJ, and A/J mice are low respond-
ers. Nonetheless, all the mouse strains tested exhibited predomi-
nant IFN-vy responses with a multifunctional profile (Fig. 4C).
Unlike differences observed with IFN-+y secretion, there were no
significant differences in the production of IL-2 between the
strains. Comparisons of TNF-a expression revealed that A/J mice
produced significant lower levels of TNF-a than DBA and
C57BL/6 strains did (P < 0.01). Itis noteworthy that while A/] had
the lowest frequencies of PYRMC-CSP-specific CD4" T cells se-
creting IFN-v, IL-2, or TNF-« alone, this strain had the highest
frequency of multifunctional CD4 " T cells (Fig. 4C).

After stimulation with PVRMC-CSP peptide pools, no strain
showed a preferential recognition of a single peptide pool for any
of the cytokines evaluated (Fig. 4B). Likewise, association between
the proportion of multifunctional cells and the peptide pools was
not observed (Fig. 4D). The fact that there was not a preferential
response toward a single peptide pool and that the different pools
were recognized by all the strains tested indicates that there is a
broad recognition of the protein, likely due to the presence of
several promiscuous T cell epitopes.
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Frequency and functionality of CD8* T cells after immuni-
zation with PYRMC-CSP. CD8" IFN-vy production is strongly
correlated with P. falciparum protection in humans (19). The per-
centages of CD8™ T cells producing IFN-vy, TNF-a, or IL-2 are
presented in Fig. 5A. Immunization with PVRMC-CSP is capable
of inducing CD8" T cells in all mouse strains with preferential
production of IFN-v. Similar to the differences in cytokine pro-
duction reported for CD4™" T cells, cytokine production by CD8™
T cells seems to be strain dependent. This is demonstrated in
BALB/c, DBA, and C57BL/6 mice, which elicited the highest num-
ber of IFN-vy-producing CD8* T cells, and A/J mice producing the
lowest number (Fig. 5A). IL-2 production was significantly higher
in BALB/c mice (P < 0.001) and C57BL/6 mice (P < 0.001) than
in the other strains. Additionally, A/] mice showed the lowest level
of TNF-a production among the strains tested (P < 0.05) with the
exception of C3H mice, since the difference between these two
strains did not reach statistical significance. Despite the differ-
ences observed during comparisons of single cytokines, all of the
strains tested produced multifunctional CD8™" T cells after stim-
ulation with PvRMC-CSP (Fig. 5C). Furthermore, as with CD4™"
T cells, no association between the cytokine production or the
proportion of multifunctional cells and the recognition of a spe-
cific region of PvRMC-CSP was observed (Fig. 5B and D).

Recognition of PVRMC-CSP by naturally acquired antibod-
ies from individuals exposed to malaria. To confirm that the B
cell epitopes are preserved in the recombinant chimeric protein
and to evaluate the antigenicity of PVRMC-CSP, plasma samples
collected from individuals naturally exposed to malaria were used
to evaluate the recognition of PVRMC-CSP by ELISAs. The cohort
of individuals who participated in this study has been studied
previously (30). These individuals were living in two areas where
P. vivax accounts for more than 70% of the clinical cases of ma-
laria. Samples were collected from rainforest natives, who have
resided in a region where malaria is endemic (Ribeirinha) for
more than 25 years, and from transmigrants originating from sev-
eral areas of Brazil where malaria is not endemic who have resided
in a region for 10 years or more (Colina). Recognition of PYRMC-
CSP was demonstrated as 65.3% (164/251) of all the samples ex-
hibited IgG antibodies against PVRMC-CSP, with a mean reactiv-
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ity index of 1.61. The results for the different populations are
presented in Table 2.

DISCUSSION

Clinical and epidemiological data have shown that effective ma-
laria vaccines must be able to induce balanced humoral and cellu-
lar responses. We previously designed and expressed chimeric
recombinant proteins based on well-characterized vaccine candi-
dates that contain several cognate T cell epitopes arrayed in tan-
dem conformation and genetically linked to immunodominant B
cell epitopes. Proof of concept studies conducted in mice using P.
yoelii sequences have shown enhanced immunogenicity and effi-
cacy of this type of construct (23, 29). Here we report the design,
expression, and characterization of a P. vivax CSP chimeric pro-
tein (PVRMC-CSP) expressed in E. coli that incorporates similar
features. Previously, the immune response in mice to a recombi-
nant P. vivax CSP has been reported to be genetically restricted
(16). We initially tested whether the topology changes introduced
in the PvCSP would overcome the reported genetic restriction in
mice. We found that PVRMC-CSP was able to induce robust an-
tibody responses in six different inbred mouse strains. Antibodies
elicited by immunization with PvRMC-CSP recognized not only
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the chimeric protein but also synthetic peptides representing the
allelic variants of the P. vivax CSP repeat domain. This is in sharp
contrast with a previous publication that showed that only mice of
the H-2" and H-2? haplotypes produced antibodies able to recog-
nize the P. vivax CSP (16). VMPO001, a vaccine candidate based on
P. vivax CSP, was able to induce responses in BALB/c (H-2%) and
C57BL/6 (H-2") mice. Interestingly, in contrast to our findings
with PVRMC-CSP, BALB/c mice were low responders to VMP001,
with antibody titers 1 log unit lower than the H-2* strain tested
(B10.BR) showing that it only partially overcame the genetic re-
striction (32). Evidence of genetic restriction has also been re-
ported in humans. In a Brazilian area where P. vivax malaria is
endemic, the HLA-DR?7 allele is associated with a lack of response
against the VK210 allele (17). An effective P. vivax vaccine based
on CSP requires the induction of universal immune responses.
Here we presented evidence that the chimeric PYRMC-CSP pro-
tein tailored to improve the immunogenicity of the native PvCSP
widens the breadth of the immune responses.

Antibody titers against the VK247 variant sequence induced by
immunization with PVRMC-CSP were low in five of the six strains
of mice tested here. However, the antibody titers were as high as
1:81,920 in A/J mice. Our results are similar to the findings re-
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ported for the vaccine candidates VMP001 and CVS-S,S in non-
human primates that also showed the induction of low antibody
responses to the VK247 peptide (46). It has been suggested that the
VK247 allele could be less immunogenic than the VK210 allele,
since antibody response against VK210 is higher than VK247 in a
population living in an area with a high prevalence of the VK247
variant (47). Nonetheless, seroepidemiological studies conducted
in Myanmar and Brazil have not shown a predominant antibody
response toward a specific CSP allele (17, 48). The low antibody
response to VK247 after immunization with PvRMC-CSP could

TABLE 2 Prevalence of antibodies against PVRMC-CSP in Brazilian
donors by IgG ELISA

Region in No. (%) of No. (%) of Total no. of
Brazil positive samples negative samples samples
Colina 39 (45.3) 47 (54.7) 86
Ribeirinha 125 (75.8) 40 (24.2) 165

Total 164 (65.3) 87 (34.7) 251

September 2015 Volume 83 Number 9

Infection and Immunity

also be explained by the low copy number of repeats included in
PvRMC-CSP.

In both rodent and human Plasmodium infections, antibodies
directed against the conserved regions of CSP are also related to
protection. Both immune individuals immunized with sporozo-
ites and prophylactically treated with chloroquine and semi-
immune patients from an area where malaria is endemic are able
to recognize CSP, showing that anti-CSP immunity is necessary
for protection (49). CSP binds to highly sulfated heparan sulfate
proteoglycans (HSPG) on the surfaces of hepatocytes; this inter-
action is critical for cell invasion, arresting circulating sporozoites
in the liver (45, 50, 51). Our heparan sulfate binding assay showed
that the structural domains involved in such interactions are con-
served in PVRMC-CSP.

One of the conserved structural domains present in PvRMC-
CSP is region I, a cell adhesive motif exposed by the proteolytic
cleavage of CSP after the sporozoite-hepatocyte interaction (52,
53). It has been demonstrated that antibodies directed against this
region are able to inhibit the invasion of HepG2 cells by different
Plasmodium species (54). We showed that immunization with
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PvRMC-CSP induced antibodies against region I in all mouse
strains tested. However, antibody titers against this epitope were 1
log unit lower than titers against the repeat regions. Similar find-
ings have been reported in comparative seroepidemiological stud-
ies with the N-terminal and C-terminal regions (32, 55). Interest-
ingly, not all the synthetic peptides containing region I that we
tested were recognized by antibodies elicited by PYRMC-CSP im-
munization. Our results suggest that amino acids located up-
stream of the conserved KLKQP sequence are required for effec-
tive recognition. The data are consistent with the fine mapping of
B cell epitopes reported by Cespedes et al. that showed that addi-
tional N-terminal amino acids are essential for the recognition of
the KLKQP fragment by sera from humans in areas where malaria
is endemic (56) and for their capacity to inhibit sporozoite liver
invasion (57).

A possible caveat when using chimeric recombinant proteins is
the potential expression of neoantigens when the structure of the
natural protein is modified. Naturally acquired antibodies in a
population with differences in exposure and immunity (31) were
able to recognize PVRMC-CSP when tested by ELISAs, confirming
that the antigenic domains of CSP are conserved in our construct.
The recognition of P. vivax sporozoites by mice immunized with
PvRMC-CSP further confirms that antibody responses induced
by this vaccine candidate are directed toward the P. vivax CSP
native sequences. Differences in the recognition of P"RMC-CSP
by plasma samples from individuals with heterogeneous exposure
to malaria support the use of this protein in seroepidemiological
studies. The seroprevalence of anti-PvRMC-CSP antibodies in a
cohort of individuals living in a western Amazon region of Brazil
was related to endemicity and was not limited by the population
genetic background, demonstrated by the higher anti-PvRMC-
CSP responses in an area where malaria is prevalent (75.8%) com-
pared to the low seroprevalence (45.3%) in an area with a lower
incidence of malaria. Previous seroepidemiological studies ob-
tained in a Brazilian population with a similar epidemiological
setting found that the CSP seroprevalence ranged from 24 to
34.2% when using synthetic peptides and that these responses
depended on the population HLA alleles (17). Our results are
comparable to those reported by Cespedes et al. using two vaccine
candidates, PvCS-NRC (56) and PvNRIR2 (57), which showed a
seroprevalence ranging between 69 and 83% in Papua New
Guinea, an area where malaria is endemic, and a seroprevalence
between 24 and 58% in an area of Colombia with a lower inci-
dence of malaria.

Clinical trials with the P. falciparum CSP-based fusion protein
RTS,S have shown that protection against an infectious challenge
although associated with antibodies (58) is also correlated with
IFN-y production by CD4" and CD8™ T cells (20), as Plasmo-
dium liver stage development is hampered by IFN-y (59, 60).
Long-lasting protection has also been associated with IFN-vy pro-
duction (20, 61). Subjects that exhibited a high level of antibody
titers and a high CD4" T cell response were more likely to be
protected than those subjects with high antibody titers but poor
CD4™ T cell response (62). ELISPOT assays revealed that PVRMC-
CSP induced high frequencies of IFN-y-secreting cells (more than
300 TFN-y-secreting SFC/10° splenocytes) in all strains of mice
tested. These responses are higher than those reported for the
rPvCSP-ME vaccine candidate that induced more than 50 TFN-y-
secreting SFC/10° splenocytes in a single strain of mice (BALB/c)
(63). The high IFN-v/IL-4 ratios obtained after ex vivo stimulation
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with PVRMC-CSP allow us to infer that PvRMC-CSP elicitsa Th1-
biased immune response. Additionally, the ability of PVRMC-CSP
to produce multifunctional CD4" T cells is also encouraging,
since the high frequency of multifunctional CD4" T cells is
strongly related to protection in humans immunized with RTS,S
(20, 21) and has also been observed to be associated with immu-
nity and protection against Leishmania major (22).

The IFN-vy production induced by PVRMC-CSP is also medi-
ated by CD8™ T cells. More strikingly, the proportions of triple-
and double-cytokine-producing cells were high for all strains of
mice tested. The breadth of the cellular immune response induced
by the chimeric protein resembles that reported for irradiated
sporozoites, considered the standard for exoerythrocytic vaccine
development. The high frequency of multifunctional CD8* T cells
induced after immunization with PvRMC-CSP, ranging between
6 and 41%, is similar to that associated with long-lasting protec-
tion in a Plasmodium berghei model (64). This result is in sharp
contrast with data reported for mice in response to immunization
with VMPO0O01 (65), where the protein was unable to induce CD8*
T cells even when the vaccine candidate was formulated in an
oil-in-water emulsion supplemented with Toll-like receptor 4
(TLR4) and TLR7/8 agonists (65). When the same formulation
was tested in nonhuman primates, IEN-y-secreting cells were not
produced, an effect that was attributed to differences in TLR4
signaling in the species (66). Formulation of PVRMC-CSP in a
water-in-oil emulsion as reported here induced very robust cellu-
lar responses; it is possible to speculate that such responses could
be further enhanced by the use of more-complex adjuvant
systems.

The CD8™ induction could be explained by the presence of
undetermined cytotoxic T cell epitopes in PVRMC-CSP that can
be cross-presented. We have previously shown that positively
charged polymeric synthetic peptide constructs (PvRMC-CSP ex-
hibits an isoelectric point of 9.39) are internalized by antigen-
presenting cells via endocytosis (67). In this work, peptide uptake
was enhanced by the interaction of positively charged residues
with negatively charged membranes similar to the mechanism
used by a family of compounds called cell-penetrating peptides.
The endocytosis of these peptides upregulated cytokine produc-
tion and expression of cell surface maturation markers by DCs
and ultimately was related to protection in mice against a P. yoelii
challenge (67).

The cellular responses in all mouse strains tested showed dif-
ferent patterns of recognition of the PYRMC-CSP peptide pools,
with a profile depending on the strain, rather than the pool. How-
ever, no preferential recognition of a protein segment was de-
tected. This suggests a broad response recognizing different
epitopes within PvVRMC-CSP, rather than the recognition of a
single immunodominant epitope. The central repeat domain of P.
vivax CSP is under immune selection inducing its expansion, con-
traction, and rearrangement (68), and this variability could lead to
immune escape. Therefore, an P. vivax vaccine that increases the
depth and breadth of the immune response as we have shown here
with PYRMC-CSP is highly desirable.

The inclusion of promiscuous T helper epitopes in subunit
vaccines is aimed at broadening the frequency of responders in a
randomly chosen population (69). Different strategies have been
used to associate T cell epitopes to poorly immunogenic Plasmio-
dium antigens. The use of parasite T cell epitopes in malaria vac-
cine constructs has an advantage over the use of exogenous T cell

September 2015 Volume 83 Number 9


http://iai.asm.org

epitopes, as clonal expansion of T cells elicited by immunization
provides not only cognate help to B cells but potential antiparasite
immunity. PVRMC-CSP includes cognate T cell epitopes arrayed
in tandem at the N-terminal region of the chimeric protein. The
unresponsiveness of previously reported constructs based on P.
vivax CSP is therefore not related to the absence of T helper
epitopes in the native sequence. Previous evidence suggests that
the tandem array of promiscuous T cell epitopes could impact
antigen processing, modifying immunodominance (70, 71). In
fact, it has been suggested that the position of T helper epitopes
within a chimeric protein impacts peptide cleavage, association
with MHGC, or T cell receptor (TCR) recognition (72). Therefore,
we cannot rule out the possibility that neoepitopes could have
been generated by the introduction of linkers in PVRMC-CSP. The
neoepitopes could have contributed to the overall T cell response,
including help for antibody production. Although we did not
evaluate responses to these joining sequences, we found that the
IEDB server (41) predicts CD4™ and CD8™ T cell neoepitopes in
H-2¢ (BALB/c) and H-2" (C57BL/10) mice, respectively. Interest-
ingly, the GPGPG spacer sequence provides the preferred G and P
amino acids in positions 2 and 3 for binding to MHC class I D¢
molecules (73) and positions 3 and 4 for binding to MHC class II
IAP molecules (74). Further studies are required to determine the
mechanism involved in the immune enhancement and the relative
contribution of these neoepitopes to the response elicited by
PvRMC-CSP.

In summary, the chimeric recombinant protein PVRMC-CSP,
designed to optimize the immune response by genetic linkage of
cognate T cell epitopes to conformational B cell epitopes based on
the P. vivax CSP, was able to induce broad cellular and antibody
responses in six different inbred strains of mice regardless of their
haplotype. The antibodies induced were able to recognize the re-
combinant PYRMC-CSP, synthetic peptides representing the
PvCSP repeats, the conserved region I, and native CSP on sporo-
zoites. PVRMC-CSP was also broadly recognized by antibodies
obtained from individuals naturally exposed to P. vivax transmis-
sion. More importantly, both CD4™ and CD8" IFN-y-secreting T
cells and at least one other cytokine (IL-2 or TNF-a) were induced
in all the strains of mice tested. To our knowledge, this is the first
evidence that a multifunctional CD8™ T cell response is elicited by
immunization with a protein vaccine based on P. vivax CSP. This
is also the first vaccine candidate able to induce a balanced cellular
and humoral response necessary for protection against malaria,
which highlights that our results warrant further preclinical stud-
ies in nonhuman primates to evaluate its potential for clinical
development.
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