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ABSTRACT

Summary: Protein identification by mass spectrometry is commonly

accomplished using a peptide sequence matching search algorithm,

whose sensitivity varies inversely with the size of the sequence data-

base and the number of post-translational modifications considered.

We present the Spectrum Identification Machine, a peptide sequence

matching tool that capitalizes on the high-intensity b1-fragment ion

of tandem mass spectra of peptides coupled in solution with pheny-

lisotiocyanate to confidently sequence the first amino acid and ultim-

ately reduce the search space. We demonstrate that in complex

search spaces, a gain of some 120% in sensitivity can be achieved.

Availability: All data generated and the software are freely available

for academic use at http://proteomics.fiocruz.br/software/sim.
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1 INTRODUCTION

One of the goals of shotgun proteomics is to perform large-scale

identification and quantitation of thousands of proteins within

complex protein mixtures (e.g. biological fluids or whole-cell lys-

ates). The strategy comprises protein digestion, followed by pep-

tide chromatographic separation online with tandem mass

spectrometry (MS2) (Washburn et al., 2001). The MS2 data

are then generally identified using a peptide sequence matching

(PSM) tool; examples are SEQUEST (Eng et al., 1994) and, most

recently, Andromeda (Cox et al., 2011). Briefly, given a peptide’s

precursor ion mass and MS2, these algorithms pull out, from a

peptide-sequence database, peptide sequences whose theoretical

mass lies within a given tolerance from the experimental

precursor mass. Following that, theoretical spectra are generated

for all peptide candidates so that some similarity metric, be it

empirical or statistical, can be used to select the most likely can-

didate. Finally, a list of identifications satisfying some false dis-

covery rate (FDR) is obtained by using a statistical filtering tool

such as SEPro (Carvalho et al., 2012).
The sensitivity of a PSM tool varies inversely with the size of

the sequence database and the number of post-translational

modifications considered (Yen et al., 2006). Consequently, stu-

dies addressing complex search spaces are challenging when seen

from a computational perspective. Examples are analysing snake

venoms for identifying naturally occurring peptides (Tashima

et al., 2012) or performing a meta-proteomic study of a microor-

ganism biota (Muth et al., 2012). The former requires not tryp-

sinizing the samples and thus lifts the constraints of a PSM

search engine to only tryptic peptides, which results in an expo-

nential growth of the search space; the latter entails the concat-

enation of hundreds of sequence databases of different

organisms. Nevertheless, the rewards at stake could be discover-

ing a naturally occurring peptide with pharmaceutical properties

or the in-depth comprehension of a system’s biology.
Recently, Sanchez et al. (2010) and Perez-Riverol et al. (2011)

demonstrated the possibility to identify peptides using the

N-terminal residue and accurate precursor mass; for this, they

coupled peptides in solution with phenylisotiocyanate (PITC).

During the activation in the collision cell, these phenylthiocarba-

moyl-derivatized peptides dissociate to specifically yield an in-

tense b1 fragment. This unlocks the possibility to confidently

determine the N-terminal residue in a single mass spectrum.

The authors then demonstrated a peptide identification tool

that considered only the b1 fragment ion mass and the high

mass accuracy of the precursor and used it to identify peptides

in an Escherichia coli tryptic digest. The shortcomings of this

method are in the inability to discriminate between peptides

with close masses and same first residue. As the remaining

MS2 information is not taken into account, the method is

blind to peptides not found in the database but also coinciding

in mass and first residue, and thus prone to such false positives.
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More on these limitations is found in a discussion in the
Supplementary File. In brief, this strategy becomes inapplicable

to studies addressing complex search spaces, where these ‘coin-
cidences’ become increasingly frequent. Notwithstanding this,

the authors demonstrated a way to potentially improve current
PSM algorithms.

2 METHODS

To overcome these limitations, we present the Spectrum Identification

Machine (SIM). SIM capitalizes on PITC-coupled peptides to reduce the

search space by filtering peptide candidates to only those satisfying the

precursor mass and the first amino acid obtained from the high-intensity

b1 fragment. The reduced search space is then queried by comparing

theoretically generated spectra to experimental ones with a similarity

metric that is the dot product between the normalized experimental

and theoretical spectra, multiplied by the number of matched peaks.

This enables the selection of the highest-scoring candidate sequence.

Some other scores, such as DeltaCN from SEQUEST, are also computed;

in fact, the output of SIM is a .SQT file (i.e. it has the SEQUEST output

format), which makes every tool that works with SEQUEST automatic-

ally compatible with SIM.

We benchmarked SIM, with results filtered by SEPro to achieve a 1%

FDR (protein level), on a previously published yeast lysate MudPIT

dataset (Barboza et al., 2011) against the widely adopted Andromeda.

We note that this is a non-PITC-labelled dataset; therefore, this bench-

marking was carried out to verify whether SIM would perform accept-

ably. Search parameters and results are available at the SIM website.

In our hands, Andromeda (v. 1.3.0.5) identified 53 997 MS/MS and

SIM (v. 0.905) 73 639 MS/MS, both constrained by the same FDR of

1% at the protein level. This result demonstrates that SIM does have an

effective algorithm for PSM and has allowed us to focus our efforts on

showing the benefits of activating what we term the PITC logic.

We verify the efficiency of the PITC logic on a PITC-labelled E.coli

extract that was trypsinized and analysed with a 1-h reversed-phase chro-

matography gradient on an Orbitrap Velos acquiring MS2 in higher

energy collisional dissociation (HCD) mode. To verify how the increase

in database complexity affected the results, we generated three peptide

databases, one comprehending only fully tryptic peptides (one

missed-cleavage accepted and no post-translational modifications

(PTMs)), the second having a semi-tryptic specificity and the third with

no enzymatic specificity. This generated search spaces comprising

566070, 11 217794 and 63102 231 peptides, respectively. Results were

filtered with SEPro to converge to a list of 1% FDR.

3 RESULTS

Search results with and without the PITC logic are presented
in Figure 1. An example of a PITC peptide tandem mass spec-

trum is found in Supplementary Figure S1. Further comparisons
to the method from Sanchez et al., (2010) are provided in the

Supplementary File.

4 DISCUSSION AND CONCLUSIONS

We have searched an E.coli tryptic digest labelled with PITC

using SIM. We performed a proof of concept by testing the

efficiency of our new PITC logic under increasing complexities,
i.e. from tryptic to semi-tryptic to fully tryptic, and obtained

an increase in sensitivity of some 120% in a large search space.
As such, the SIM-PITC approach is recommended when ad-

dressing proteomic studies with complex search spaces. SIM

has a graphical user interface to provide a user-friendly experi-
ence, is multiplatform and can be executed in cluster environ-

ments. SIM is integrated into PatternLab for proteomics
(Carvalho et al., 2008, 2010), which makes available an arsenal
of tools for quantitative and differential proteomics.
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Fig. 1. Number of identified spectra with and without activating SIM’s

PITC logic
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