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Abstract

Hantavirus Pulmonary Syndrome (HPS) is a disease caused by Hantavirus, which are neg-

ative-sense RNA viruses in the family Bunyaviridae that are highly virulent to humans.

Numerous factors modify risk of Hantavirus transmission and consequent HPS risk.

Human-driven landscape change can foster transmission risk by increasing numbers of

habitat generalist rodent species that serve as the principal reservoir host. Climate can also

affect rodent population dynamics and Hantavirus survival, and a number of social factors

can influence probability of HPS transmission to humans. Evaluating contributions of these

factors to HPS risk may enable predictions of future outbreaks, and is critical to develop-

ment of effective public health strategies. Here we rely on a Bayesian model to quantify

associations between annual HPS incidence across the state of São Paulo, Brazil (1993–

2012) and climate variables (annual precipitation, annual mean temperature), landscape

structure metrics (proportion of native habitat cover, number of forest fragments, proportion

of area planted with sugarcane), and social factors (number of men older than 14 years and

Human Development Index). We built separate models for the main two biomes of the state

(cerrado and Atlantic forest). In both biomes Hantavirus risk increased with proportion of

land cultivated for sugarcane and HDI, but proportion of forest cover, annual mean temper-

ature, and population at risk also showed positive relationships in the Atlantic forest. Our

analysis provides the first evidence that social, landscape, and climate factors are associ-

ated with HPS incidence in the Neotropics. Our risk map can be used to support the adop-

tion of preventive measures and optimize the allocation of resources to avoid disease

propagation, especially in municipalities that show medium to high HPS risk (> 5% of risk),

and aimed at sugarcane workers, minimizing the risk of future HPS outbreaks.
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Introduction

Multiple lines of evidence suggest that ecological and anthropogenic factors play important
roles in elevating incidence of diseases around the world [1]. Landscape composition (e.g., rela-
tive abundance of landscape units) and configuration (e.g., spatial arrangement of landscape
units) may affect disease incidence by altering interactions, abundance, and movements of
hosts, vectors, and people, although the effects of these landscape variables on disease dynamics
are understood only for a handful of well-studied cases [2]. For instance, in the Amazon Basin
and East Africa, deforestation increases standing water and sunlight, and enhances breeding
success of somemosquito species, which can increase risk of malaria transmission [3]. Habitat
fragmentation and decreasing habitat patch size increase the risk of Lyme disease transmission
in North America [4; 5] and Hantavirus Cardiopulmonary Syndrome (HPS) transmission risk
in Panamá [6].

HPS ranks among the major emerging diseases of the last century, and is expected to remain
a public health threat into the future [7]. It was first recognized in May 1993 in the Four Cor-
ners region of the US [8], and a fewmonths later, in the city of Juquitiba, in the state of São
Paulo, Brazil [9]. Rodents in the family Cricetidae are the primary hosts of HPS in Brazil [10;
11], a virus (family Bunyaviridae) that causes two syndromes in humans: HPS in the Americas,
and hemorrhagic fever with renal syndrome (HFRS) in Eurasia and Africa [11]. Transmission
to humans occurs via inhalation of aerosolized virus particles derived from the urine, saliva,
and feces of infected rodents [12; 13]. HPS is associated with high lethality rates (35% in the
US; 41% in Brazil; 38% in Canada) [14; 9; 15].

Currently, most studies support the hypothesis that forest loss, forest fragmentation, and
anthropogenic landscape change, as consequences of natural habitats conversion to agricul-
tural areas increases prevalence of Hantavirus in reservoir species [16; 6; 17; 18]. This effect
occurs because these species are generally habitat generalists [19; 20] that can tolerate and
adapt to ecological changes [21], being favored in disturbed environments [6; 17] and becom-
ing abundant in altered landscapes [19; 6; 22; 23]. In addition, greater population densities of
these reservoir species increase intraspecific encounters and consequent Hantavirus transmis-
sion [20; 16].

Climate can also influence host rodent population abundance and Hantavirus transmission
dynamics. Several studies in North America have uncovered positive associations between pre-
cipitation, population size of rodent hosts, and Hantavirus prevalence [24; 10; 25]. High precip-
itation increases vegetation growth, boosting rodent densities and enhancing probability of
human-rodent encounters and consequent Hantavirus transmission [26; 27]. Temperature
may also affect reproduction and survival rates of small rodents, as well as the time that the
virus remains infectious in the environment [28]; these effects influence transmission risk,
although their direction is not entirely clear [29].

Additionally, several socio-economicvariables can also influence disease transmission. HPS
epidemiology is complex, involves many factors, and the distribution and abundance of the res-
ervoir species does not necessarily imply transmission of the disease. Agricultural practices
(such as mechanization, use of personal protective equipment and adequate infrastructure to
handle and stock production), public sanitation, types of preventive measures used, education,
behavior, and economic conditions also influenceHPS transmission [30].

The relationship between landscape, climate, and social factors associated with Hantavirus
transmission remains unexamined, particularly in Latin America. Evaluating the relative con-
tributions of these factors to Hantavirus transmission can enable predictions of future out-
breaks, and can be critical to design effective surveillance, control, and mitigation programs.
Here, we rely on a Bayesian model to fill this research gap for the state of São Paulo, Brazil: we
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quantify associations betweenHPS incidence and the size of risk populations (e.g., number of
rural men older than 14 years) and potential drivers including landscape structure (e.g., per-
centage of landscape units and fragmentation of native habitats), climate (e.g. temperature,
precipitation), and social factors (Human Development Index, HDI dismembered, poverty and
Gini Index). We make the following predictions:

1. HPS incidence will be greater in municipalities with a lower proportion of native habitat
cover, a large proportion of agriculture and habitat edge areas, and with a large number of
fragments, becauseHPS reservoir species are habitat generalist which increase in abundance
in edge habitats and in agricultural landscapes;

2. HPS incidence will be greater at higher precipitation, once it affects rodent population
dynamics, increasing their abundance;

3. HPS incidence will be greater in municipalities with lower human development index
(HDI), and with a large number of population at risk, since economic and social conditions
can also affect HPS transmission, and the bigger the number of people in contact with
infected rodents the greater is the chance of HPS transmission.We then use the results to
identify high-risk areas for HPS incidence across the state of São Paulo.

Materials and Methods

Study Area

We focused analyses in São Paulo, Brazil, including both the cerrado and Atlantic forest biomes
(Fig 1), in southeastern Brazil, with an area of ~248,210 km2, and a population of ~42 million
(21.5% of Brazil’s population); [31]. At present, only 13% of the state of São Paulo is still cov-
ered by remnants of its original biomes (cerrado and Atlantic forest), with the remaining area
being covered by agriculture, especially a mixture of sugarcane plantations [32], pasture [33],
and urban landscapes. Cerrado covered originally 33% of the state [34], but now almost 81% of
its area is converted to anthropic uses [34]. It comprises a mosaic of vegetation types ranging
from savanna with sparse shrubs and small trees to almost-closedwoodland [35]. The region
sees rainy summers and dry winters, with annual precipitation of 1390 mm [35]. The Atlantic
forest originally covered ~69% of the state [36]. Only 13.9% of the original vegetation remains,
and is now highly fragmented [36]. These areas are characterized by hot and rainy summer,
without a defined dry season [37]; annual precipitation ranges 1000–2200 mm [38].

Disease and social data

HPS incidence data are collected at the municipality level, so we treated the 645 municipalities
within São Paulo state as our sampling units. The number of reportedHPS cases in each
municipality per year from 1993 to 2012 was extracted from the website of the Center for Epi-
demiological Surveillanceof the State of São Paulo (CVE-SP) (1993–2012), and the Health Por-
tal SUS (http://portal.saude.gov.br/portal/saude/profissional/area.cfm?id_area=1558).The
CVE-SP compiles this information, once the cases of Hantavirus infection are of mandatory
notification to the local health authorities in Brazil. The data is provided by every hospital in
the state, once the patients' living address is a confidential information. Therefore CVE consid-
ers all HPS cases confirmed by laboratory analysis (antibody positive) that were recorded in
any hospital presented in each municipality of São Paulo state. Since the majority of the munic-
ipalities had 0 (98.39%) or 1 case per year (1.61%), with the maximum of 4 cases per municipal-
ity per year, we transformed the data to binary, reflecting presence versus absence of HPS.
Then, we modeled the probability of incidence of HPS in each municipality based on the
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reported cases from 1993 to 2012 and covariates reflecting social, climatic and landscape condi-
tion describedon the next paragraphs. In that way, the probability of HPS risk was defined as
the probability of an HPS infection to occur in a municipality.

Epidemiologic data indicate that more than 70% of HPS-infected people was working or liv-
ing in agricultural areas, and ~93% were men over the age of 20 [39; 40; 41]. Because the avail-
able data are relatively coarse with respect to age distribution, we used the number of rural
men older than 14 years in each municipality as the population at risk for HPS. This informa-
tion was extracted from the National Institute of Geography and Statistics (IBGE)website
(www.ibge.gov.br), and was available only for 1996 and 2006. Since we wanted to model the
incidence of HPS from 1993 to 2012, we thus used the 1996 data as covariates to predict disease
incidence for 1993–2001, and 2006 data to predict incidence for 2002–2012.

Since socio-economicdevelopment can influenceHPS transmission, Human Development
Index (HDI), HDI elements including life expectancy, income, and education, Gini index and
poverty were tested for association with HPS incidence across São Paulo. The Human Develop-
ment Index (HDI) is a summarymeasure of average achievement in key dimensions of human

Fig 1. Hantavirus incidence between 1993 and 2012 across the 645 municipalities of the state of Sao Paulo, and cerrado (in orange) and

Atlantic forest (in green) delimitation in the state.

doi:10.1371/journal.pone.0163459.g001
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development and socioeconomic status of the populations, and includes elements of life expec-
tancy, income (GDP/capita), and education. HDI is thus a measure of human development
and poverty, and can be used as a proxy of the socio-economic factors (education, poverty and
health) that influenceHPS risk [42]. HDI data at the municipality level were extracted from
IBGE (www.ibge.gov.br) website, with data available for 1991, 2000, and 2010. We usedHDI
data from 1991 as covariates to predict incidence for 1993–1998, data from 2000 to predict
incidence for 1999–2005, and data from 2010 to predict incidence for 2006–2012. HDI ele-
ments (e.g., life expectancy, income, and education) were extracted from United Nations
Development Programme (UNDP) (http://www.pnud.org.br/arquivos/ranking-idhm-2010.
pdf), with data available only for 2010. Gini index is used to measure inequality, and together
with poverty, was extracted from IBGE (www.ibge.gov.br) being available only for 2003. There-
fore, we usedHDI elements data from 2010 and Gini and poverty data from 2003 as covariates
to predict incidence for the entire period (1993–2012).

Landscape composition and configuration metrics

We used the São Paulo state forest inventory map (http://www.iflorestal.sp.gov.br) for the
years 2000 and 2010 to calculate landscape composition and configurationmetrics for each
municipality. This native vegetation inventory covers two dates in our study period (2000 and
2010), and was generated at a 1:50.000 scale, with a minimummapped area of 2.5 ha, being
able to identify small fragments, which are very common in the São Paulo state. Additionally,
using the IF inventory made possible to use information with same spatial resolution and map-
ping method for both cerrado and Atlantic Forest biome in the state. Native vegetation cover
aggregated both Atlantic Forest and cerrado remnants, and we considered each municipality as
individual landscapes for analysis. Landscape composition was measured considering the rela-
tive abundance of each landscape unit (percentage of native vegetation cover—forest and cer-
rado; and sugarcane, pasture and corn), while landscape configuration refers to the degree of
fragmentation of native vegetation cover types (forest and cerrado),measured by the number
of habitat fragments (e.g., number of forest or cerrado patches in a landscape) and density of
habitat edge (e.g., total length of habitat/non-habitat edge per area of landscape). A municipal-
ity was considered as part of the Atlantic Forest or cerrado biome depending on the percentage
of its area that overlapped the distribution of these biomes (see Statistical analyses).

All landscape analyses were done in ArcGis 10.0 and Fragstats 4.2. We usedmetrics
extracted from the 2000 map as covariates to model incidence for 1993–2001, and metrics
extracted from the 2010 map as covariates for period 2002–2012.

The main agricultural land uses in São Paulo—sugarcane [43], pasture [44], and corn [16]—
result in habitats favorable to generalist rodent species achieving high abundances [45]. Some of
these land uses have a relatively high temporal heterogeneity (e.g., massive biomass production
from planting to harvest in a fewmonths or years, providing considerable amounts of high-
energy food) [43; 45; 46; 47]. Small rodents take advantage of this tremendous food supply,
increasing their abundances [47], whichmay influenceHantavirus incidence [48]. Therefore, we
also used data for these agricultural land uses, to test for associations with Hantavirus incidence.
We obtained annual data from the Agricultural Census of the Institute of Agricultural Economics
(www.iea.sp.gov.br) to use the proportion of sugarcane, pasture, and corn in each municipality as
covariates to model annual disease incidence for 1993–2012.

Climatic variables

Meteorological data used were obtained from the International Research Institute for Climate
and Society (IRI) Data Library (http://iridl.ldeo.columbia.edu/index.html). Gridded land
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surface temperature data were obtained from National Centers for Environmental Prediction
(NOAA NCEP) from combined GHCN and CAMS station data at 0.5° spatial resolution, and
extracted for each municipality (as average value across the municipality). The monthly data
[49] were used to calculate annual mean, minimum, and maximum, and seasonal mean, mini-
mum, and maximum temperature values, for each municipality over 1993–2012.

Precipitation data were obtained from the University of California Santa Barbara from the Cli-
mate Hazards Group Infrared Precipitation with Stations (CHIRPS) data set, with a spatial reso-
lution of 0.05°, and extracted for each municipality (as average value across the municipality).
The 10-day averages data [50]; were used annual mean, minimum,maximum, and total, and sea-
sonal mean, minimum, and maximum, precipitation for each municipality for 1993–2012.

Statistical analysis

Hantavirus shows high host specificity. Therefore, as expected, for each Brazilian region there
are different reservoir species hosting distinct virus strains [7]. Although some geographic
overlap occurs [51], Araraquara virus (ARAV) is the dominant pathogenic Hantavirus in cer-
rado, and is commonly associated with HPS cases there [51; 52], whereas Juquitiba (JUQV) is
the dominant pathogenic Hantavirus in Atlantic forest [51]. Given the geographic distribution
of the two viruses, and the assumption that Oligoryzomys nigripes is the chief reservoir for
human HPS cases in Atlantic forest [53] and Necromys lasiurus is the reservoir in cerrado,
Hantavirus transmission risk was modeled separately in the two biomes. Municipalities were
considered as cerrado or Atlantic forest if>50% of their surface area fell inside one or the
other biome. Biome distribution was obtained from IBGE (www.ibge.gov.br).

To reduce numbers of predictor variables we fitted and compared generalized linear mixed
models (see further detail on methods and results of exploratory analyses in S1 to S3 Tables).
We then fitted a Bayesian model containing only 7 predictor variables as fixed covariates: pro-
portion of sugarcane, proportion of native vegetation cover, number of native vegetation
patches, HDI, mean annual temperature (°C), total annual precipitation (mm), and rural male
population>14 years old (S4 Table). All variables included in the model had correlations<0.4
relative to other variables. Non-linear correlations between variables were assessed visually;
when necessary, a quadratic form was fit to covariates and compared with linear relationships
using the Deviation Information Criterion (Bayesian method for model comparison; [54]). In
every case, the linear form provided a better fit to the data. Percent of native vegetation cover
and annual precipitation were log-transformed prior to analysis.

Municipality was included as a random effect to account for differences among administra-
tive units not captured in the fixed covariates. To facilitate interpretation, all estimated parame-
ters were standardized, centered on their means, and divided by two standard deviations [55].

All priors were assigned as uninformative distributions.We used the rjags package in R, and
examinedmodel convergence and performance via Gelman-Rubin diagnostics. Parameters
were considered significant if the 95% quantiles of their distribution did not overlap 0. We also
calculated Bayesian p-values to examine discrepancies betweenmeans of simulated and real
data (e.g., values close to 0.5 represent a goodmodel; [56], and R2 to examine the square of the
correlation between true and predicted outcomes [57]. As HPS can be considered as a rare
event in the state of São Paulo (1% of success) we did not validate our model by test-training
procedure (e.g., removing a random part of data points to fit the model to the remaining data),
as it was necessary to have all data available for calibrating the model. Therefore, we are using
Bayesian p-values and R2 as measures of validation.

We tested HPS incidence and model residuals for bothmodels, constructed for Atlantic forest
and cerrado biomes, for spatial autocorrelation, by calculatingMoran’s I. For this analysis we
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used the spatial contiguity matrix based on the Queen´s case neighborhoodrelation and treat
each year, from 1993 to 2012, separately. This test is commonly used and accepted as a fair evalu-
ation of spatial autocorrelation and dependence [58], especially in disease studies [59, 60, 61]. For
bothmodels and for HPS incidence,Moran´s I results showed no spatial autocorrelation (see S5
and S6 Tables) for the majority of years, justifying our use of a non-spatial model.

Mapping is a primary goal in spatial epidemiology [62], as it allows immediate visualization
of the extent and magnitude of public health threats [63]. We usedmodel results to generate a
map of Hantavirus risk areas for the state of São Paulo. Risk was defined as the probability of
an HPS infection to occur in a municipality. The mean and coefficient of variation of simulated
results among years were summarized for each municipality, and imported into ArcGIS 10.0
for visualization.

A t-test or an one-way analysis of variance (ANOVA), followed by Tukey’s Multiple Com-
parison Test, were performed to check whether significant differences existed in the final pre-
dictor variables between available years.

Results

During 1993–2012, 207 HPS cases were reported for the state, with increasing numbers in the
last 10 years (Fig 2). Of the total, 57 cases were reported from the cerrado region (161 munici-
palities; 0.35 cases per municipality) whereas 150 (484 municipalities; 0.30 cases per municipal-
ity) in the Atlantic forest region. The largest number of HPS cases are concentrated in the

Fig 2. Reported HPS cases between 1993 and 2012 in the cerrado and Atlantic forest regions of the

state of São Paulo.

doi:10.1371/journal.pone.0163459.g002
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northeastern region, followed by the western region, although there are cases statewide (Fig 1).
Increases in HPS incidence were particularlymarked in the 2000s, raising was 250% if com-
pared to the number of cases in the 1990s. Only in 2005 we can observe a decrease in the num-
ber of reported cases especially for cerrado region, but after this period it augment further,
reaching a peak of 28 cases only in 2010 (Fig 2).

The majority of the factors considered in our model exhibited significant trends over the
study period. Proportion of native vegetation cover increased between 2000 and 2010 for both
cerrado (8.10 to 11.38%) and Atlantic forest (12.16 to 16.20%) municipalities, despite conco-
mittant increases in proportion of sugarcane cultivated in these regions over the same period
(Table 1). The average number of native vegetation patches also increased in both cerrado (208
to 557) and Atlantic forest (149 to 413) regions (Table 1). HDI and the size of the population at
risk (e.g., males> 14 yrs old) also increased over the years for which data were available in
both regions (Table 2); annual mean temperature and annual precipitation did not show any
significant trend (S7 Table).

Overall, our statistical models fit well to the data (cerrado:R2 = 0.19; Bayesian p-
value = 0.49; Atlantic forest: R2 = 0.23; Bayesian p-value = 0.50), and showed significant effects
of landscape, climate, and social variables on Hantavirus infection risk, as is described below in
detail.

In cerrado, probability of Hantavirus infection risk was significant and positively related to
HDI and to proportion of municipality occupied by sugarcane plantation (Fig 3). Number of
patches and annual mean temperature also showed a positive relationships, but they were not
significant, with greater risk of HPS infection in more fragmented habitats and in years with
higher annual mean temperatures (Fig 3).

For Atlantic forest, population at risk, HDI, and proportion of sugarcane were all signifi-
cantly positively associated with Hantavirus infection risk (Fig 3). Annual mean temperature
and number of patches had marginally significant positive relationships to Hantavirus infec-
tion, with a higher chance of Hantavirus infection in municipalities with higher temperatures
and more fragmented forests.

Using results from the statistical models, we mapped HPS risk across the state. Overall, 6%
of the state was classified as medium (5–10%) or high (> 10%) risk category for HPS infection,
and 94% was indicated as low risk (<5%) category (Fig 4A). All municipalities with a medium
to high risk of Hantavirus infection are shown with black outlines in the risk map and represent
municipalities where preventive measures should be allocated.

Not surprisingly, municipalities with highest mean risk were those that already had many
HPS cases (Fig 4A). Municipalities in the northeastern region have particularly high mean risk
(up to 46%), followed by somemunicipalities of the east, close to the Serra doMar (in Atlantic

Table 1. Average and range values of percent of sugarcane cultivated, percent of native vegetation cover, and number of patches for the munici-

palities of cerrado and Atlantic forest regions, for the years 2000 and 2010.

Cerrado

Year Native vegetation cover Sugarcane Number of patches

2000 8.10 (0.65–79.24)*** 15.44 (0–86.39)*** 208.39 (11–1869)***

2010 11.38 (1.9–82.34) 27.60 (0–81.72) 557.12 (31–3624)

Atlantic forest

2000 12.16 (0.17–89.3)*** 11.57 (0–91.6)*** 149.84 (2–925)***

2010 16.20 (0.06–91.8) 22.95 (0–97.85) 413.36 (1–2611)

*** represents significant difference among years.

doi:10.1371/journal.pone.0163459.t001
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forest region) and in the west of the state, with a mean risk up to 21%. The municipalities of
São Carlos, Ribeirão Preto, Pontal, Sertãozinhoand Araraquara, located in the northeast of the
state (Fig 4A), are the ones that present a very large mean risk for Hantavirus infection
(> 20%). The coefficient of variation of Hantavirus infection risk across years (Fig 4B) is
smaller in the eastern part of the state, where habitat cover is relatively high (S1A Fig). Based
on our model, a large number of municipalities that have not registered HPS infection have
HPS risk of up to 2.5% (Fig 4A). At the same time, some municipalities that had HPS cases
have a small risk of Hantavirus infection (8% of the state). Maps with the minimum and maxi-
mum risk are shown in S2 Fig.

Discussion

This study is the first to link landscape structure, climate, and social variables to Hantavirus
infection risk in the Neotropics. Our model identified>6% of the state of São Paulo as present-
ing medium-to-high risk of Hantavirus transmission (39 municipalities). This disease that has
so far killed at least 99 people (47.8% lethality rate) in the state, and 637 people in Brazil, since

Table 2. Average and range values of HDI (Human Development Index) and Population at risk (rural men older than fourteen years) for the munic-

ipalities of cerrado and Atlantic forest regions, for the years that the data is available.

Human Development Index Population at Risk

Year cerrado Atlantic forest Year Cerrado Atlantic forest

1991 0.50 (0.31–0.64)*** 0.49 (0.23–0.69)*** 1996 1209 (4–4610) 993 (2–7473)

2000 0.65 (0.5–0.74)*** 0.64 (0.46–0.82)*** 2006 1327 (10–7085) 1052 (1–7549)

2010 0.74 (0.65–0.82) 0.73 (0.63–0.86)

*** represents significant difference among years.

doi:10.1371/journal.pone.0163459.t002

Fig 3. Parameter estimates with mean (black dot) and credible intervals (2.5–97.5%) of predictors of HPS risk for cerrado and Atlantic

forest region. Habitat cover = percentage of native vegetation cover; N˚ Patches = number of native vegetation fragments; Precipitation = total

annual precipitation; Temperature = mean annual temperature; Pop at Risk = population at risk, i.e. rural men aged over 14 years;

HDI = Human Development Index; Sugarcane = percentage of municipality occupied by sugar cane plantations.

doi:10.1371/journal.pone.0163459.g003
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1993 [9]. A key finding of our study is that the extent of sugarcane plantations was the most
important predictor of Hantavirus infection, and this relationship held in both the cerrado and
the Atlantic forest. Increases in HPS incidence were noted in the 2000s, when high oil prices
led to substantial expansion of sugarcane cultivation in the state [64].

Fig 4. Map of Hantavirus infection probability (%) (A) mean (B) and coefficient of variation (B) among

years across the state of São Paulo. Black dots depict number of reported cases between 1993 and 2012.

Municipalities with no symbol means no reported cases of HPS. Black outlines indicate municipalities with

medium to high risk (> 5%) of Hantavirus infection and where preventive effort should be allocated.

doi:10.1371/journal.pone.0163459.g004
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Sugarcane plantations support greater abundances of rodents than other ecosystems,
whether natural or agricultural [16; 43; 65]. Brazil is the largest producer (~ 490 x 106 tons/year
in 2011–2012) and exporter of sugarcane in the world [66], with most of this production
(~76%) in São Paulo [67]. Yields in these plantations can reach 120 tons/year/ha [68], serving
as a readily available source of food and cover for rodents [46]. Moreover, in recent years sugar-
cane cultivation has become increasingly mechanized, as a result of legislation limiting burning
prior to harvest (Law n°. 11.241, 19 September, 2002). These shifts in predominant harvest
modemay have reduced rodent mortality (large numbers previously were killed by burning),
increasing population sizes, and consequently augmenting Hantavirus infection risk [41; 65;
47]. Sugarcane cultivation is projected to increase still further in coming decades [69], with
implications for HPS risk across São Paulo and neighboring states in southern and central
Brazil.

Surprisingly, high HDI was associated with increasedHPS incidences in both regions. This
result was unexpected because a number of studies have found no relationship betweenHanta-
virus infection and socio-economic status [40; 41]; others studies have found poor sanitary and
living conditions to be positively associated with incidence [13; 70]. For São Paulo, however,
the positive association betweenHDI and HPS risk may reflect better socioeconomiccondi-
tions in municipalities where sugarcane is dominant economically: sugarcane municipalities
have, on average, stronger social welfare indicators [71; 72], with this sector contributing to the
concentration of income [71], even outperforming the greater São Paulo Metropolitan Region
[71].

HPS studies elsewhere have found that most individuals affected by HPS participate in agri-
cultural or forestry activities [30; 40; 41; 42; 72]. This connection exists becauseHPS transmis-
sion requires contact between humans and aerosolized excreta of infected rodents, which is
most likely in this demographic group. This pattern was clear for the Atlantic forest, which
showed a positive relationship between population at risk (number of males older than 14
years old) and HPS incidence; however, this relationship did not hold for the cerrado. Another
study in the cerrado [73] also failed to uncover an association betweenHantavirus infection
and the size of rural populations. One possible reason for absence of such associationmay be
that cerradomunicipalities have a longer history of sugarcane cultivation and more land pro-
portionally cultivated for sugarcane than Atlantic forest municipalities (S1B Fig); this crop also
brings large numbers of temporary workers from other states who do not end up in the official
population statistics [74], which may have reduced the strength of any association between the
size of the population at risk and HPS incidence. Another possibility is that some Atlantic for-
est municipalities have taken longer to achieve large-scalemechanization (e.g., in 2007, regions
such as Pindamonhangaba and Guaratinguetá still had 0% mechanization; [75]), leading to
greater transmission probabilities for workers in this biome. Workers in unmechanized planta-
tions may have greater probability of contact with rodent excreta, as unmechanized plantations
use workers in all steps of the production process, whereas in mechanized systems they work
only in some steps of the process [75].

In Atlantic forest, our model showed marginal positive associations of fragmentation with
Hantavirus incidence, supporting studies elsewhere [6; 17; 76], whereas in cerrado this associa-
tion was not significant. The same result was found for proportion of habitat cover. In tropical
regions HPS risk is expected to be higher in areas with a small proportion of habitat cover [6;
17], which contrasts with our results for Atlantic forest. For cerrado, the proportion of habitat
cover had no association with HPS risk. We hypothesize that this may reflect the fact that most
of municipalities within Atlantic forest have a small amount of habitat cover (~8.6%), and are
composed of second-growth forests in early to medium stages of succession [77]. Both hantavi-
rus reservoir rodent species in São Paulo (N. lasiurus and O. nigripes) are habitat generalists
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[43; 78]. While O. nigripes is known to survive in small and isolated forest remnants [23; 79],
and prefers early successional stages inside the forest [78; 79; 80], becomingmore abundant in
these landscapes, N. lasiurus seems to prefer less dense and open areas [43; 81], occurring in
disturbed and open habitats [78].

High annual mean temperature was marginally associated with greater HPS risk in the
Atlantic forest. For cerrado, this association was not significant. This result supports findings
elsewhere [26; 82; 83; 84]. Temperature can affect vegetation growth [29] and the survival rate
of rodents [85], with mild temperatures (10–25°C) beingmost favorable for rodent breeding
[86]. Additionally, reservoir rodents normally exhibit a peak in hantavirus infection during
warmer months [87; 88; 89; 90], probably because high temperature leads to greater aerosoliza-
tion of the virus and higher rates of inhalation by both humans and rodents [12; 13]. At present
there are no data available on the effects of temperature on HPS virus survival, but laboratory
experiments found that Puumala viruses (aetiological agent of Hantavirus infection inWestern
Europe) can remain infectious for longer (i.e.12 to 15 days) at room temperature (23°C; 73°F)
[91], losing their viability if kept at 37°C [91]. The average temperature for São Paulo munici-
palities, from 1993 to 2012 was 22.9° C, with maximum temperature of 27° C, while the highest
HPS infection risks were found between 22.5°C and 25°C, intermediate conditions for São
Paulo state. This temperature range would be ideal for virus survival in nature, if JUQV and
ARAV virus conditions are the same as for the Puumala virus. Studies conducted over shorter
spatial scales than the work presented here would be necessary to link climatic factors to HPS
incidence.

There was no effect of precipitation on Hantavirus risk, even in the cerrado, which has a
marked dry season [92]. The association between precipitation and Hantavirus infection is still
controversial, with no association in some studies [83; 93], negative effects in others [85], while
in others increased rainfall in fall to spring have resulted in higher HPS transmission [26; 27],
and in rodent outbreaks [24]. These studies, however, were performed in arid and semi-arid
regions (85–100 mm precipitation per year) [24; 94], which show an increase in both rodent
richness and abundance in response to high precipitation [24; 94]. Since our study was per-
formed in a tropical region where annual mean precipitation is considerably high, the effects of
this climatic variable on rodent resources and population dynamics may not be important.

According to our risk map, a large number of municipalities that had no reported cases nev-
ertheless have some HPS risk (0.9–4.9%). Although this risk may seem small, the combination
of lack of effective prevention and treatment options (with high lethality makes HPS a serious
public health risk. Additionally, as rare events (~1% of events) and undiagnosed asymptomatic
infections that are typically not reported to official statistics [70], these numbers may be under-
estimated. This situation is of special concern in view of the high variation of infection risk in
several municipalities that had no HPS infections reported. Due to its high lethality, an infec-
tion risk up to 5% should be considered as a medium risk, and municipalities with risk higher
than this value or with very high coefficient of variation should be included in preventive mea-
sures programs. Northeastern municipalities showed the highest risk across the state (up to
46%), probably because sugarcane cultivation is intense in that region: it is essential to imple-
ment awareness campaigns and reinforce diagnostic protocols to detect HPS infections in these
municipalities, especially in sugarcane properties. Simple, low cost measures such as use of per-
sonal protective equipment in any environment where wild rodent excreta is frequently pres-
ent, rodent control and proper clean-up of their excrement in human dwellings, seal homes
against the entry of rodents, and apply other rodent-proofing techniques, may go a long way
toward reducing HPS incidence and human mortality.
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