SUPPORTING INFORMATION for

7,7-Dimethylaporphine and Other Alkaloids from the bark of Guatteria friesiana

Emmanoel V. Costa, † Maria Lúcia B. Pinheiro,‡ Beatriz Helena L. N. S. Maia,‡ Francisco A. Marques,§ Ana Lúcia T. G. Ruiz,§ Gabriela M. Marchetti,§ João Ernesto de Carvalho,§ Milena B. P. Soares,∥ Cinara O. S. Costa,∥ Alexandre F. C. Galvão,∥ Norberto P. Lopes,‖ Hector H. F. Koolen,¶ Daniel P. Bezerra,¶ and Andersson Barison‡

† Department of Chemistry, Federal University of Amazonas, Manaus 69077-000, Brazil
‡ Department of Chemistry, Federal University of Paraná, Curitiba 81531-990, Brazil
§ Chemical, Biological and Agricultural Pluridisciplinary Research Center/CPQBA, University of Campinas, Paulínia 13083-970, Brazil
∥ Gonçalo Moniz Research Center, Oswaldo Cruz Foundation/CPqGM-FIOCRUZ, Salvador 40296-710, Brazil
¶ Biotechnology and Cell Therapy Center, São Rafael Hospital, Salvador 41253-190, Brazil
‖ Department of Chemistry and Physics, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil.
¶ DeMpSter Mass Spectrometry Group, Amazonas State University, Manaus 69050-010, Brazil
Figure S1. 1H NMR spectrum of alkaloid 1 in CDCl$_3$ at 400 MHz.
Figure S2. Enlargement of 1H NMR spectrum of alkaloid 1 in CDCl$_3$ at 400 MHz.
Figure S3. Enlargement of 1H NMR spectrum of alkaloid 1 in CDCl$_3$ at 400 MHz.
Figure S4. 13C NMR spectrum of alkaloid 1 in CDCl$_3$ at 100 MHz.
Figure S5. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 1 in CDCl$_3$ at 400 and 100 MHz.
Figure S6. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 1 in CDCl$_3$ at 400 and 100 MHz.
Figure S7. HR-ESI(+)-MS spectrum of alkaloid 1 (m/z 322.1443 [M+H]+).
Figure S8. 1H NMR spectrum of alkaloid 2 in CDCl$_3$ at 400 MHz.
Figure S9. 13C NMR spectrum of alkaloid 2 in CDCl$_3$ at 100 MHz.
Figure S10. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 2 in CDCl$_3$ at 400 and 100 MHz.
Figure S11. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 2 in CDCl$_3$ at 400 and 100 MHz.
Figure S12. HR-ESI(+) -MS spectrum of alkaloid 2 (m/z 338.1749 [M+H]⁺).
Figure S13. 1H NMR spectrum of alkaloid 3 in CDCl$_3$ at 400 MHz.
Figure S14. 13C NMR spectrum of alkaloid 3 in CDCl$_3$ at 100 MHz.
Figure S15. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 3 in CDCl$_3$ at 400 and 100 MHz.
Figure S16. $^1\text{H}-^{13}\text{C}$ long-range correlation map from HMBC NMR experiment of alkaloid 3 in CDCl$_3$ at 400 and 100 MHz.
Figure S17. HR-ESI(+)−MS spectrum of alkaloid 3 (m/z 368.1862 [M+H]$^+$).
Figure S18. 1H NMR spectrum of alkaloid 4 in CDCl$_3$ at 400 MHz.
Figure S19. 13C NMR spectrum of alkaloid 4 in CDCl$_3$ at 100 MHz.
Figure S20. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 4 in CDCl$_3$ at 400 and 100 MHz.
Figure S21. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 4 in CDCl$_3$ at 400 and 100 MHz.
Figure S22. HR-ESI(+) - MS spectrum of alkaloid 4 (m/z 352.1549 [M+H]^+).
Figure S23. 1H NMR spectrum of alkaloid 5 in CDCl$_3$ at 400 MHz.
Figure S24. 13C NMR spectrum of alkaloid 5 in CDCl$_3$ at 100 MHz.
Figure S25. 1H-$_{13}$C one-bond correlation map from HSQC NMR experiment of alkaloid 5 in CDCl$_3$ at 400 and 100 MHz.
Figure S26. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 5 in CDCl$_3$ at 400 and 100 MHz.
Figure S27. NOE experiments of alkaloid 5 in CDCl₃ at 400 MHz.
Figure S28. HR-ESI(+)−MS spectrum of alkaloid 5 (m/z 324.1609 [M+H]^+).
Figure S29. 1H NMR spectrum of alkaloid 6 in CDCl$_3$ at 400 MHz.
Figure S30. 13C NMR spectrum of alkaloid 6 in CDCl$_3$ at 100 MHz.
Figure S31. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 6 in CDCl$_3$ at 400 and 100 MHz.
Figure S32. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 6 in CDCl$_3$ at 400 and 100 MHz.
Figure S33. NOE experiments of alkaloid 6 in CDCl₃ at 400 MHz.
Figure S34. HR-ESI(+) MS spectrum of alkaloid 6 (m/z 354.1706 [M+H]^+).
Figure S35. 1H NMR spectrum of alkaloid 7 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S36. 13C NMR spectrum of alkaloid 7 in CDCl$_3$ + drops of CD$_3$OD at 100 MHz.
Figure S37. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 7 in
CDCl$_3$ + drops of CD$_3$OD at 400 and 100 MHz.
Figure S38. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 7 in CDCl$_3$ + drops of CD$_3$OD at 400 and 100 MHz.
Figure S39. NOE experiments of alkaloid 7 in CDCl₃ + drops of CD₃OD at 400 and 100 MHz.
Figure S40. HR-ESI(+)–MS spectrum of alkaloid 7 (m/z 354.1707 [M+H]^+).
Figure S41. 1H NMR spectrum of alkaloid 8 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S42. 1H NMR spectrum of alkaloid 8 in CDCl$_3$ + drops of CD$_3$OD at 100 MHz.
Figure S43. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 8 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S44. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 8 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S45. NOE experiments of alkaloid 8 in CDCl$_3$ + drops of CD$_3$OD at 400 and 100 MHz.
Figure S46. HR-ESI(+)–MS spectrum of alkaloid 8 (m/z 340.1544 [M+H]+).
Figure S47. 1H NMR spectrum of alkaloid 9 in CDCl$_3$ at 400 MHz.
Figure S48. 13C NMR spectrum of alkaloid 9 in CDCl$_3$ at 100 MHz.
Figure S49. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 9 in CDCl$_3$ at 400 and 100 MHz.
Figure S50. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 9 in CDCl$_3$ at 400 and 100 MHz.
Figure S51. NOE experiments of alkaloid 9 in CDCl$_3$ at 400 MHz.
Figure S52. HR-ESI(+)–MS spectrum of alkaloid 9 (m/z 352.1555 [M+H]$^+$).
Figure S53. 1H NMR spectrum of alkaloid 10 in CDCl$_3$ at 400 MHz.
Figure S54. Enlargement of 1H NMR spectrum of alkaloid 10 in CDCl$_3$ at 400 MHz.
Figure S55. 13C NMR spectrum of alkaloid 10 in CDCl$_3$ at 100 MHz.
Figure S56. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 10 in CDCl$_3$ at 400 and 100 MHz.
Figure S57. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 10 in CDCl$_3$ at 400 and 100 MHz.
Figure S58. NOE experiments of alkaloid 10 in CDCl$_3$ at 400 MHz.
Figure S59. HR-ESI(+)-MS spectrum of alkaloid 10 (m/z 356.1865 [M+H]^+).
Figure S60. ECD spectrum of alkaloid 10.
Figure S61. 1H NMR spectrum of alkaloid 11 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S62. Enlargement of 1H NMR spectrum of alkaloid 11 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S63. 13C NMR spectrum of alkaloid 11 in CDCl$_3$ + drops of CD$_3$OD at 100 MHz.
Figure S64. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 11 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S65. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 11 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S66. HR-ESI(+)−MS spectrum of alkaloid 11 (m/z 356.1866 [M+H]+).
Figure S67. 1H NMR spectrum of alkaloid 12 in CDCl$_3$ at 400 MHz.
Figure S68. Enlargement of 1H NMR spectrum of alkaloid 12 in CDCl$_3$ at 400 MHz.
Figure S69. 1H NMR spectrum of alkaloid 12 in CDCl$_3$ at 100 MHz.
Figure S70. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 12 in CDCl$_3$ at 400 and 100 MHz.
Figure S71. 1H-13C long-range correlation map from HMBC NMR experiment of alkaloid 12 in CDCl$_3$ at 400 and 100 MHz.
Figure S72. NOE experiments of alkaloid 12 in CDCl$_3$ at 400 MHz.
Figure S73. HR-ESI(+)-MS spectrum of alkaloid 12 (m/z 326.1392 [M+H]$^+$).
Figure S74. 1H NMR spectrum of alkaloid 13 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S75. 13C NMR spectrum of alkaloid 13 in CDCl$_3$ + drops of CD$_3$OD at 100 MHz.
Figure S76. 1H-13C one-bond correlation map from HSQC NMR experiment of alkaloid 13 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S77. 1H-$_{13}$C long-range correlation map from HMBC NMR experiment of alkaloid 13 in CDCl$_3$ + drops of CD$_3$OD at 400 MHz.
Figure S78. HR-ESI(+)-MS spectrum of alkaloid 13 (m/z 338.1391 [M+H]⁺).
Table S1. Cytotoxic activity of major alkaloids isolated from the bark of *Guatteria friesiana*.

<table>
<thead>
<tr>
<th>Alkaloids</th>
<th>B16-F10</th>
<th>HepG2</th>
<th>HL60</th>
<th>K562</th>
<th>PBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>2</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>3</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>4</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>6</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>7</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>8</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>9</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>12</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>13</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>14</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>15</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>17</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>19</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>20</td>
<td>>10</td>
<td>8.32</td>
<td>5.52</td>
<td>5.02</td>
<td>>10</td>
</tr>
<tr>
<td>21</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>0.04</td>
<td>0.07</td>
<td>0.02</td>
<td>0.31</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Data are presented as IC$_{50}$ values (µM) obtained by nonlinear regression from three independent experiments performed in duplicate measured using alamar blue assay after 72 h incubation. Tumor cells: B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), HL-60 (human promyelocytic leukemia), and K562 (human chronic myelocytic leukemia). Normal cell: PBMC (human peripheral blood mononuclear cells activated with concanavalin A – human lymphoblast). Doxorubicin was used as a positive control.