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I. Abstract/Resumo

Resumo
Objetivo: Mais da metade da população brasileira encontra-se acima do peso normal, e as prevalências
de obesidade e de sobrepeso continuam subindo, especialmente nas populações urbanas de baixo nível
socioeconômico.  Embora  o  governo tenha começado a  montar  uma resposta,  incluindo programas
especificamente destinados à melhoria da saúde dos funcionários nos ambientes de trabalho, o papel da
dinâmica social entre funcionários na ganha e perda de peso ainda é pouco entendido. Através de uma
análise  da distribuição dos índices  de massa corporal  (IMCs) em uma rede social  de funcionários
públicos, este estudo tem como objetivo iniciar uma discussão sobre como as amizades podem afetar os
pesos dos trabalhadores de meia idade no Brasil. 
Métodos: Entre 2010 e 2012, 1.521 funcionários públicos, empregados pela Fundação Oswaldo Cruz
(Fiocruz), com base no Rio de Janeiro, foram convidados a nomear, como parte do questionário da
segunda onda do Estudo Longitudinal da Saúde do Adulto (ELSA-Brasil), os seus cinco amigos mais
próximos no trabalho. Aonde possível, nomes citados foram ligados a nomes oficiais no diretório de
funcionários da Fiocruz com a ajuda de um programa de relacionamento probabilístico de registros. As
amizades entre os participantes do ELSA definiram as conexões no ELSA-RioSC, uma rede social
sócio-cêntrica dos participantes da segunda onda do estudo de coorte. As relações entre o IMC de um
indivíduo, a sua posição social no ELSA-RioSC, e os IMCs dos seus amigos foram avaliadas através da
modelagem Gaussiana latente,  controlando por idade,  renda familiar  mensal  per  capita,  e nível  de
educação, com dados estratificados por sexo. Um modelo de grafo aleatório exponencial (ERGM, pelo
termo em inglês, “exponential random graph model”) foi desenvolvido para testar se uma semelhança
no IMC de dois indivíduos afeta a probabilidade destes indivíduos formarem uma amizade, controlando
por fatores exógenos e endógenos. 
Resultados:ELSA-RioSC foi composta por 1.973 amizades, e 332 dos 1.521 membros do grafo foram
isolados (não conectados por  uma amizade a  nenhum outro  indivíduo).  Entre  os  membros,  69,4%
estavam acima do peso normal (IMC≥25kg/m2) com 28,2% considerados obesos (IMC≥30kg/m2). Nos
dois a seis anos entre a primeira e a segunda onda do ELSA, os IMCs dos participantes geralmente
aumentaram (em média por 0,691% anualmente). Os modelos Gaussianos latentes mostraram que, para
ambos homens e mulheres, indivíduos com nenhum amigo ou poucos amigos na média tinham maior
IMC na Onda 2 e maior ganho de peso percentual entre Onda 1 e Onda 2.  O IMC seccional das
mulheres mostrou relação inversa com a educação e com a renda familiar per capita – educação mais
básica e renda menor corresponderam a um IMC maior  – enquanto o IMC seccional  dos homens
mostrou uma relação mais complicada com as variáveis de controle, mas uma relação direta com a
média dos IMCs dos amigos. A mudança percentual no IMC dos homens entre as Ondas 1 e 2 também
mostrou relação direta com a mudança percentual média no IMC dos seus amigos, com uma associação
especialmente significativa para perdas de peso, mas esta relação não foi observada para as mulheres
do estudo. Os resultados do ERGM indicaram que indivíduos com IMCs semelhantes não mostraram
significativamente maior propensão a serem amigos do que indivíduos com uma diferença em IMC
superior  a 4  kg/m2,  mesmo antes de controlar  por fatores exógenos e  endógenos.  Os fatores mais
significativos  na  escolha  de  amigos  foram:  compartilhar  uma unidade  de  trabalho  e  retribuir  uma
amizade unidirecional.
Conclusão:  Os resultados  mostram que os IMCs de homens,  mas não aqueles  de mulheres,  estão
associados aos IMCs dos seus amigso no trabalho. Isso indica que homens modelam os seus hábitos de
comer e fazer  exercício nos hábitos dos seus amigos no trabalho,  selecionam amigos com hábitos

10



similares aos seus, ou tendem a compartir ambientes de nutrição e exercício com seus amigos. Dados
longitudinais de amizade e de comportamento de consumo e gasto de energia ajudariam a elucidar
alguns dos mecanismos que levaram às associações observadas.

Palavras-chave: Rede Social; Índice de Massa Corporal; Obesidade; Saúde do Trabalhador
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Abstract
Purpose: The prevalences of obesity and overweight in Brazil continue to rise, with more than half of
the population now considered above normal weight, and the burden of the epidemic is increasingly
shifting to the urban poor. While the government has begun to mount a response, including workplace-
specific programs aimed at helping employees to live healthier lives, research regarding the role of
workplace social dynamics in the processes of gaining and losing weight is sparse. Through analysis of
the distribution  of  body mass  indices  (BMIs)  in  a  Rio  de Janeiro civil  servant  at-work friendship
network, this study aims to begin a discussion regarding the roles friends may play in the changing
weights of working adults in Brazil. 
Methods: Between 2010 and 2012, 1,521 civil servants, employed by the Oswaldo Cruz Foundation in
Rio de Janeiro, were asked to name their five closest friends at work as part of the questionnaire for the
second wave of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cited names were
probabilistically  linked  to  official  employee  names,  and  the  friendships  between  ELSA-Brasil
participants became the edge-list for a sociocentric network graph, here-in referred to as ELSA-RioSC.
The relationships between an individual's BMI, his or her position in ELSA-RioSC, and the BMIs of
his or her friends were assessed through latent Gaussian modeling, controlling for age, monthly per
capita family income, and education level,  and with data stratified by sex. An exponential  random
graph model (ERGM) was developed to test whether or not friends tend to share similar BMIs, and if
they do, whether or not that relationship holds after controlling for exogenous and endogenous factors. 
Results:  ELSA-RioSC was comprised of 1,973 edges,  and 332 of the 1,521 vertices were isolates.
69.4% of  ELSA-RioSC members  were  above  normal  weight  (BMI≥25kg/m2),  with  28.2% falling
within the obese category (BMI≥30 kg/m2), and in the 2-6 years between the first and second waves of
data collection, individuals' BMIs generally increased, on average by 0.691% per year. Latent Gaussian
models for both sectional Wave 2 BMI and annual percent change in BMI between Waves 1 and 2
indicated that, for both men and women, individuals with no or few friends in the network were likely
to have higher BMIs and to gain more weight than individuals with several friends in the network.
Women's sectional BMIs showed an inverse relationship with education and income level, with lower
levels of education and income corresponding to greater BMIs, while men's sectional BMIs showed a
less clear dependence on control variables but a direct relationship with friends' BMIs. Men's average
annual  percent  changes  in  BMI were also  directly  associated with friends'  average annual  percent
changes, especially for loss of weight, but the same relationship did not hold for women. ERGM results
indicated  that  individuals  with similar  BMIs were not  significantly  more  likely  to  be friends  than
individuals with a BMI difference greater than 4 kg/m2, even before controlling for exogenous and
endogenous variables, and the most significant predictors of friendship nomination were a shared work
department and reciprocity. 
Conclusions: The results indicate that the BMIs of men, but not those of women, are associated with
the BMIs of their friends at work. This implies that men model their exercise and eating on friends,
select friends based on shared exercise and eating habits, or tend to share similar nutrition and exercise
environments with friends. The collection of longitudinal friendship data and information regarding
specific  energy  consumption  and  expenditure  behaviors  would  help  to  elucidate  some  of  the
mechanisms underlying the observed relationships. 

Keywords: Social Networking; Body Mass Index; Obesity; Occupational Health
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II. Objectives

General objective:

Through analyzing the associations between the body mass indices of Brazilian professionals, their

social positions in an at-work friendship network, and the body mass indices of their friends at work,

this study aims to identify some of the social aspects of the obesity epidemic in Brazil. The results of

this study will contribute to an understanding of how friendship and social life interact with obesogenic

environments and behaviors in affecting individuals' and communities' BMIs, and these results have the

potential to inform future institutional efforts to address obesity in Brazil and elsewhere. 

Specific objectives:

(1) To construct a sociocentric social network graph based on free-recall data collected through the  

ELSA-Brasil cohort study at the Fiocruz Institute in Rio de Janeiro and to develop a protocol 

for the construction of similar graphs from the data collected at other institutions participating 

in ELSA-Brasil;

(2) To compare the constructed graph to random graph models and to obtain descriptive statistics of the

graph, which will allow for a better understanding of the social dynamics at Fiocruz and will 

serve as points of comparison for future social network analyses in Brazil;

(3) To investigate associations between an individual's BMI and his or her social position – as indicated

by graph vertex characteristics – and his or her friends' BMIs, taking friendship directionality 

into consideration;

(4)  To  assess  which  factors  are  most  predictive  of  friendship  formation  in  ELSA-RioSC  using  

Exponential Random Graph Modeling (ERGM);

(5) To consider the implications of the results of these analyses for future workplace-based efforts to 

control the obesity epidemic in Brazil. 
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III. Introduction

i. The global obesity epidemic

The universally growing prevalence of obesity constitutes a troubling modern epidemic. Since

1980, global prevalence has nearly doubled and risen in almost every country.1 Defining overweight by

a body mass index (BMI, Equation [1]) greater than or equal to 25 kg/m2 and obesity by a BMI greater

than or equal to 30 kg/m2 , in 2014, 39% of adults globally were overweight, and 13% were obese.1

Obesity  and  overweight  are  risk  factors  for  many  of  the  non-communicable  diseases  (NCDs)

contributing most to the global disease burden, including diabetes, hypertension and coronary heart

disease.2,3 

NCDs accounted  for  68% of  deaths  worldwide  in  2012,4 and  approximately  75% of  those

deaths came from low- and middle-income countries,5 where attention and resources have traditionally

been  focused  on  infectious  diseases.  In  Brazil  between  1930  and  2007,  the  proportion  of  deaths

attributable to infectious diseases dropped from 46% to 10%, and, by 2007, NCDs accounted for 72%

of all deaths.6 With the increase in NCD prevalence – and the significant role that the obesity epidemic

plays in the disease burden of many NCDs – obesity and overweight were estimated in 2010 to cause at

least  3.4  million  adult  deaths  each  year.7 Most  adults  live  in  countries  where  these  deaths  now

outnumber deaths related to being underweight.1 So far, no country has succeeded in reversing upward

trends in mean BMI.8 

Fundamentally, an increase in BMI at the individual level results from an imbalance in personal

energy consumption and energy expenditure: if more energy is consumed than is spent, an individual

will gain weight.1,9 But the factors influencing the availability and desirability of high-energy foods and

the necessity or feasibility of physical exercise in labor and leisure extend well beyond the level of the

individual. Global drivers interact with regional, local, and personal factors in determining individual

risk of becoming overweight or obese.8 

The near-universal increase in national and regional mean BMIs suggests that global drivers

play an important role in the population-level shifts in BMI distributions. The obesity epidemic began

in the 1970s and 1980s in high-income countries.8 The beginning of the epidemic, and its subsequent

spread to low- and middle-income countries, has coincided with an expanding transition in the global

food landscape and a shift in patterns of physical activity; “development” has come with a higher-

energy diet and lower-energy expenditure.10 The industrialization of food production and consumption

has greatly lowered the cost and increased the availability  of energy-rich foods,  and technological
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advances and urbanization have led to more sedentary forms of labor and leisure.10,11 While humans

have evolved important physiological defenses against weight-loss in nutrient-poor environments, we

are ill-adapted as a species to avoiding weight gain in nutrient-rich environments. The obesity epidemic

can thus be understood as a consequence of the juxtaposition between the environment in which human

physiology evolved and the environment humans now face.12

Many  studies  have  indicated  that  the  built  environment  –  including  transportation,  food

availability,  and access  to  public  recreation  spaces,  among other  factors  –  might  contribute to  the

heterogeneity of the epidemic. For example, several studies have shown that neighborhoods with a

greater number of large supermarkets (and therefore more diversity in cheap food options) have lower

levels of obesity than areas with a greater number of small markets and fast food chains.13,14 Other

studies  have  suggested  that  more pedestrian friendly neighborhoods and neighborhoods with more

access to physical activity facilities have lower prevalences of obesity.15,16 In all of these associations, it

is important to note both that a complicated relationship exists  between the built  environment and

potentially  confounding  socioeconomic  distributions,  and  that  the  direction  of  a  cause-effect

relationship is not clear. Beyond global drivers and the built environment, the risk of obesity at the

individual  level  can  depend  on education;  family  and  community  eating  and exercise  habits;  and

genetic predispositions associated with race or family history.17,18 

Local manifestations of the global obesity epidemic are thus unique products of the interplay

between systemic, environmental and individual risk factors. This dynamic is summarized in Figure 1,

adapted from Swinburn, et al.8. The figure shows how factors at multiple levels combine to produce

changes in the BMI of an individual: system-level factors are at the most macroscopic scale, affecting

populations, while genetic and physiological factors are at the most microscopic, affecting how one

person responds to his or her energy intake and expenditure. The number of people impacted by any

effort to control the obesity epidemic depends on the level at which change is effected, as indicated by

the blue “intervention reach” triangle at the base of Figure 1; bariatric surgery reduces the BMI of a

single person, while restrictions on advertising for ultra-processed foods could shift the average BMI of

entire populations. As Geoffrey Rose has argued, systemic and environmental changes, while often

more complicated to bring, represent a much more efficient and effective means by which to address

NCDs than treatment strategies restricted to high-risk patients.19
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Figure 1 – Simplified model of the factors affecting an individual's BMI

Global food systems affect local environments, and an individual's response to those environments is in turn affected by
social factors, like upbringing, education and income level. The impact of energy consumption and expenditure on body
type depends on genetic and physiological factors. Higher-level interventions impact more people, as symbolized by the
“Intervention reach”triangle, but they are generally more difficult to enact. If energy consumption and expenditure are
affected  by  interpersonal  processes,  this  has important  implications  for  understanding both the  obesity  epidemic  and
potential approaches to its control. This is shown in the figure by the purple adjustments in the “Social Networks” region.
The figure was adapted from Swinburn, et al.8

ii. Overweight and obesity in Brazil

While  obesity  is  still  most  prevalent  in  high-income countries,  its  prevalence  in  low-  and

middle-income countries is quickly rising, and the social distribution of obesity in these countries is

often significantly different than in more developed ones. Based on data from 2007, mean national

BMI in low-income countries tends to increase linearly as per capita Gross Domestic Product (GDP)

increases, but for countries with per-capita annual GDPs above US$3000 dollars per year, mean BMI

stabilizes around 25-26 kg/m2.20 In Brazil, where the 2014 per capita GDP was US$11,384,21 the age-

adjusted  mean  BMI  for  both  males  and  females  was  26  kg/m2.22 Data  from  telephone  surveys

conducted in Brazilian state capitals over the eight years between 2006 and 2014 indicates that the

prevalence of obesity and overweight in adults (18 or older) rose in every city included in the study, as

shown in Figure 2.23,24 The number of times obesity was listed as one of the causes of death on a death

certificate in the public health system more than doubled from 5.4 per million inhabitants in 2001 to
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11.9 in 2011, and these figures ignore deaths from diseases for which obesity is a risk factor but not a

direct cause, like diabetes and coronary heart disease.25 

Figure 2 – Prevalences of obesity and overweight in Brazilian state capitals in 2006 and 2014

The prevalence of overweight (top) and obesity (bottom) in Brazilian capitals in 2006 and 2014. In all capitals, obesity and
overweight became more prevalent in the eight year period between the two rounds of data collection. Rio de Janeiro data,
of principal interest to this study, is highlighted in yellow. 
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The social distribution of obesity follows some predictable patterns in many low- and middle-

income countries.  In  high-income countries,  obesity  is  generally  most  prevalent  in  groups  of  low

socioeconomic status (SES).  In low- and middle-income countries,  obesity has traditionally been a

problem of high SES groups,8 but in many of those countries, the burden of the epidemic is shifting to

lower SES groups, especially in urban areas.26,27 In Brazil between 1975 and 1985, the rate of obesity

increased among all SES groups, but the increase was greater among those of low SES, and between

1985 and 2003, the obesity rate dropped among high SES women and remained stable in high SES men

while continuing to rise among low SES individuals of both sexes.28 

As in other countries, the obesity epidemic in Brazil has resulted from community-level and

individual-level responses to increasingly obesogenic environments. Over the past few decades, Brazil,

like  many  developing  countries,10,29 has  experienced  a  “nutrition  transition”:  a  shift  away  from

traditional food systems and towards meals away from home,30 ultra-processed foods31 and foods rich

in fats and sugars.32,33 Transnational food corporations – almost all based in Europe and the United

States – have expanded aggressively into developing countries like Brazil through mass-production and

mass-marketing, greatly increasing the availability and visibility of low-cost, ultra-processed foods .30,34

Ultra-processed foods are made from extracted and purified whole food ingredients and additives, and

packaged as  durable,  convenient  products  designed to  be visually  appealing,  highly palatable,  and

deceptively satisfying. The risk of these products, therefore, goes beyond higher levels of sugar and fat:

they are also cheap, attractive, and aggressively marketed.30,31,34 

Different socioeconomic strata experience the integration of the global food market unequally:

while dietary choices may expand for wealthier populations, the diets of lower socioeconomic groups

in developing countries across the world are likely to converge towards inexpensive, ultra-processed,

obesogenic  foods.35 In  high-income  countries,  dietary  patterns  have  developed  with  and  around

industrialization, but in countries where this has not happened, trade liberalization has often allowed an

influx of ultra-processed foods to abruptly displace traditional food systems. In Brazil, traditional food

systems and family meals have proven relatively resistant to changes in the nutrition landscape,30 but

even so, consumption of traditional foods like rice and beans is declining in metropolitan areas, while

consumption of ultra-processed foods is increasing across all socioeconomic groups.31,33 In a 2008-2009

national survey, it was found that 52% of energy came from processed foods, defined as foods high in

solid fats,  trans fats, and added sugars.32 Comparing the rates of obesity in low- and middle-income

countries and regions where traditional food systems still dominate with those where they do not, it
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seems  reasonable  to  conclude  that  the  internationalization  of  ultra-processed  foods  and  the

displacement of traditional diets, especially in low-income urban populations, is a major driver of both

the nutrition transition and the obesity epidemic in the developing world.31,36,37 

The nutrition transition has been accompanied by urbanization and industrialization in Brazil,

and as such, individuals are not only consuming more energy, but also generally expending less.38

Estimates based on national and regional data – and, where such data was unavailable, international

data  for  similar  income  groups  –  indicate  that  from 2002  to  2007,  sedentary  time  increased  and

physical activity decreased, and these trends were predicted to continue into at least 2030.39 Energy

expenditure likely dropped even more significantly before 2002, when rates of rural-to-urban migration

were especially high,40 but no national data on physical activity exists for that time period.6 While rates

of  “active  leisure”  physical  activity  have  increased  slightly  in  the  time-period  for  which  data  is

available (albeit only from São Paulo), that increase has been far out-weighed by estimated drops in

physical  activity  in  the home,  at  work,  and in  transit.39 Longitudinal  trends  therefore indicate  that

energy expenditure continues to fall while energy consumption continues to rise. Without intervention,

increasing prevalences of obesity and overweight, especially among the country's urban poor, show no

signs of slowing.

iii. Efforts to address the obesity epidemic in Brazil

In recent years, the Brazilian government has been responsive to issues of energy consumption

and  expenditure.  In  2010,  Article  6  of  the  constitution  was  amended to  include alimentação (or

nourishment) on the list of each citizen's “social rights”, a list that, among other items, includes a right

to health. The constitution also declares that it is the duty of family, society, and the State to assure the

health and nourishment of children and adolescents.41 A document published by the Ministry of Social

Services  and the Battle  Against  Hunger  elaborates,  defining the right  to  alimentação  as  a  right  to

“healthy, accessible, high-quality [food] in sufficient quantities and without interruption.”42 

Governmental  programs have  been  introduced  and  adapted  over  the  years  to  promote  and

protect  these  constitutional  rights.  Fome  Zero  (Zero  Hunger),  which  began  in  2003  under  the

presidency of Luiz Inácio da Silva and is now associated with the Programa Bolsa Família network of

conditional cash transfer programs, aims to combat poverty and malnutrition. Most studies indicate that

the program has resulted in increased family food security and improved nutrition for children among

the poorest socioeconomic groups in Brazil, but some have also recognized that families covered by the
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program are consuming foods with higher caloric density and lower nutritious value.43 The program has

emphasized food availability rather than access to healthy foods, which ignores the present reality:

even  among  the  low-income  populations  that  the  social  welfare  programs  target,  obesity  and

overweight are increasingly more prevalent than underweight and hunger, especially among adults,44

and as purchasing power in  poor families increases,  there is  a disproportionately large increase in

consumption of unhealthy, processed foods.45 

The National Policy on Food and Nutrition (PNAN) was published in 2011 in response to the

nutrition  transition  and  the  increasing  prevalences  of  overweight  and  obesity.  The  document

appropriately  shifts  the  discussion  away  from  increased  consumption  and  towards  healthier

consumption. It also recognizes the role that food plays in the social context of Brazil: “food expresses

social  relations,  values,  and the histories of Brazilian individuals and peoples,  and it  carries direct

implications  for  health  and  quality  of  life.”46 The  document  further  notes  the  government's

responsibility to promote and prioritize national production of ecologically sustainable, nutritious foods

over the capitalistic demands of marketplaces.46 The Guide to Nourishment for the Brazilian Populace,

published in 2014, stresses that minimally processed and unprocessed foods should be prioritized in the

family diet.47 These documents set important precedents for government approaches to addressing the

role of changing diets in the epidemic of overweight and obesity, but how those approaches will be

developed and whether or not they will be effective remains to be seen. Inês Rugani Ribeiro de Castro,

a researcher at the State University of Rio de Janeiro's Nutrition Institute, stresses that an effective

response must recognize that food is, and should be, social – “individual choices, while indispensable,

are not enough to guarantee healthy and sustainable eating habits in a collective environment” - and

that food systems in Brazil will not change spontaneously; government policies must be enacted to

encourage the production and consumption of healthy foods.48 

The  government  has  also  recognized  the  role  of  increasingly  sedentary  lifestyles  in  the

prevalences of obesity and overweight. The 2006 National Policy on Health Promotion49 and the 2014

Intersectoral Strategy for Obesity Prevention and Control50 both highlight the importance of creating

urban spaces designed to encourage physical activity and of organizing educational campaigns to teach

people  about  the  benefits  of  active  lifestyles.  The  latter  document  suggests  that  institutional

environments like schools, workplaces, and health outposts could play central roles in promoting and

creating  space  and  time  for  physical  activities,  and  the  “Healthy  Weight  Program”  -  another

government initiative – specifically promotes weight monitoring and control in the work environment.
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51

These governmental public health documents suggest a nuanced understanding of the complex

interplay between systemic, environmental, and individual factors that has contributed to the rapidly

increasing  prevalence  of  obesity  and  overweight  in  Brazil;  they  recognize  that  the  profile  of  the

epidemic changes between males and females and between socioeconomic groups; and they suggest

that a response to the epidemic must be as multi-tiered and multifaceted as its causes, a point on which

many international recommendations agree.52–54 But neither the Brazilian government's recommended

response nor most international recommendations recognize the role that social networks might play in

the epidemic and its control. Where social factors do enter the discussion, they are mentioned broadly

under  umbrella  terms  of  “social  support”,  “social  marketing”,  “social  norms”,  or  “sociocultural

environments.” 

In Swinburn et al.'s oft-cited theoretical framework for understanding the obesity epidemic, a

distinction is  made between interventions  aimed at  changing behaviors  and interventions  aimed at

changing  environments,  and  the  authors  conclude  that  the  latter  category  encompasses  those

interventions truly capable of significantly altering the trajectory of the epidemic.8 That study fails to

note that  the social  environment  of  an individual  is  more than the sociocultural  or socioeconomic

context of his or her community; more concretely, an individual belongs to networks of specific people

with  specific  attitudes  and approaches  to  shared  physical  and cultural  spaces.  A growing body of

research suggests that these relationships between individuals play an important role in the processes of

gaining and losing weight.55–57 

Network-based studies of the obesity epidemic recognize that friends' attitudes and behaviors

can both  reflect  and contribute  to  an obesogenic environment.  In  this  sense,  there  can be overlap

between behavioral and environmental interventions: changing the behavior of one person affects the

environments of other people. Returning to Figure 1, the purple sections indicate that social networks

contribute to both the environment an individual experiences and to how an individual responds to that

environment.  The  purple  section  of  the  “intervention  reach”  triangle  at  the  bottom  of  the  figure

indicates that interventions targeting an individual's behavior extend beyond an individual; they also

affect those within the individual's social network. Ultimately, people rarely make decisions regarding

energy consumption and expenditure independently, and consideration of an individual's social network

could be  important  in  planning and executing effective  and efficient  approaches  to  addressing the

epidemic of obesity and overweight in Brazil and internationally. 

21



iv. A social network approach to understanding and responding to the obesity epidemic

As already mentioned, increases in BMI result from a combination of genetic, physiological,

and behavioral factors at the individual level; local and regional factors at the environmental level; and

national,  international,  and  global  factors  at  the  systemic  level.  The  disease  process  is  further

complicated  by  network  interactions  on  every  scale:  metabolic  pathways  share  components  and

diseases share genetic or functional origins; individuals exist and operate within social networks of

friends  and family;  and  national  policies  are  established  with  an  eye  to  international  treaties  and

alliances.  With  a  more  specific  understanding  of  how  these  networks  impact  individuals  and

populations,  interventions  can  more  appropriately  address  the  global  epidemic  of  obesity  and

overweight.  Social  networks  in  particular  represent  an under-explored aspect  of the epidemic with

potentially important implications for population-level weight control.58

Social network analyses acknowledge the role of relationships in individual-level outcomes and

the role of distributions of relationships in community-level outcomes. The types of relationships and

the positions of those relationships in a network are recognized as potentially relevant to health. In this

sense,  social  network  analyses  are  more  informative  than  studies  of  social  support,  which  are

sometimes erroneously categorized as social network studies. Analyses of social support consider the

impact of how supported an individual is or feels – often measured by an individual's claim to the

number or perceived helpfulness of his or her close-friends – on a particular health outcome. 59 Social

network  data  is  more  informative  than  social  support  data  in  that,  in  addition  to  individual-level

analysis, it  allows for dyad-level and community-level analyses, but it is also more complicated to

obtain and interpret. 

While  early  studies  of  social  networks  were  generally  sociological,  social-network-based

studies in the fields of epidemiology and public-health have become more common. In the 1970s and

1980s, several studies were published that suggested an individual's perceived level of social support

had an impact on his or her mortality, and dyad-level studies indicated that, even after controlling for

the role of health in spouse selection, marriage was associated with longer life. More recently, studies

have extended beyond social support or dyadic effects to supradyadic, global networks, revealing more

complicated associations between health and social networks, including new forms of contagion.59 In

network-based studies of infectious diseases, “contagion” implies the transfer from person to person of

something physical, like a virus or a bacterium, sometimes via a non-human vector. On the other hand,

network-based studies of noninfectious diseases focus on the spread of ideas and behaviors that in turn
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have the potential to affect health. This type of transmission is often referred to as “social contagion”.60

As the obesity epidemic has expanded, studies regarding social components to the processes of

gaining  and  losing  weight  have  become  more  common.  A study  published  in  1988  showed  a

relationship between binge-eating in sororities and popularity,61 and another published in 1991 showed

an association between loneliness and dietary inadequacy in independently living elderly individuals.62

Other studies in the 1990s showed that obese children were less likely to become obese adults when

supported socially in healthy eating and exercise by friends and family;63 and that individuals recruited

into a weight-loss program with friends and given social support during and after the program were

more likely both to complete the program and to have maintained their weight-loss at a 10 month

follow-up.64 These studies and others55–57 demonstrate that even before the first supradyadic study of the

association between obesity and social networks, published in 2007 by Nicholas Christakis and James

Fowler,65 researchers had begun exploring the social aspects of weight loss and weight gain.

Christakis and Fowler created a dynamic social network graph from longitudinal friendship data

collected over 32 years through the Framingham Heart  Study (FHS), and, from an analysis of the

changing BMIs of individuals within that network, they concluded that obesity is socially contagious.

They arrived at this conclusion through several pieces of evidence. First, they noticed clusters of obese

friends in the network, and identified three possible explanations for this clustering: homophily,  or

obese  individuals  seeking  out  friendships  with  other  obese  individuals;  confounding,  or  factors

associated with obesity – such as shared obesogenic environments or shared genetic predispositions –

leading two friends to become obese together; and induction, or obesity spreading from one individual

to  another  through  the  social  contagion  of  unhealthy  eating  and  exercise  habits.  Three  other

observations led them to conclude that induction was at least playing a part in the observed clustering

of  obesity:  weight  gain  in  a  geographic  neighbor  did  not  affect  the  probability  of  an  individual

becoming obese; the chance of an individual becoming obese from one point in time to the next rose if

one of his or her friends had recently become obese, and this effect was most pronounced in mutual,

same-sex friendships. If the increased risk of obesity was a result of homophily, Christakis and Fowler

reasoned, there would be no time lag, and if it were a result of confounding, friendship type should not

have made a difference in the probability of an individual becoming obese, and geographic neighbors

might have been more likely to grow obese together.65

Christakis  and Fowler's  study inspired  further  exploration  into  the  relationship  between an

individuals supradyadic social network and his or her BMI, and while comprehensive network data is
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still relatively rare, several recent review articles indicate that the number of studies utilizing such data

is growing.55–57 These studies generally support the conclusion that obesity clusters in social networks,

but the causes of the social clustering of obese individuals are still poorly understood.55 Despite the

conclusions Christakis and Fowler draw regarding the contagion of obesity, their results  could still

potentially be explained by a shared environment (confounding) – mutual friends could tend to share

more  similar  environments  than  non-mutual  friends  –  or  by  homophily  –  individuals  could  form

friendships based on shared unhealthy behaviors rather than shared body types.66,67 Researchers have

also  warned  that,  without  controlling  for  endogenous  network  factors,  there  exists  a  tendency  to

overestimate obesity clustering.68 Endogenous factors – explained in greater detail  in the following

sections  – are  network-specific  factors  that  might  affect  friendship formation.  For instance,  if  two

individuals share a common friend, they are more likely to become friends themselves. Still, at least

one study that did control for endogenous factors still found evidence of obesity clustering.68

Despite remaining uncertainties regarding the mechanisms by which clusters of obese friends

form,  associations  between  social  networks  and  BMI  could  carry  important  implications  for  the

propagation of obesity and the epidemic's control. Several studies have incorporated social contagion

into models estimating the future trajectory of the epidemic.69–71 Others have estimated how social

components to obesity might be exploited in curbing the epidemic,71,72 and how the cost effectiveness

of potential prevention approaches change when social network effects are taken into consideration.73

Despite  this  research,  however,  social-network-based  obesity  interventions  remain  rare,  and  the

effectiveness of such interventions largely remains to be seen.74

In Brazil, eating is more social than it is in many of the North American and European countries

from which most network data has thus far been gathered During the work day, lunch breaks often

allow time for employees to enjoy a meal with colleagues at on-site dining halls or in local restaurants.

These observations justify the government's workplace-based initiatives aimed at promoting healthy

eating and exercise habits, but they also justify social network analyses specific to overweight and

obesity in Brazilian institutional settings. Such analyses have the potential to inform more nuanced and

efficient institutional anti-obesity programs.

 In exploring the relationship between the BMIs and social networks of civil servants in a Rio

de Janeiro work-based cohort, this study aims to begin a discussion regarding the role that interpersonal

factors  might  play  in  the  proliferation  and  control  of  obesity  in  Brazil.  Sectional  friendship  data

collected between 2012 and 2014 was used to construct a sociocentric social network, here-in referred
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to  as  ELSA-RioSC,  of  the  1,521  actively-employed  Rio  de  Janeiro  participants  of  the  Brazilian

Longitudinal Study of Adult Health (ELSA-Brasil).The relationships between individuals' sectional and

longitudinal  BMIs  and  their  social  positions  and  friends'  BMIs  were  assessed  in  various  ways,

controlling  for  potentially  confounding  exogenous  and  endogenous  factors.  Given  the  potentially

different roles eating, exercise and body image might play in the social lives of Brazilian men and

women,  analyses  were  stratified  by  sex  where  possible.  Specifics  regarding  methods,  results,

conclusions, limitations, and future research directions are described in the following sections. Despite

this  studies  limitations,  it  contributes  important  data  and  results  to  the  sparse  research  on  social

networks in Brazil and, more broadly, on social networks in developing countries. It also adds to the

growing global collection of supradyadic social network studies of obesity. Most specifically, it serves

as  an  introductory  exploration  into  the  role  of  interpersonal  relationships  in  the  Brazilian  obesity

epidemic and its workplace-based control. 
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IV. Theoretical Foundations and Model Rationale

Note: The information summarized in the following sections is limited to the principles and processes

particularly relevant to this study. For a more complete review of basic graph theory, see Wasserman

and Faust, 199475 or Kolaczyk, 2009.76For specifics regarding the construction and interpretation of

social network graphs in R, see Kolaczyk and Csárdi, 2014.77 

i. Basic graph terminology

A graph is a visual mapping of a network. Network graphs are comprised of two principal

features: vertices (or nodes) and edges. Mathematically, a graph is expressed as G=(V , E )  where V is

the set of vertices and E is the set of edges. In a social network graph, vertices represent people, and

edges  represent  the  relationships  between people.  An edge  can  be  directed,  as  in  Figure  3b-d,  or

undirected,  as in  Figure 3a.  A directed edge represents a  directed relationship.  In some cases  two

individuals necessarily agree on the type of relationship they share, like a brother and sister, and an

undirected  edge  is  most  appropriate,  but  in  other  cases  directed  edges  can  contribute  important

information, like in a network of friends. In such a network, a friendship could be mutual, with both

individuals naming the other as a friend, or one-sided, with only one of the two individuals considering

the other to be a friend. In the case of a directed friendship, the vertex from which an edge emanates

can also be referred to as the “ego”, and the friend being cited can be referred to as the “alter”. 

Beyond the direction of a relationship, both vertices and edges can carry information. Edges can

be given varied levels of importance through a vector of edge weights,  [we ]e∈E , where relationships

deemed more  important  are  given a  greater  weight.  Figure  3d shows a  visual  representation  of  a

network with weighted edges. For vertices, a vector of attributes, [xv ]v∈V , can carry information like

the sex, age, and BMI of each individual in a network.

Graphs can be either sociocentric or egocentric. An egocentric graph is one emanating from a

single vertex, and the relationships between the referenced vertices, or alters, are unknown. The unit of

analysis in an egocentric graph is the individual: what do an individual's friends tell us about his or her

health? A sociocentric graph is one in which the relationships between all vertices are known, and

analysis extends beyond the individual to the distribution edges: what does a set of edges tell us about

the role relationships play in health or the role health plays in relationships? 

The properties of a social network, or “network graph characteristics”, can include distributions
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of characteristics measured at the levels of vertices and edges, like local indicators of centrality and

connectivity, and characteristics that apply to the graph as a whole, like measures of reciprocity and

density. The specific measures included in the present study are described in the following sections.

Figure 3 – Basic graph vertex and edge characteristics

Graph (a) shows an undirected graph where the sizes of the vertices are proportional to their degrees. Graphs (b) and (c)
show directed graphs with vertices proportional to in-degrees and out-degrees, respectively. In graph (d), the vertices are
equally sized, but the edge sizes reflect arbitrarily assigned edge weights. 

ii. Vertex characteristics

Three  measures  of  vertex  centrality  were  considered  in  this  study:  degree,  betweenness

centrality, and eigenvector centrality. The “in-degree”of a vertex is a count of the number of edges

incident upon the vertex, the “out-degree”is a count of the number of edges emanating from the vertex,

and the “undirected degree” is the sum of the in-degree and the out-degree. 

Betweenness centrality is the proportion of shortest “paths” that include a given vertex, where a

path is an alternating edge-vertex route between two vertices. In equation form,

[2] cB= ∑
s≠t≠v∈V

σ (s , t∣v )

σ (s , t)
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where σ(s ,t∣v ) is the number of shortest paths between s and t that include v and σ(s ,t ) is the

total number of shortest paths between s and t. Betweenness centrality is therefore a quantification of

the extent to which an individual is a “connector” of different sub-graphs.

Eigenvector centrality is a score calculated from the values of the first eigenvector of the graph

adjacency  matrix.  A vertex  with  a  large  score  is  connected  to  many  vertices  with  large  degrees.

Eigenvector centrality therefore captures the idea that a person with many well-connected friends might

be important to a network. It is calculated according to Equation [3],

[3] cE i
=α ∑

{u , v}∈E

cEi
(u)

where  the  vector  c Ei
=(c Ei

(1), ... , cEi
(N v) )T is  the  solution  to  AcE i

=α
−1 c Ei

.  A is  the  graph

adjacency matrix and α
−1 is the largest eigenvalue of A.

Finally,  graph  connectivity  can  also  be  measured  at  the  individual  level  through  a  local

clustering coefficient.  A clustering coefficient has a value between zero and one and measures the

proportion of “triangles” to “connected triples”, where a triangle is a collection of three individuals

who are all friends with one another and a connected triple is a collection of three vertices connected by

at least two unique edges. The local clustering coefficient therefore measures the proportion of pairs of

an individual's friends who are also friends with one another. In equation form:

[4] cl(v)=
τΔ(v )

τ3(v )

where, for vertex v, τΔ(v) is the number of triangles and τ3(v ) is the number of connected triples.

iii. Graph characteristics and comparison to random graphs

Some graph characteristics are summaries of vertex characteristics. For instance, an out-, in- or

undirected degree distribution shows the frequencies of each degree value in  a graph.  An average

degree is simply the mean of the vertex degrees.

Other graph characteristics are global by definition. Several measures of graph cohesion fall

into this category. Graph density is measured as the ratio of existing edges to possible edges. The

density of a graph H=(VH,EH) is thus defined as:

[5] den(H )=
|EH|

|V H|(|V H|−1 ) /2

A maximum density of one would correspond to a “clique” - a graph or subgraph in which each vertex

is connected by edges to every other vertex. In the case of a “fixed choice” network, where there is a
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limit on the maximum number of edges emanating from each node, the maximum density would be

den(H )=
|V H|×OUT max

|V H|(|V H|−1) /2
where OUT max is the maximum out-degree. 

Another  measure of the density  of edges  in  a  graph is  the global  version of the clustering

coefficient: 

[6] cl(G)=
1

V ' ∑v ∈V '

cl(v)

where G is the graph of interest and V '⊆V is the set of vertices with a degree of at least two. 

In a directed graph (like a friendship network), “reciprocity” can also give an indication of

graph cohesion. Reciprocity is a measure of the probability that two individuals are mutual friends

conditional on the fact that they are at least non-mutual friends.

A “connected” graph is one in which a path connects every vertex to every other vertex. The

“giant component”of a graph is the largest connected subgraph, and for a directed graph, it can be

defined as either “weak” or “strong”.  The weak giant component assumes that all  connections are

undirected, and a path can run through an edge in either direction, whereas the strong giant component

only allows for paths to follow the direction of the relationships. The strong giant component will

therefore always be smaller than the weak giant component. One measure of connectivity is the fraction

of  vertices  included in  the  giant  component  (weak or  strong).  Another  is  the  average  path  length

between all connected vertices. 

Graph attributes can be compared to those of random graphs in order to ascertain whether or not

an observed network is likely to have formed by a mechanism similar to that used to generate a random

network. If a characteristic of an observed graph is very unlikely given the probability distribution of

that same characteristic in a collection of random graphs generated by a defined mechanism, it can be

concluded that  the  observed graph is  unlikely  to  have  developed by that  same mechanism.  Many

mechanisms exist for the generation of random graphs with distinctive characteristics, but the three

utilized here were classical random graph models, small-world models,  and preferential  attachment

models.

The Erdős–Rényi model is a model for generating classical random graphs. Given a specific

number of vertices and edges, in an Erdős–Rényi model, the edges are simply distributed amongst pairs

of vertices at random. All possible distributions of edges are therefore equally likely. 

Small-world models were developed to account for the fact that most real-world networks have
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higher degrees of clustering than classical random graph models. In the Watts-Strogatz model, used in

this analysis, vertices are arranged in a circular array and connected to K neighbors, K/2 on each side.

This leads to a high degree of clustering, but the low average path length – also typical of real-world

networks and well captured by classical random graph models – is lost. To recover a low average path

length, each edge in the graph is either rewired or left unchanged with a defined constant probability. If

the edge is rewired, one end remains fixed on a vertex, and the other end is moved at random to any of

the other vertices in the graph.

Preferential attachment models attempt to account for another discrepancy between some real-

world networks and most random graph models: many networks have hubs – vertices with very high

degrees – and broad degree distributions that drop precipitously (often following power laws). In a

friendship network, this would mean many individuals having very few friends and a few individuals

having many friends. In one such preferential attachment model, the Barabási-Albert model, the graph

begins with a small connected network and grows over time. As new vertices are added to the graph,

they are connected to existing vertices with a probability proportional to the degrees of those existing

vertices.  In  other  words,  vertices  rich  in  edges  tend  to  get  richer,  creating  well-connected  hubs.

Barabási-Albert models show the desired power law degree distributions, but they have much lower

levels of clustering than most observed networks. 

iv. Network modeling

While random graph models are useful in determining whether or not graph characteristics of an

observed  network  would  be  unlikely  under  certain  defined  mechanisms  of  stochastic  network

construction,  they are generally  too simple to  be useful  in the statistical  modeling of an observed

network. More appropriate approaches have been developed to model both the formation of a network

and the distribution of a variable within an existing network. In the case of BMI, the former approach

would involve determination of whether or not similarity in the BMIs of two vertices increases the

probability of an edge forming between those vertices. The latter approach would involve determining

whether  or  not  the  BMI  of  an  individual  is  affected  by  the  BMI  of  his  or  her  friends.  The

appropriateness of each approach therefore depends on an assumption regarding the mechanism of

BMI in friendships: does BMI play a role in the formation of friendships (homophily), do existing

friendships play a role in an individual's BMI (induction), are both important, or is neither?
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Exponential random graph models

Development, fit and comparison of exponential random graph models (ERGMs) is in many

ways analogous to those same processes in generalized linear models.77,78 ERGMs assume that, given a

collection of vertices, an observed set of edges is the product of an unknown stochastic process, and

that set represents one possibility of the many possible graphs that might have been generated through

the same process. An ERGM aims to define a process that may have plausibly led to the observed set of

edges given the set of vertices. The existence or non-existence of an edge is assumed to be a random

variable:  a  function  defines  the  conditional  probability  of  edge  formation  rather  than  defining

concretely whether or not an edge exists. This assumption recognizes that part of the process of edge

formation will be unknown and undefined. As with the assumption in a generalized linear model that

the relationship defined by a coefficient is the same for all observations, in exponential random graph

models, there is an assumption of homogeneity: the probability is equal of an edge forming between

any two vertices within a subset to which a given set of parameters applies.

The conditions on which the probability of edge formation in an ERGM depends can include

both endogenous, or structural, effects and exogenous, or node-level, effects. Endogenous effects are

parameters that allow for the probability of edge formation to depend on the existence of other edges.

Two examples would be reciprocity, or the idea that the probability of a directed edge forming between

two vertices is greater if an edge in the opposite direction already exists, and transitivity, or the idea

that the probability of an edge forming between two vertices is greater if those vertices share a common

contact. These effects can be conditioned on a variable: perhaps reciprocity effects are more significant

for edges within age groups than for those between age groups,  for instance.  Models that include

endogenous effects  are  considered  “dyad dependent”,  meaning that  the  formation  of  each edge is

dependent on the existence of other edges in the graph. 

Exogenous effects are parameters that allow for the probability of edge formation to depend on

individual vertex characteristics or on comparative vertex characteristics. For example, an exogenous

effect might be the difference in BMI between two individuals – if the difference is small, a friendship

might be more likely to form. The non-comparative BMI of an individual could also be taken into

consideration – perhaps individuals with large BMIs are generally less likely to form friendships than

those  with  average  BMIs.  A model  that  only  includes  exogenous  parameters  is  considered  “dyad

independent”. A well defined model will likely include both exogenous and endogenous effects. For a

dyad-independent  model,  parameter  estimation  can  be  accomplished  through  maximum

31



pseudolikelihood estimation (MPLE), which is a more localized and less computationally expensive

approach  than  maximum  likelihood  estimation.  For  a  dyad-dependent  model,  however,,  such

estimations  perform  poorly,  and  Markov  chain  Monte  Carlo  (MCMC)  simulation  methods  are

preferred.79 

The  estimated  coefficients  are  interpreted  as  a  conditional  log-odds  ratio  for  friendship

formation. Equation [7] expresses one formulation of an ERGM: 

[7] logit (P(Y ij=1∣nactors ,Y ij
c ))=∑

k=1

K

θk δ z k( y)

where Y ij is a dyad between vertices i  and j, and Y ij
c represents all other dyads. The inclusion of

the latter term indicates that the probability of a dyad is dependent on other dyads, and is therefore only

necessary for models that include endogenous effects. zk ( y ) are network statistics calculated on the

observed adjacency matrix,  y.  These statistics  can  include,  for  example,  the number of  edges,  the

number of triangles, or the number of edges between individuals of the same sex.  K is the set of all

network statistics, θk is a parameter determining the impact of each statistic for a specific data set,

and  δ dictates the change in  zk ( y ) when  Y ij is toggled from 0 to 1.  ERGM parameters are

interpreted as the conditional log odds of a new tie forming. For example, if the coefficient for sharing

the  same  categorical  BMI  were  0.31,  when  all  other  variables  are  controlled  for,  sharing  a  BMI

category increases the odds of a friendship forming by exp(0.31)=1.363, or approximately 36%.  

The goodness-of-fit of an ERGM can be determined in a manner similar to that described for

the comparison of observed graph attributes to those of random graphs: the proposed model is used to

generate a series of graphs, and characteristics of the observed graph are compared to the distribution

of  characteristics  of  the  generated  graphs.  If  the  observed  graph characteristics  are  not  extremely

unlikely given the distributions generated by the proposed model, the model fits the data reasonably

well. 

For a more complete treatment of ERGM theory, see Robins, et al. or Goodreau, et al. 78,79

Generalized linear models and latent Gaussian models

As previously noted,  it  is  also possible  to  model  BMI within an existing network,  thereby

testing the theory that friends affect the BMI of an individual, rather than (or in addition to) the BMI of

an individual affecting the formation of friendships. In modeling an individual's sectional BMI and

change  in  BMI  over  time,  two  methods  of  accounting  for  the  potential  non-independence  in  the
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response variable were tested: the average BMIs of an individual's friends, stratified by friendship type,

were included as an explanatory variables in both generalized linear and latent Gaussian models; and

the impact on the final models of including a latent Gaussian field with a network dependency structure

was assessed.

Latent Gaussian models are a class of structured additive regression models in which the latent

field is Gaussian, even when the response variable is not. Using a Bayesian analysis, the posterior

marginals on such a model can be estimated either through an MCMC algorithm or, more efficiently,

through an integrated nested Laplace approximation (INLA).80  The latter approach was utilized in the

present study. 

Specific  models  can  be  specified  for  the  latent  Gaussian  field,  and  three  models  were

considered in this analysis: one defining the latent Gaussian field to be a vector of independent and

normally distributed random variables,  one assigning a network dependency to the latent Gaussian

field, and one defined by the union of the previous two.

v. Model rationale

Three classes of models were fit to the ELSA-Rio data: male and female sectional models for

Wave 2 BMI, male and female models for the average annual percent change in BMI between Waves 1

and 2, and an exponential random graph model. In total, therefore, five final models were  developed.

Latent Gaussian models (all but the ERGM) were fit to each sex independently because of previously

reported differences in associations between BMI and socioeconomic variables for male and female

professionals  in  Rio  de  Janeiro.81 Fonseca,  et  al.  showed  that  degree  of  education  was  inversely

associated with BMI among female employees but not male employees, and income level was not

associated with BMI for either  sex.  It  was also considered likely that  the relationship between an

individual's BMI and his or her social network would differ between males and females. 

As  noted  above,  two  approaches  to  the  inclusion  of  friend  BMI  information  in  the  latent

Gaussian models were considered: through a latent spacial effect and through variables summarizing

nearest neighbor averages. These approaches are defined in greater detail in the Methods section below.

The variables considered for inclusion in the models are defined in Table 1, and the rational behind

those considerations is described here. Specifics regarding data collection, model selection, and model

evaluation can again be found in the Methods section.

Given that the ERGM was fit to the network and not the BMI of individuals within the network,

the  data  could  not  be  reasonably  separated  by  sex.  The  role  of  sex  in  friendship  formation  was,
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however,  controlled  for  in  the  model,  as  described  in  the  “Exponential  random  graph  model”

subsection. 

Wave 2 BMI

A sectional analysis of Wave 2 BMI was undertaken to assess whether or not, after controlling

for potentially confounding variables, an association exists between the BMI of an individual and his or

her social position or friends' BMIs at a particular point in time. This analysis would show if BMI tends

to  cluster  in  ELSA-RioSC,  as  has  been  observed  in  other  social  networks  of  both  adults65,82 and

adolescents,57 and  if  those  with  a  higher  BMI  tend  to  be  more  socially  marginalized,  another

observation common to several network studies, especially in regards to adolescent school networks.83–

85

The explanatory variables taken into consideration could thus be divided into three categories,

namely: controls, network vertex characteristics, and characteristics of friends. The control variables

were sex,  age,  education,  and per-capita monthly family income, all  collected through the Wave 2

questionnaire, as discussed in the Methods section. These factors have been shown to be associated

with BMI on an individual level in Brazilian populations.86–88 Their inclusion therefore controls for

possible confounding effects. For example, if BMI and degree are negatively correlated in a model that

includes education, the correlation cannot be explained by both lower BMI and greater degree resulting

from a greater level of education; the correlation exists even within a fixed education level. 

The network  vertex  characteristics  taken into  consideration  were  the  in-degree,  out-degree,

undirected-degree, betweenness centrality, eigenvector centrality, and local clustering coefficient. As

described in the Theoretical Foundation section, in-degree is a measure of the number of people who

consider you a friend, and it can be thought of as a measure of popularity. A low in-degree could serve

as an indicator of social marginalization.83 When paired with a low out-degree, it could indicate social

isolation, and when paired with a normal or large out-degree, it could indicate a discrepancy between

mutual and ego-perceived friendships.85 Given that friendship nominations were limited to five, and not

confined to active Wave 2 participants, inclusion of undirected degree is a method of measuring social

connectedness under the assumption that all friendships, regardless of their directionality, might in fact

tend to be mutual.  Aside from degree,  measures of centrality – namely betweenness centrality and

eigenvector centrality – were included to assess whether those with larger BMIs might be more or less

central to an at-work social network. If betweenness centrality were negatively correlated with BMI, it
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would suggest that more overweight individuals are less likely to connect distinct friend groups. If

eigenvector centrality were negatively correlated with BMI, it would suggest that more overweight

individuals are less likely to make “popular” friends. These variables thus provide more nuance in an

assessment  of  the  social  marginalization  –  or  lack  thereof  –  of  overweight  and obese  adults  in  a

workplace. 

Finally, the friend BMI characteristics were included to assess whether or not friends generally

share similar BMIs. While a sectional analysis would not permit conclusions regarding the cause of

BMI clustering, it could identify whether or not such clustering exists in ELSA-RioSC, as it does in

other adult  social networks.65,82  Studies of those networks and others have also suggested that the

directionality of friendships is important. Among adults, evidence suggests that BMI is more strongly

associated between mutual friends,65,82 while at least one study of an adolescent network has suggested

that the opposite is true.89 Furthermore, in unidirectional friendships, the BMI of an individual is more

likely to be associated with the BMIs of those he or she cites as friends than with those who cite the

individual as a friend.65,90 Inclusion of the average BMI of the friends an individual cites, the average

BMI of  those  who cite  an individual  as  a  friend,  and the average  BMI of  bi-directional  (mutual)

friendships – all  measured in Wave 2 – in the model for individual Wave 2 BMIs allowed for an

assessment  of  the importance of  friendship directionality  in  associations  between friends'  BMIs in

ELSA-RioSC. The average BMI of cited friends was weighted by the order in which friends were cited,

as described in Equation [9]. 

[9] OFW=

∑
1

5
1
i
×BMI i

∑
1

5
1
i

where  OFW  represents the weighted average BMI of “out”, or cited, friends, and BMIi represents the

BMI of the ith cited friend.  The hypothesis was that an individual would cite closer friends first, and

that the BMI of closer friends, like mutual friends, might be more highly correlated with an individual's

own BMI, as was found in at least one other study.82 A measure of the proportion of an individual's

friends who are overweight or obese was also included, the hypothesis being that an individual with a

greater proportion of overweight friends might tend to have a greater BMI, even when the average BMI

of his or friends is normal. This was found to be the case in Trogdon, et al.91 

A summary of the control characteristics, network vertex characteristics, and characteristics of
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friends can be found in Table 1.

Average annual percent change in BMI

Regardless of whether or not BMI clusters in a friendship network at a specific point in time, it

is  possible  that  friends'  BMIs tend to  change in  similar  ways.  While  friendship tie  data  was only

collected for Wave 2, if at-work friendships are assumed to stay relatively constant over  2-6 years (the

time between the two ELSA Waves), the association between friends' BMIs – or the average change in

friends' BMIs – and the average annual percent change in an individual's BMI can be estimated. As in

the case of the Wave 2 sectional analysis, several possible mechanisms could lead to correlated changes

in  BMI  among  friends:  friends  could  respond  to  a  shared  environment  similarly  (confounding),

friendships could form around similarities in exercise and eating habits (homophily), or friends could

affect one another's exercise and eating habits over time (induction). 

As  described  in  the  Introduction,  one  study  of  an  adult  social  network  concluded  from

longitudinal data that an individual is more likely to gain weight after his or her friends gain weight,

and  changes  in  mutual  friends'  weights  are  more  strongly  correlated  than  changes  in  non-mutual

friends' weights. Christakis and Fowler interpreted these results as suggestive of induction,65 but, again

as  noted  in  the  Introduction,  other  studies  questioned  that  interpretation,  recognizing  that  similar

patterns  of  directionality  and  time-lag  might  have  resulted  from  behavioral  homophily  or  shared

environment.66,67 In the case of behavioral homophily, a friendship could form around shared unhealthy

eating habits, which would lead to higher probabilities of both one friend already being obese and of

the other friend, if non-obese, becoming obese at a later point in time. A shared environment could also

increase the probability of both friends becoming obese, even if that process took longer in one friend

than in the other. In either case, if friendships are assumed to form on the basis of shared environments

or behaviors, the strongest friendships would be expected to show the strongest correlations.67 

Even where the causes of friend-associated weight change are debated, research has indicated

that  the  association  exists  in  both  adolescent  and adult  networks.65,90,92 Social  networks  and social

support have also been found to affect the success of weight-loss interventions,64,93 and models have

indicated  that  public  health  policies  targeting  obesity  within  a  social  context  would  prove  more

effective in addressing the epidemic than current strategies.71 

The average annual percent change in an individual's BMI was calculated according to Equation

[10]: 
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[10] Average %Change per Year=
Variable2−Variable1

Variable1∗(Age2−Age1)
∗100%

where the subscript indicates the wave in which the data was collected, and where “Variable” in this

case refers to BMI. In determining the most appropriate model, the same three types of explanatory

variables were considered as in the sectional analysis, namely: controls, network vertex characteristics,

and characteristics of friends. 

The control variables were categorical age, education level, per-capita monthly family income

(now at Wave 1), and percent annual change in per-capita monthly family income (again calculated

according to Equation [10]). As in the sectional analysis, these variables were included to control for

some of the socioeconomic factors previously reported to correlate with BMI in Brazilian adults. The

change in per-capita income was included to control for the possibility that an increase or decrease in

available funds might lead to a change in diet, activity, or lifestyle, thereby affecting BMI over time. 

The network vertex characteristics were the same as those considered in the sectional analysis

and described in Table 1. The hypothesis was that socially marginalized individuals might be more

inclined to gain weight, independent of their current weight status. Several studies have shown that

people  with greater  levels  of  social  support  are  less  likely to  regain  weight  following weight-loss

treatment,64,94 but those studies applied specifically to individuals trying to maintain new weights. It

was assumed that most of the individuals in ELSA-RioSC were not in this  position, and, given that

eating is a very social activity in Brazil,48 a correlation between social prominence and weight-gain was

also considered plausible in the study population. 

The  friend  characteristics  were  again  equivalent  to  those  considered  for  inclusion  in  the

sectional model, and the data was considered both sectionally (using information from Wave 1 in this

case, rather than Wave 2) and by categorical percent annual change. The former was included to test the

hypothesis that the sectional BMI of a friend might lead an individual to change his or her own BMI,

and the latter to test the hypothesis that independent of the relative BMIs of two friends at a given point

in time, they might experience similar longitudinal changes in BMI. Studies have indicated both that

the sectional BMIs of an individuals' friends might affect the individual's BMI longitudinally92 and that

the  change  in  the  BMI  of  an  individual  is  correlated  with  the  change  in  the  BMI  of  his  or  her

friends.65,90 As in the sectional analysis, the directionality of friendships was taken into consideration, as

several studies found that changes in BMI in mutual friendships and in ego-perceived friendships are

correlated while those in alter-perceived friendships are not.65,90 
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Table 1 – Description of the latent Gaussian model variables

Type Definition

Dependent Variables

BMI.2 Continuous Wave 2 BMI

Average annual percent change in BMI Continuous Calculated according to Equation [10] 

Control Explanatory Variables

Sex Binary
Male or female, collected in both waves with no change.. 
Models fit to data for each sex separately.

Age
Discrete/
Categorical

Reported in years for Waves 1 and 2. The variable was 
considered in discrete form for the Wave 2 sectional analysis 
and categorical form for the longitudinal analysis with the 
following categories: (35,45], (45,55], and (55,70]

Education Categorical
Collected in Wave 2. Three categories: No college; At least 
some college but no graduate school;  College and graduate 
school

Per-capita monthly family income Categorical

Reported as a continuous variable in Waves 1 and 2. The 
variable was considered in categorical form with the following 
categories: (0, 1244], (1244,2487],(2487,3731], (3731,20000]. 
Categories were defined according to agglomerations of the 
income categories specified in the ELSA questionnaire.95

Average annual percent change in per-
capita monthly family income

Continuous Calculated according to Equation [10].

Network Explanatory Variables

Undirected degree Categorical Node undirected degree, ≥ 0. The categories were: 0, 1, 2, 3+

In-degree Categorical Node in-degree, ≥ 0. The categories were: 0, 1, 2, 3+

Out-degree Categorical Node out-degree, 0-5. The categories were: 0, 1-2, 3-4, 5+

Local clustering coefficient Continuous
Calculated according to Equation [4]. When an individual was 
too disconnected to allow for the calculation, the value was 
taken as 0. 

Betweenness centrality Continuous
Calculated according to Equation [2]. When an individual was 
too disconnected to allow for the calculation, the value was 
taken as 0. 

Eigenvector centrality Continuous
Calculated according to Equation [3]. When an individual was 
too disconnected to allow for the calculation, the value was 
taken as 0. 

Friend Explanatory Variables *

Undirected friend average BMI Categorical** Average BMI of all friends (both cited and cited-by).

Out friend average BMI Categorical
Weighted average BMI of all those cited as friends by the 
individual, calculated according to Equation [9].

CONTINUED ON FOLLOWING PAGE
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Friend Explanatory Variables *

In friend average BMI Categorical Average BMI of all those who cited the individual as a friend. 

Mutual friend average BMI Categorical
Average BMI of all those who both cited the individual as a 
friend and were cited as a friend by the individual.

Proportion of overweight friends Categorical

Proportion of cited friends who are overweight or obese, 
divided into four categories: 0, [1/5  - 2/5], [1/2-2/3], and 
[3/4,1]. The variable was only considered sectionally; Wave 2 
data was used for the sectional analysis and Wave 1 data for the 
longitudinal analysis. 

*For  all  of  the  friend  variables,  where  not  otherwise  specified,  the  sectional  analysis  utilized  Wave  2  data  and the
longitudinal analysis utilized both Wave 1 data and the average annual percent change from Wave 1 to Wave 2. 
**All “friend average BMI”variables were divided into three categories:average BMI<25 kg/m2 (underweight or normal
weight), 25 kg/m2≤ average BMI<30 kg/m2 (overweight), and average BMI≥30kg/ m2 (obese).

Exponential random graph model

As previously described, ERGM involves estimation of a set of endogenous (dyad-dependent)

and exogenous (dyad-independent, node- or dyad-level) parameters defining a process that could, with

a reasonable probability, have generated the observed network. Through the inclusion of endogenous

effects,  such as  transitivity  and mutuality,  the  ERGM approach avoids  over-estimation of  network

effects: often new friendships develop in large part as a function of existing friendships rather than as a

function of exogenous factors.84,89 For example, if an overweight individual is friends with two other

overweight individuals, and those individuals become friends – a form of transitivity known as “triad

closure”- that homophilous friendship is likely to have developed at least in part through the shared

friend rather than exclusively through shared attributes, behaviors, or ideas. 

Four endogenous parameters were considered for inclusion in the model, as described in Table

2. The most basic endogenous parameter is a count of the number of edges, which, when combined

with the number of nodes, defines the graph density, as per Equation [5]. The “geometrically weighted

edgewise  shared  partners  distribution”  is  included  as  a  measure  of  transitivity  that  estimates  the

probability of a friendship forming given the number of friends the individuals share (i.e. the number of

triad closures that would result from the addition of a new edge).84 The probability of a directed edge

forming where one in the opposite direction already exists is captured in the “mutual” term, and the

probability that an edge forms given the expected final proportion of isolates to nodes in a network is

captured in the “isolates” term. Inclusion of these parameters is consistent with endogenous parameter

selections in  other  ERGM analyses of  BMI in social  networks.68,84 An endogenous constraint  of a

maximum out degree of 5 was included to account for the “fixed choice” question format in the ELSA

Wave 2 questionnaire.96

39



The exogenous parameters of principal interest were those associated with BMI. The parameter

for “small BMI difference” accounted for the conditional probability of a friendship forming given that

two individuals share a relatively similar BMI. As with the friendship variables of the latent Gaussian

models, this parameter was included to assess whether or not the social BMI clustering observed in

other networks is also present in ELSA-RioSC. The “node sex match”, “node education match”, “node

department match”, and “small age difference” terms control for homophily in some of the factors

associated  with  obesity.86–88 Inclusion  of  these  terms  was  therefore  analogous  to  the  inclusion  of

“control variables” in the latent Gaussian models. 

The strength of the ERGM approach was that it allowed for simultaneous inclusion of both

potentially confounding variables and endogenous effects  in a model assessing the role of BMI in

ELSA-RioSC friendship formation.65,82

Table 2 – Description of the ERGM variables 

Endogenous Variables

     Edges Baseline.  Adds one parameter  equal  to  the density  of  the
graph. 

     Geometrically weighted edgewise shared 
     partners distribution

Adds  a  statistic  based  on  alternating  sums of  k-triangles;
accounts for the role of transitivity in the formation of new
friendship ties

     Isolates Adjusts the probability of a new edge forming according to
the expected proportion of isolates in the final network

     Mutual A parameter affecting the probability of a new edge forming
given that an edge in the opposite direction already exists

Endogenous Constraints

     Max out = 5 A node was restricted to a maximum out-degree of 5.

Exogenous Variables

    Node sex match The conditional  probability of an edge forming given that
the nodes it would join are of the same sex. 

    Node education match The conditional  probability of an edge forming given that
the nodes it would join have the same education level. 

    Node department match The conditional  probability of an edge forming given that
the nodes it would join work in the same department. 

    Small age difference The conditional  probability of an edge forming given that
the nodes it would join are close in age.

    Small BMI difference The conditional  probability of an edge forming given that
the nodes it would join have similar BMIs.
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V. Methods

i. Data collection

ELSA Wave 1

The baseline ELSA-Brasil cohort (Wave 1) included 15,105 participants from five universities

and one research institute, namely: the federal universities of Bahia, Espirito Santo, Minas Gerais, and

Rio Grande do Sul; the University of São Paulo; and the Oswaldo Cruz Foundation (Fiocruz), in the

city of Rio de Janeiro. Wave 1 data was collected between 2008 and 2010 and included a detailed

interview,  clinical  inspection,  and  medical  laboratory  work.  Recruitment  was  limited  to  those

individuals between 35 and 74 years of age either actively employed by or retired from one of the six

institutions. Only the 1,784 Rio de Janeiro (Fiocruz) ELSA participants were considered for the present

study.97 

The Wave 1 variables included in this study were: sex, BMI, age, and family income. BMI was

calculated  according  to  Equation  [1],  and height  and  weight  were  both  measured  by  trained

professionals,  using  standard  techniques  and  equipment.  Sex  (binary),  age  (discrete),  work  type

(categorical) and estimated per-capita monthly family income (continuous) were self-reported in the

interview portion of data collection.97

ELSA Wave 2

Wave 2 was undertaken between 2012 and 2014, with an average of four years (and a minimum

of two and maximum of six) between the two Waves for each participant. Wave 2 again included a

detailed  interview,  clinical  inspection,  and  medical  laboratory  work.  Of  the  1,784  original  Rio

participants, 1,693 (94.9%) were recovered in Wave 2. As with Wave 1, Wave 2 measurements of BMI,

age,  and  income  were  included  in  the  present  analysis,  along  with  self-reported  education  level

(categorical),  and data  from the  newly added “Social  Networks” portion  of  the  Wave 2 interview

questionnaire.  The  Wave  1  variables  re-collected  in  Wave  2  –  namely  per  capita  monthly  family

income, age, weight, and height – were collected in equivalent fashions.

The “Social Networks” section of the Wave 2 questionnaire lay the foundation for this study.95,96

The section included the question “Could you please tell us the complete names of your five closest

friends [at  work],  in addition to  the department and sector  they work in?”,  which allowed for the

construction of a friendship network, as described in the “Network Construction and Characteristics”

section  below.  The  question  format  was  “free  recall”  for  the  names  of  cited  friends,  meaning
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participants were not given a roster on which to base their friend selections. The question was also

“fixed choice”, meaning participants were limited in the number of friends they could cite,  with a

maximum of five.75,96 These formating decisions had important  implications for the social  network

analysis,  as  described  in  the  “Conclusions  and  Discussion”  section  below.  The  most  immediate

implication was that names listed by free recall had to be probabilistically matched to official names

through a linkage process described in the following subsection.

The “Social  Networks” questions were only presented to  to  those ELSA-Brasil  participants

actively employed by an ELSA institution at the time of their Wave 2 interview, which further limited

the size of ELSA-RioSC to 1,521 individuals. The changes in the size of the study population with each

additional eligibility constraint are summarized in Figure 4.

Figure 4 – Flow chart of the change in ELSA-RioSC population size with each additional 
eligibility constraint

42



ii. Linkage

Participants reported the names, work departments, and work sectors of their friends during

interviews without consultation of an official registry of Fiocruz employees. Therefore, the participant-

reported names rarely corresponded exactly to official names. The official names participants were

likely  referring  to  were  retroactively  determined  from  two  databases:  the  directory  of  Fiocruz

employees, and the directory of ELSA participants. The latter was nearly a subset of the former, but

retired ELSA participants, while still eligible to participate in the cohort study, were not included in the

directory of Fiocruz employees. Figure 5 summarizes the relationship between the three databases.

Section I in Figure 5 is the only section that can be considered sociocentric, and the ELSA-RioSC edge

list was comprised only of those edges between individuals in Section 1. The only relevant linkage for

ELSA-RioSC construction, therefore, was the linkage between the free recall list of names and the

directory of ELSA participants, and subsequent discussion will be limited to that linkage process. 

Figure 5 – Venn diagram of the “cited friend”, “ELSA participant”, and “Fiocruz employee”  
databases

Section I represents participant-cited friends who were also ELSA participants and actively employed by Fiocruz; section II
represents retired ELSA participants who were no longer in the database of Fiocruz employees; section III represents all
participant-cited  friends  who  were  not  in  the  Fiocruz  or  ELSA databases,  including  both  retired  non-ELSA Fiocruz
employees and individuals working on the Fiocruz campus but employed by a third party; section IV represents retired
ELSA participants who were cited as a friend by an active participant; and section V represents Fiocruz employees who
were not ELSA participants and were not cited as a friend by any ELSA participants.
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Likely  matches  were  identified  with  the  help  of  a  probabilistic  linkage  software,

OpenRecLink.98,99 OpenRecLink was used to facilitate the name revision process, but all matches were

inspected individually and accepted or rejected according to researchers' evaluations of the uniqueness

of  the match.  The OpenRecLink software compared two databases  – in  this  case,  the  database  of

participant-reported friend names and the database of ELSA participants – and for each entry in one it

found the entries most likely to represent the same individual in the other. To improve the efficiency of

the program, comparisons were limited by “blocks”, where blocks were defined according to exact

matches in one or more of the available fields, namely: work department, work sector, first name, and

last name. In data collection, friends' work departments and sectors were both selected from a list, but

the large number of available options and the wide variation in selected answers for work sector made

it a bad choice for blocking. Furthermore, work sector was only reported for 42% of cited friends. By

comparison, work department was reported for 95% of cited friends. For 94% of cited friends, more

than one name was given. Blocking was therefore done in several steps by work department and by the

Soundex codes of the first and last cited names of friends.

First, blocks were defined by all three factors, and the high probability matches were either

accepted or rejected. Next, blocks were defined by work department and first name Soundex code; by

first  and  last  name  Soundex  codes;  and  by  work  department  and  last  name  Soundex  code.  High

probability matches were again inspected and accepted or rejected. Remaining cited friend names were

then compared to ELSA participant names without blocking. Finally, any cited friend names that had

not  been  matched with  the  assistance  of  the  OpenRecLink program were  manually  inspected  and

compared to the list of ELSA participants to identify remaining likely matches. This process ensured

that the possibility of finding a convincing match was not dismissed even for those cited friends for

whom limited available  information made it  difficult  for OpenRecLink to identify high-probability

matches.

Following linkage, a two-column list of edges was generated, with the first column containing

the interviewed individual (or “ego), the second column containing the cited friend (or “alter”), and

each  row representing one friendship.  This edge list  was sent to the ELSA data center, where  it  was

codified and returned, along with the variables described in the previous sections, namely: sex, type of

work, employment status, age, BMI, family income, and education.  These variables were associated

with the codes rather than the names of the participants. The separation of the linkage process from the

modeling process via codification of the edge-list made it impossible to match participant attributes to
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their names, minimizing any ethical concerns. 

iii. Network construction and characteristics

ELSA-RioSC was limited to those ELSA participants given the opportunity to list their at-work

friends  (i.e.  to  whom the  “Social  Network”  section  was  administered).  ELSA-RioSC edges  were

directed, with some individuals only being cited as a friend, some only citing friends, some both citing

and being cited, and some neither citing nor being cited (isolates). Figure 6 shows a simplified model

of the directional friendship data. The area in blue represents the ELSA-RioSC sociocentric network,

whereas the area in green, which includes non-ELSA Fiocruz employees and ELSA participants who

had  retired  from  Fiocruz  or  did  not  participate  in  Wave  2,  represents  a  mixed  sociocentric  and

egocentric network.  The individuals from Section III  of Figure 5 are not  included in the Figure 6

model, which includes only those participant-reported friends who were reasonably matched to current

or retired Fiocruz employees. Given the fixed choice format of the social network section of the ELSA

Wave 2 questionnaire, the sociocentric graph had a maximum possible density of 0.0066, which would

have resulted from all 1,521 individuals citing exactly five friends, all also actively employed Wave 2

ELSA participants.

Several graph characteristics were calculated for ELSA-RioSC – namely the in-degree, out-

degree,  and undirected degree distributions, the graph density, the global clustering coefficient, the

degree  of  reciprocity,  the  average  path  length,  and  the  proportion  of  vertices  in  the  weak  giant

component.  Using  Monte  Carlo  methods,  some  of  these  statistics  were  compared  to  those  of

appropriate random graph models, as described in the “Theoretical Foundations and Model Rationale”

section.65,77 Classical  random  graph  models  were  generated  with  the  Erdős–Rényi  algorithm,

preferential attachment models were generated with the Barabási-Albert algorithm, and small-world

models were generated with the Watts-Strogatz algorithm, all using the “igraph” package of  R.100 In

each case, 1,000 random graph models were generated, and the distributions of the relevant statistics

were  compared  to  the  observed  statistics  in  ELSA-RioSC.  The  Erdős–Rényi  and  Barabási-Albert

algorithms allowed for generation of directed graphs, while the Watts-Strogatz algorithm did not. For

the Erdős–Rényi models, the numbers of nodes and edges were set equal to those of ELSA-RioSC. For

the Barabási-Albert models, the number of nodes was set equal to the node count of ELSA-RioSC, and

the remaining parameters were left at their default values, as these were found to generate an edge

count similar to that of ELSA-RioSC. For the Watts-Strogatz model, the number of nodes was again
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fixed to the node count of ELSA-RioSC, each vertex was joined to two of its neighbors (one on each

side) in the original lattice, and the rewiring probability was set to 0.35. These parameters were found

to  generate  models  with  undirected  degree  distributions  that  best  approximated  the  ELSA-RioSC

degree distribution. 

Figure 6 – Simplified graph of egocentric and sociocentric ELSA-obtained friendship data

The area in blue shows a simplified model of ELSA-RioSC, the sociocentric network. The area in green shows that the
egocentric networks of each ELSA participant extends beyond the Wave 2 actively employed ELSA community. 

iv. Generalized linear models and latent Gaussian models

The BMI data was analyzed separately for men and women, and for each sex, two models were

developed: one for Wave 2 sectional BMI, and the other for the average annual percent change in BMI

from Wave 1 to Wave 2, as previously described in the “Model Rationale” subsection. For both the

sectional and longitudinal data,  decisions regarding which variables to include in  the models were

made  through  generalized  linear  modeling.  Likelihood  ratio  testing  (LRT)  was  used  to  determine

whether or not the addition of a given variable significantly improved the model fit, with a p-value less

than or equal to 0.20 deemed significant. Variables were added in a step-wise fashion: beginning from
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models including only age, the independent addition of each remaining control variable was tested, and

the variable that led to the greatest improvement in fit (the lowest LRT p-value) was added to the

model.  The  process  was  then  repeated  until  no  further  control  variables  improved  the  model  fit

significantly, then the inclusion of network and friend variables were tested via the same mechanism.

Once the variables for the final model had been determined, Bayesian methods were used to estimate

coefficients for a latent Gaussian model with the same set of variables, and the impact of including

three different latent Gaussian effect models was assessed through between-model comparisons of the

Deviance Information Criteria  (DIC) and the Watanabe-Akaike Information Criterion (WAIC).  The

latent effect models tested were: an independent random variable model (“iid”), a spacial effect model

(“besag”), and a model combining spacial and random effects (“bym”). 

Variable inclusion determinations were made using the “glm” and “add1” functions of the R

package. Latent Gaussian models were fit using the “INLA” package.80 

Missing Data

Wave 2 BMI data was unavailable for 20 of the 1,521 ELSA-RioSC nodes. The average of the

Wave 1 BMIs of these individuals, 29.4 kg/m2, was potentially significantly greater than the ELSA-

RioSC overall Wave 1 BMI average, 27.1 kg/m2, with a one-sided t-test returning a p-value of 0.081. It

was therefore deemed important to address the missing BMI data where possible. For 15 of the 20

individuals,  Wave  2  weight  was  available  but  height  was  not.  In  these  cases,  Wave  2  BMI  was

calculated from Wave 1 height under the assumption that height would not have changed significantly

for most adults in a two to six year time frame. The remaining 5 individuals were not included in the

models. Their Wave 1 BMIs were still greater on average than those of the network at large, at 29.3

kg/m2 (t-test p-value of 0.372), but a loss of five individuals was considered less likely to significantly

impact the results than a loss of twenty individuals.

Aside from Wave 2 BMI, the only other categories with missing values were the age at Wave 2

(one missing) and the per-capita monthly family income at Wave 1 (two missing). For the missing

Wave 2 age , the average age difference from Wave 1 to Wave 2 of 4 years was added to the age at

Wave 1. For the two missing Wave 1 income data points, the average annual change in income for the

age groups to which the individuals belonged was multiplied by their age changes from Wave 1 to

Wave 2. This product was then subtracted from the Wave 2 income to arrive at an estimate of the Wave

1  income.  Given  the  limited  extent  of  the  missing  age  and  income  data  –  affecting  a  total  of  3
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individuals – the impact of these estimations on model fits was likely minimal.

Of  the  1,521 individuals  in  ELSA-RioSC, therefore,  1,516 were  ultimately  included in  the

sectional and longitudinal generalized linear and latent Gaussian models. 

Sectional Wave 2 BMI

Visual inspection of the male and female Wave 2 BMI probability densities – Figure 7 – showed

a positive skew. Both generalized linear models and latent Gaussian models operate on an assumption

of  normally  distributed  residuals,  and  while  a  skew in  the  BMI  distribution  does  not  necessarily

correspond to a skew in the residual distribution after a model has been fit, it seemed possible that a

gamma distribution would better fit the data than a Gaussian one. The Shapiro-Wilk test returned p-

values of 7.934e-13 and 8.246e-13 for the male and the female data, respectively, leading to rejection

of the null hypothesis that the data was sampled from a population with normally distributed BMI.

Generalized linear models were fit using both gamma and Gaussian distributions (both with identity

link functions) and compared through analyses of the residuals and the Akaike Information Criterion

(AIC). The distribution deemed most appropriate was then used for the latent Gaussian model. 

Figure 7 – Probability densities for male and female sectional Wave 2 BMI

The figure clearly indicates the rightward skews of the distributions. The vertical dotted lines marking the average BMI for
each sex show that males and females shared nearly identical averages, but the distributions for each sex were markedly
different. 
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Average Annual Percent Change in BMI from Wave 1 to Wave 2

The average annual percent change in BMI was calculated according to Equation [10]. It was

thus a continuous variable with a range including negative and positive values. As with the Wave 2

sectional data, the densities of the average annual percent change in BMI for both men and women

were skewed to the right, as shown in Figure 8. The Shapiro-Wilk test returned a p-value of less than

2.2e-16 for both sexes. It was again suspected that a non-Gaussian probability distribution might better

model the data than a Gaussian one, but a gamma distribution – favored for the sectional analysis –

does not accept negative values. To account for this fact, the data was shifted to the right by 10 annual

percentage points such that every value became positive. When the shifted data was then modeled with

a gamma distribution with an identity link function, the intercept was the only coefficient affected, and

it simply required a 10 unit reduction for proper interpretation. The GLM results obtained using gamma

and Gaussian probability distributions were evaluated and compared through analysis of the residuals

and relative AICs. The more appropriate of the two distributions was then used in the latent Gaussian

model, as in the Wave 2 sectional analysis. 

Figure 8 – Probability densities for male and female average annual percent change in BMI

Distribution of  the average annual percent change in BMI between Wave 1 and Wave 2 for males (blue) and females
(green). The figure shows that the BMIs of most individuals increased between the two Waves, and the distributions for both
sexes appear somewhat skewed to the right. 
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vi. Exponential random graph model

Three exponential random graph models were fit to the ELSA-RioSC Wave 2 data. The first

ERGM included  only  exogenous  variables  (those  listed  in  Table  2).  The  “small  BMI  difference”

parameter  was  defined  by  a  difference  in  BMI  of  four  or  less  kg/m2,  and  10  years  or  less  was

considered a “small age difference.” The exogenous variables deemed significant in the first model –

as with the generalized linear and latent Gaussian models, based on a p-value of 0.20 or less – were

included in the second and third models.  P-values were calculated from the sum of the likelihood

variations  and  the  MCMC variations.  The  “small  BMI  difference”  parameter  was  included  in  all

models regardless of significance as it was of principle interest to this study. 

The second model included the significant exogenous variables from Model 1, the “mutual” and

“isolates” endogenous variables,  and the endogenous constraint  of  a  maximum out-degree of  five.

Model  3  included  the  same variables  as  Model  2  with  the  further  addition  of  the  geometrically-

weighted edgewise shared partners distribution (another endogenous variable). The significance of the

“Small BMI difference” parameter was compared across all three models. If the parameter became

insignificant or less significant with the inclusion of endogenous effects, those effects might partially

explain any apparent social clustering of BMI. 

As the first model only included exogenous factors, it was estimated by MPLE, as described in

the  “Network  Modeling¨  section,  Section  III.iv.  The  second  and  third  models,  including  both

exogenous and endogenous variables, were fit using MCMC estimation procedures. The fits  of the

models were evaluated according to the procedure again described in Section III.iv: a series of graphs

was generated from the estimated parameters, and the in-degrees, out-degrees, and edgewise shared-

partner values in ELSA-RioSC were compared to the distributions of those same characteristics in the

generated series. If the observed values fell within the 95% confidence intervals of the distributions of

generated values, the ERGM was deemed a reasonable estimation of one process that may have led to

the observed ELSA-RioSC friendship network. 
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VI. Results

i. Data collection, linkage and network construction

The 1,521 active Fiocruz employees who were recovered in Wave 2 of ELSA listed a total of

5,405 names in response to the question: “Could you please tell us the complete names of your five

closest  friends [at  work],  in addition to the department and sector they work in?”.  The 5,405 pre-

linkage edge total included repeated names, mis-remembered or mis-recorded names, and names of

individuals who worked on the Fiocruz campus but were not employed by the institute. Given the free-

recall nature of the question, and the limited extent of identifying data (name and work department),

even some names meant to refer to individuals employed by Fiocruz could not be linked with sufficient

confidence to exactly one employee. The linkage process was therefore not expected to match all of the

participant-reported names with Fiocruz employee names. Ultimately, 4,147 reasonable name matches

were found (76.7% of reported friendships), again counting a name multiple times if it was cited by

multiple individuals. 

Of the 4,147 post-linkage friendships, or edges, 1,973 (47.6%) were between Wave 2 active

employees, and these comprised the ELSA-RioSC edge list. 1,189 of the 1,521 individuals in ELSA-

RioSC were connected by an edge to at least one other individual in the network, leaving 332 isolates

(21.8% of the network). Of those 1,189 individuals, 258 were cited as a friend but did not cite any

friends in ELSA-RioSC, 193 cited a friend in ELSA-RioSC but were not cited as a friend, and the

remaining 738 both cited friends within the network and were cited by others as a friend.

 Figure 9 shows the out degree distribution pre-linkage, post-linkage, and post-restriction to

ELSA-RioSC. While most ELSA participants who gave responses to the “Social Networks” section of

the questionnaire provided five names, the distribution shifted post-linkage, as not all cited friends

could be matched to Fiocruz employee names. Once the population of accepted friends was limited to

actively employed Wave 2 participants, the distribution became inverted, with most individuals having

one or two cited friends in the network, and very few having five. The ELSA-RioSC out-degree, shown

in  blue  in  Figure  9,  is  discussed  further  in  the  following  section,  as  are  several  other  graph

characteristics.
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Figure 9 – The shift in the out-degree distribution from pre-linkage to post-linkage to sociocentric
restriction

The  figure  shows  the  shift  in  the  out-degree  distribution  from pre-linkage to  post-linkage (from black  to  gray),  and,
following the linkage process, the shift with the restriction from the egocentric network to the sociocentric ELSA-RioSC
network (from gray to blue). 

ii. Exploratory network characteristics

ELSA-RioSC is  a directed graph with 1,521 vertices and 1,973 edges,  corresponding to  an

average undirected degree for each node of 2.59. The reciprocity of the directed edges, defined in the

“Theoretical Foundations” section (IV.iii), was relatively high at 0.386, indicating that friendships were

often reciprocated, or mutual. The graph density, as defined by Equation [5], was low (0.00085). Given

the fixed choice question design, however, the maximum possible graph density – if each of the 1,521

members of ELSA-RioSC had cited exactly five other ELSA-RioSC members as friends – was only

0.0066, as noted in Section IV.iii. The observed density was therefore 13.0% of the maximum density.

The degree of transitivity in ELSA-RioSC– as measured by the global clustering coefficient (Equation

[6]) – was 0.198. The average undirected path length for vertices in the weak giant component, which

included 70.0 % of ELSA-RioSC vertices, was 12.6. The weak giant component is shown visually in

Figure 10, with the vertices colored by sex and with the sizes of the vertices proportional to categorical

BMI. The in-degree, out-degree, and undirected degree distributions are shown in Figure 11, and the

basic network characteristics are summarized in Table 3. 
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Figure 10 – The weakly connected giant component of ELSA-RioSC

The colors of the nodes correspond to the sexes of the participants, while the sizes of the nodes are proportional to BMI
categories (normal weight, overweight, or obese). 

Figure 12 shows the average degree of an individual's nearest neighbors by the individual's own

degree, where the nearest neighbors are defined as those nodes to which an ego is connected, regardless

of the directionality of that connection. Using degree as a measure of connectivity, the most connected

individuals (those with the highest degrees) tended to have more highly connected friends than the least

connected individuals. For an increase in one in an individual's own degree, the mean degree of his or

her nearest neighbors increased, on average, by 0.190.
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Figure 11 – ELSA-RioSC out-degree, in-degree and undirected-degree distributions

Figure 12 – Average alter degree by ego degree

The blue trend-line shows that individuals with higher degrees (undirected) were more likely to have well-connected friends
than individuals with lower degrees. 
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The graph characteristics were compared to those of various random graph models through

Monte Carlo methods, as described in the Methods section. The degree number and edge number of the

Erdős–Rényi models were defined by the ELSA-RioSC values, so the density in these models was

equal to the observed graph density. The algorithms for the Barabási-Albert and Watts-Strogatz models

did  not  allow  for  precise  density  specification,  but  parameters  were  adjusted  to  approximate  the

observed density.  The density of the Barabási-Albert  models was 0.000657, and the density of the

Watts-Strogatz models was 0.00132. Furthermore, the parameters of the Watts-Strogatz algorithm were

adjusted  so that  the model  produced undirected  degree  distributions  that  approximated the ELSA-

RioSC undirected degree distribution. As noted in the Methods section, this was accomplished through

a K value of two and a rewiring probability of 0.35. Even with these adjustments, the algorithm did not

produce degree distributions that corresponded well to the observed data, as shown in Figure 13. 

Figure 13 – Observed undirected-degree frequencies relative to the distribution of undirected  
degree frequencies in 1,000 iterations of the Watts-Strogatz model

The observed frequency of undirected degrees (in red) and the distribution of undirected degrees from 1,000 iterations of the
Watts-Strogatz  small-world  algorithm  with  K=2  and  a  rewiring  probability  of  0.35  (in  green).  While  these  model
parameters were found to most reasonably approximate the observed data, the figure indicates that it is extremely unlikely
that ELSA-RioSC resulted from a small-world mechanism. 

For the two algorithms that allowed for the generation of directed graphs – namely, the Erdős–

Rényi and Barabási-Albert models – generated in-degree frequencies were compared with the observed

ELSA-RioSC in-degree distribution. Figure 14 shows the intervals that captured 95% of the generated
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frequency values for each in-degree for the Erdős–Rényi (classical random graph) and Barabási-Albert

(preferential attachment) models in green and blue respectively. The observed in-degree frequencies of

ELSA-RioSC, shown in red in Figure 14, generally did not fall within those confidence intervals, but at

higher in-degrees (3+), the observed in-degree distribution fell  within the range of relatively likely

Erdős–Rényi values. 

The  high  degree  of  reciprocity  observed  in  ELSA-RioSC (0.386)  was  well  outside  of  the

interval capturing 95% of the degrees of reciprocity for the Erdős–Rényi models: [0, 0.00304]. By

algorithm design, Barabási-Albert models contain no reciprocated friendships. 

Figure 14 – Observed in-degree frequencies relative to the distributions of in-degree frequencies 
in iterations of the Barabási-Albert and Erdős–Rényi models

Comparison  of  the  ELSA-RioSC  observed  in-degree  frequencies  (in  red)  with  the  ranges  that  included  95%  of  the
frequencies  generated  through  Monte  Carlo  methods  with  the  Erdős–Rényi  (in  green)  and  Barabási-Albert  (in  blue)
algorithms. 

The statistics  calculated  under  the  interpretation  of  all  ELSA-RioSC edges  as  undirected –

namely the average path length, and the global clustering coefficient – further demonstrated that none

of the three relatively simplistic random graph models described the observed data appropriately. The

transitivity in ELSA-RioSC, 0.198, was again well outside of the 95% interval for all of the random
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graph  models:  [0,  0.00402],  [0.00235,  0.00235],  and  [0,  0.00254]  for  the  classical,  preferential

attachment, and small-world models, respectively. The ELSA-RioSC average path length (12.6) fell

within the relatively likely range of values for the small-world model, but not for either of the other two

model types, as shown in Figure 15. 

Figure 15 – Observed average path length relative to the distributions of average path lengths in 
iterations of three random graph models

The figure shows the ELSA-RioSC average path length – 12.6, denoted by the red dashed line – relative to the distributions
of average path lengths generated with three random graph model algorithms, as labeled on the x-axis.

Table 3 – Summary characteristics of ELSA-RioSC

General Type Directed, sociocentric

Vertices 1,521

Edges 1,973

Centrality Average degree 2.59

Density Graph density 0.000853

Global clustering coefficient 0.198

Reciprocity 0.386

Connectivity Proportion of vertices in weak giant component 0.700

Average path length 12.6

In  summary,  the  observed  in-degree  was  best  approximated  by  the  Erdős–Rényi  model,
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although that approximation was only reasonable for in-degrees above two, and the average path length

was best approximated by the Watts-Strogatz model. None of the models appropriately approximated

more than one of the relevant network statistics. It was therefore deemed very unlikely that ELSA-

RioSC developed via a a mechanism similar to those used to generate these three types of random

graph models. These results justified the development of an ERGM that might better fit the data. The

ERGM results are described below. 

iii. Vertex attributes

The distributions of attributes within the ELSA-RioSC network are summarized in Table 4. The

distribution of BMI among men was significantly different than among women, as shown in Figure 16,

and  individuals'  BMIs  generally  increased  from Wave  1  to  Wave  2,  as  shown  in  Figure  8.  The

unidirectional paired Wilcoxon test gave p-values of less than 2.2e-16 for both the male and female

BMI data,  leading to  rejection of the null  hypotheses that,  on average,  BMIs did not significantly

increase from Wave 1 to Wave 2. Figure 17 shows that this increase was not simply due to an aging

cohort; the distribution of BMI for both sexes was not significantly different across age groups at either

Wave 1 or Wave 2, and within age groups, the BMI distribution either did not change or else shifted

slightly towards higher values from the first wave to the second.

Figure 16 – Male and Female BMI probability densities at Waves 1 and 2

The Wave 1 and Wave 2 BMI distributions for both males (blues) and females (greens). For both sexes, the BMI distribution
shifted significantly to the right from Wave 1 to Wave 2. 
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Figure 17 – Wave 1 and Wave 2 BMI distributions by age group for each sex

The figure shows that the BMI distributions either remained relatively constant or shifted towards higher BMIs within all
age groups for both males and females. 

Table 4 provides a summary of the distributions of each of the vertex attributes by category,

stratified by sex. ELSA-RioSC was 48.4% male and 51.6% female. At Wave 1, 64.9% of participants

were either overweight or obese, and by Wave 2, 69.4% of participants fell  into one of those two

categories. The proportion of participants who were obese also rose from 23.5% in Wave 1 to 28.2% in

Wave 2. A smaller proportion of females than males were overweight at both Wave 1 and Wave 2, but a

much greater proportion of females than males experienced a “large gain” in BMI – defined as a 2-20%

average  annual  increase  -  between  the  first  and  second  Waves  (10.2% and  24.3% for  males  and

females, respectively). Whereas the proportions of males and females who were obese at Wave 1 were

relatively  similar  (  23.0%  and  24.1%,  respectively),  by  Wave  2,  30.2%  of  females  were  obese

compared to  only 26.0% of males.  Even so,  at  Wave 2 a greater percentage of males were either

overweight or obese (73.7%) than females (65.1%), owing to the significantly greater proportion of

overweight males. 
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Table 4 – Summary of the categorical distributions of  ELSA-RioSC nodal attributes by sex

Variable Male Female Total

n = 748 n = 773 N = 1521 (100%) 

Wave 2

Weight Status1 *    

     Underweight or    
     Normal

196 (26.3) 269 (34.9) 465 (30.7)

     Overweight 355 (47.7) 269 (34.9) 624 (41.2)

     Obese 194 (26.0) 233 (30.2) 427 (28.2)

Age Group

      (30,45] 144 (19.3) 159 (20.6) 303 (19.9)

      (45,55] 351 (46.9) 369 (47.7) 720 (47.3)

      (55,75] 253 (33.8) 245 (31.7) 498 (32.7)

Family Income Class101

      ≤R$1,244 114 (15.2) 59 (7.63) 173 (11.4)

      R$1,245-2,487 279 (37.3) 226 (29.2) 505 (33.2)

      R$2,488-3,741 177 (23.7) 219 (28.3) 396 (26.0)

      ≥R$3,742 178 (23.8) 269 (34.8) 447 (29.4)

Education Level

     No college 242 (32.4) 153 (19.8) 395 (26.0)

     College +/- Specialization 235 (31.4) 252 (32.6) 487 (32.0)

     Graduate degree 271 (36.2) 368 (47.6) 639 (42.0)

Wave 1

Weight Status1

     Underweight or Normal 218 (29.1) 316 (40.9) 534 (35.1)

     Overweight 358 (47.9) 271 (35.1) 629 (41.4)

     Obese 172 (23.0) 186 (24.1)  358 (23.5)

Family Income Class4

      ≤R$1,244 232 (31.0) 145 (18.8) 377 (24.8)

      R$1,245-2,487 323 (43.2) 383 (49.5) 706 (46.4)

      R$2,488-3,741 121 (16.2) 135 (17.5) 256 (16.8)

      ≥R$3,742 72 (9.63) 110 (14.2) 182 (12.0)

CONTINUED ON FOLLOWING PAGE
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Variable Male Female Total

Wave 1 → 2

Average annual percent change 
in BMI *

     Large loss (-20, -2] 39 (5.23) 31 (4.02) 70 (4.62)

     Small loss (-2, -0.5] 120 (16.1) 98 (12.7) 218 (14.4)

     No change (-0.5, 0.5] 232 (31.1) 176 (22.8) 408 (26.9)

     Small gain (0.5, 2] 278 (37.3) 279 (36.2) 557 (36.7)

     Large gain (2, 20] 76 (10.2) 187 (24.3) 263 (17.3)

Average income change per year

     Loss (-25, -5] 51 (6.81) 52 (6.73) 103 (6.77)

     No change (-5, 5] 170 (22.7) 137 (17.7) 307 (20.2)

     Small gain (5, 15] 220 (29.4) 238 (30.8) 458 (30.1)

     Medium gain (15, 25] 152 (20.3) 170 (22.0) 322 (21.2)

     Large gain (25, 500] 155 (20.7) 176 (22.8) 331 (21.8)

*The 5 individuals (3 male, 2 female) for whom Wave 2 BMI was unavailable and could not be reasonably estimated were
omitted from these sections. They therefore total to 1,516, whereas the categories of every other variable total to 1,521. 

Of the 1,521 individuals in ELSA-RioSC, 332 were isolates, meaning they were not connected

by an edge to any other individual in the network. The average BMIs of both the 172 male and 160

female isolates were greater than the average BMIs of the non-isolates, but possibly not significantly

so, with one-sided t-test p-values of 0.110 and 0.360 for males and females, respectively. Income, age,

and education level were similar for the isolates and the non-isolates. 

iv. Generalized linear models and latent Gaussian models

Sectional Wave 2 BMI

As described in the Methods section, generalized linear modeling was used to determine which

variables significantly improved the sectional Wave 2 BMI model fits for both males and females.

Models  with  Gaussian  and  gamma  probability  distributions  (with  identity  link  functions)  were

considered, and analysis of the residuals and comparison of the AICs of the models indicated that the

gamma distribution was more appropriate for both the male and female data. Latent Gaussian models

for each sex were then fit with those variables determined through GLM to be important, again using a

gamma distribution with an identity link function, and the models with no latent effects were compared

61



to  models  with random latent  effects,  network latent  effects,  and both network and random latent

effects.

Table 5 shows the results for the crude model – where each variable was considered in isolation

– and for the final model. The crude coefficients are those of the generalized linear models, whereas the

final model coefficients are those of the Bayesian latent Gaussian models with random latent effects,

estimated through integrated nested Laplace approximation. The models with network latent effects

were deemed inappropriate and rejected, as discussed below. Figures 18 and 19 show the quality of the

fits of the final generalized linear models for males and females, respectively, before the conversion to

latent Gaussian models and the inclusion of structured latent effects. In both figures, the “Normal Q-Q”

plots show that the residuals were not normally distributed at relatively extreme values (2 or more

standard deviations from the mean). The Shapiro-Wilk test for the residuals of the final generalized

linear models gave a p-value of 1.98e-14 for the male model and a p-value of 2.54e-13 for the female

model, suggesting that the GLM assumption of normally distributed residuals was not met in either

case. 

Table 5 – Results for the sectional models of Wave 2 BMI
Male Female

Variables Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Intercept 27.8 (0.167) *** 26.6 (1.343) *** 27.8 (0.188) *** 30.1 (1.79) ***

Age 0.00304 (0.0231) 0.006 (0.0225) 0.0274 (0.0268) 0.0034 (0.0266)

Categorical income

     ≤1244 --------------------- --------------------- --------------------- ---------------------

     (1244, 2487] 0.0734 (0.504) 0.210 (0.494) -2.286(0.819)*** -1.583 (0.778) **

     (2488, 3741] 0.944 (0.551) ** 1.01 (0.540) ** -3.358 (0.816) *** -1.970 (0.807) **

     ≥3742 -0.513 (0.539) -0.355 (0.529) -3.641 (0.801) *** -2.03 (0.811) **

Education level

     No college --------------------- --------------------- ---------------------

     Some college → 
College complete with specialization

0.0461 (0.419) -1.942 (0.549) *** -1.53 (0.561) ***

     Graduate degree 0.123 (0.405) -3.330 (0.512) *** -2.62 (0.566) ***

Out degree

     0 --------------------- ---------------------

     1 -0.381 (0.438) -0.0459 (0.493)

     2 -0.289 (0.452) -0.0996 (0.514)

     3+ 0.0709 (0.490) -0.398 (0.549)

CONTINUED ON FOLLOWING PAGE
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Male Female

Variables Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

In degree

     0 --------------------- ---------------------

     1 -0.108 (0.415) -0.308 (0.482)

     2 -0.455 (0.503) -0.416 (0.529)

     3+ -0.332 (0.482) -0.304 (0.545) 

Undirected degree

     0 --------------------- --------------------- ---------------------

     1-2 -0.551 (0.455) -0.186 (0.524) 0.221 (0.590)

     3-4 -0.453 (0.488) 0.5614 (0.570) 1.11 (0.735) *

     5+ -0.490 (0.530) -0.991 (0.578) ** -0.232 (0.785)

Betweenness centrality 37.0 (32.0) 37.4 (31.9) * -32.0 (33.6) 

Eigenvector centrality -0.232 (2.08) 0.750 (6.50)

Clustering coefficient -0.694 (0.664) 0.415 (0.671)

Undirected friend average BMI

     (1,25] --------------------- --------------------- ---------------------

     (25,30] 0.688 (0.483) * 0.906 (0.541) * 0.260 (0.529)

     (30,60] 1.08 (0.587) ** 1.51 (0.648) ** 0.411 (0.641)

      none 1.14 (0.546) ** 1.09 (0.544) ** 0.400 (0.614)

In friend average BMI

     (1,25] --------------------- --------------------- ---------------------

     (25,30] 0.600 (0.535) 1.18 (0.560) ** 0.987 (0.536) **

     (30,60] 1.27 (0.639) ** 0.935 (0.674)* 0.195 (0.640)

      none 0.885 (0.520) ** 1.17 (0.549) ** 0.944 (0.645) *

Out friend weighted average BMI

     (1,25] --------------------- ---------------------

     (25,30] 0.174 (0.499) 0.561 (0.547)

     (30,60] 0.518 (0.593) 0.530 (0.632)

      none 0.435 (0.494) 0.556 (0.540)

Mutual friend average BMI

     (1,25] --------------------- ---------------------

     (25,30] 0.652 (0.672) 0.915 (0.685) *

     (30,60] 0.342 (0.792) 0.683 (0.789)

      none 0.811 (0.564) * 1.14 (0.552) **

Proportion of friends cited who were 
overweight

     0 --------------------- --------------------- ---------------------

     [1/5, 2/5] -1.91 (1.21) * -1.75 (1.22) * -0.0421 (0.879)

     [1/2, 2/3] 0.319 (0.494) 0.00840 (0.571) -0.425 (0.550)

     [3/4, 1] -0.385 (0.370) -0.794 (0.501) * 0.213 (0.431)

The superscripts in the tablet indicate significance based on the p-value of the Likelihood Ratio Test, where *** indicates
p<0.01; ** indicates p<0.1; and * indicates p<0.2. 
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The change in the coefficient estimates was extremely small in the transition from the final

generalized linear models to the latent Gaussian models with no latent effects. Figures 20 (male) and 21

(female) show the change in the coefficients from the latent Gaussian models with no latent effects to

the models with random latent effects, network-structured latent effects, and both random and network

latent  effects.  As  those  figures  show,  inclusion  of  a  neighborhood  structure  in  the  latent  effect

significantly shifted the coefficient estimates and decreased the precision of those estimates, especially

for  network-related  variables,  like  undirected  degree  in  the  female  model  and  average  BMI  of

undirected friends in the male model. The use of these network-structured latent effects was ultimately

rejected.  Network-based  variables  were  already  included  in  the  final  models,  and  to  also  include

network information through latent effects was deemed redundant; it added little or no information and

greatly reduced the precision of coefficient estimates. 

Figure 18 – Analysis of the residuals of the final GLM male Wave 2 BMI model

The plots show that none of the points had an out-sized impact on the model fit,  but also that the residuals were not
normally distributed at the extremes (past two standard deviations from the mean). 
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Figure 19 – Analysis of the residuals of the final GLM female Wave 2 BMI model

As with the male model, none of the points had an out-sized impact on the model fit, but again, the residuals were not
normally distributed at the extremes (past two standard deviations from the mean). This was not as significant in the female
model as in the male model. 

Figures  20  and 21 also  show that  the  coefficient  estimates  changed only  slightly  with  the

inclusion of a latent independent and normally distributed random variable (the shifts from black to

blue). Comparison of the WAICs of the models with and without this random latent effect indicated that

both the male and female models benefited from its inclusion, with the male model WAIC improving

from 4324  to  4284  and  the  female  model  WAIC improving  from 4631  to  4598.  The  coefficient

estimates in the “Final” model columns of Table 5 are therefore from Bayesian latent Gaussian models

with random latent effects. 
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Figure 20 – Shifts in the latent Gaussian coefficient estimates for the male Wave 2 BMI model 
with the inclusion of latent field models

The change in the coefficient estimates for the male latent Gaussian models from a model with no latent effect (black) to one
with random (blue), network (red), or both random and network (green) latent effects. 
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Figure 21 – Shifts in the latent Gaussian coefficient estimates for the female Wave 2 BMI model 
with the inclusion of latent field models

The change in the coefficient estimates for the female latent Gaussian models from a model with no latent effect (black) to
one with random (blue), network (red), or both random and network (green) latent effects. 

The final male model included the control variables age and income level; the network variable

betweenness centrality; and the friend variables “undirected friend average BMI”and “proportion of

overweight friends”, as defined in Table 1. The final female model included the control variables age,

education, and income level; the network variable undirected degree; and the friend variable “in-friend

average BMI”, again as defined in Table 1. For both males and females, age was not significantly

associated with Wave 2 BMI, but as with sex, age is a biological property known to affect how one

responds to energy consumption and expenditure.  It was therefore included in all  possible models,

regardless  of  LRT p-values.  The  only  other  variable  included  in  both  the  male  and  female  final
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sectional models was income level. In women, income level and BMI were negatively correlated, with

lower income levels generally corresponding to greater BMIs. The BMIs of those women in the highest

income group were, on average, 2.03 kg/m2 less than the BMIs of those women in the lowest income

group , when all other variables were kept constant. The association between BMI and income for

males was less clear: BMI was significantly greater only for those males in the upper-middle income

group (compared with those in the lowest income group). Beyond age and income level,  the final

female model also included the additional control variable “education level”, which again showed an

inverse relationship to  BMI and was positively associated with income level:  women with greater

levels of education tended to earn more and weigh less. 

In regards to network variables – variables measuring an individual's role or relative position in

ELSA-RioSC – males with greater betweenness centralities tended to have greater BMIs, and females

with intermediate undirected degrees tended to have greater BMIs than females with no ELSA-RioSC

friends or five or more friends in the network. Neither of these associations was particularly significant

– the p-value for the inclusion of betweenness centrality in the male model was 0.156 and the smallest

p-value  for  inclusion  of  categorical  undirected  degree  in  the  female  model  was  0.138  (for  those

individuals  with  a  degree  of  3  or  4)  –  but  both  indicated  that,  if  anything,  greater  popularity  or

centrality in ELSA-RioSC was associated with greater weight.

The association between an individual's BMI and the BMI of his or her friends was more clear

in the male model than in the female model. For males, an individual's BMI was positively associated

with the BMI of his friends. If the mean of his friends' BMIs fell within the “obese” category, the

individual had, on average, a BMI 1.51 kg/m2 greater than if the mean of his friends' BMIs fell within

the “normal” weight category, controlling for all other variables. Males with no friends in the network

on average had a BMI 1.15 kg/m2 greater than those with a normal “undirected friend average BMI”.

The  “in-friend  average  BMI”  term  in  the  female  model  indicated  that  if  the  mean  BMI  of  the

individuals who cited a woman as a friend fell in the overweight category, the BMI of the woman was,

on average, 0.987 kg/m2 greater than the BMI of women cited as friends by individuals whose average

BMI fell in the normal weight category. The BMI of women not cited as a friend by anyone was also on

average significantly greater (p-value 0.129) than the BMI of women in the baseline group (those with

a “normal” in-friend average BMI).
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Average Yearly BMI Change from Wave 1 to Wave 2:

The process for determining a final model for the male and female average yearly change in

BMI was analogous to the process described in the previous section for the sectional models. In this

case, comparison of the AICs and residual analyses indicated that for both the male and female data, a

Gaussian probability distribution was more appropriate than a gamma distribution once the significant

variables had been included. In Table 6, the variables in the “Crude” columns were therefore estimated

using GLM with a Gaussian distribution and an identity link function. As with the sectional Wave 2

analysis, the “Normal Q-Q” plots showed that the residuals were not normally distributed at relatively

extreme values, and Shapiro-Wilk testing of the residuals returned p-values of 3.17e-12 and 5.01e-11

for the male and female models, respectively. The GLM assumption of normally distributed residuals

was thus again violated. 

 As in the sectional models, a latent Gaussian model was fit with the same variables, and again,

the latent effects with network structures (spacial latent effects) were rejected, as they were deemed to

contribute redundant information while greatly increasing the uncertainty of estimates, as shown in

Figures 22 and 23 for the male and female models, respectively. Those figures also show that inclusion

of a latent independent and normally distributed random effect had very little impact on the estimated

coefficients, but the WAIC values improved from 2684 to 2644 for the male model and from 3028 to

3015  for  the  female  model.  The  latent  effect  was  therefore  included  in  the  final  model,  and  the

coefficients in the “Final” columns of Table 6 were estimated using INLA with a latent Gaussian model

with a Gaussian probability distribution and an independent and normally distributed random latent

effect. 
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Table 6 – Results for the average annual percent change in BMI from Wave 1 to Wave 2
Male Female

Variables Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Intercept 0.418 (0.0538) *** 0.539 (0.158) *** 0.956 (0.0623) *** 1.04 (0.153) ***

Categorical Age

     (30, 45] --------------------- --------------------- --------------------- ---------------------

     (45, 55] -0.234 (0.118)** -0.261 (0.119) ** -0.176 (0.135) * -0.175 (0.135) *

     (55, 75] -0.496 (0.154)*** -0.547 (0.155) *** -0.686 (0.197) *** -0.721 (0.197) ***

Categorical income

     ≤1244 --------------------- --------------------- ---------------------

     (1244, 2487] 0.0283 (0.127) 0.0449 (0.127) 0.127 (0.169)

     (2488, 3741] -0.224 (0.165) * -0.232 (0.169) * 0.154 (0.208)

     ≥3742 0.297 (0.198) * 0.296 (0.202) * -0.0702 (0.219)

Average annual percent change in 
income

0.00306 (0.00203) * 0.00400 (0.00210) ** 0.000471 (0.00196)

Education level

     No college --------------------- ---------------------

     Some college → 
College complete with specialization

-0.0825 (0.135) 0.306 (0.178) **

     Graduate degree 0.101 (0.130) 0.141 (0.167)

Out degree

     0 --------------------- ---------------------

     1 -0.0116 (0.141) -0.190 (0.163)

     2 -0.0920 (0.146) -0.101 (0.170)

     3+ -0.201 (0.157) -0.335 (0.182) **

In degree

     0 --------------------- ---------------------

     1 -0.0174 (0.133) 0.136 (0.159)

     2 -0.0687 (0.163) -0.238 (0.175) *

     3+ -0.0525 (0.156) -0.00520 (0.180)

Undirected degree

     0 --------------------- ---------------------

     1-2 -0.106 (0.146) -0.231 (0.174) *

     3-4 -0.160 (0.156) -0.0720 (0.187) 

     5+ -0.0999 (0.170) -0.345 (0.195) **

Betweenness centrality 3.83 (10.1) -9.49 (11.3)

Eigenvector centrality

     0 --------------------- ---------------------

     (0,2e-05] -0.0587 (0.134) -0.0649 (0.159)

     (2e-05,1.0] -0.0259 (0.131) -0.0358 (0.156)

CONTINUED ON FOLLOWING PAGE
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Male Female

Variables Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Clustering coefficient

     0 --------------------- ---------------------

     (0,0.5] -0.0168 (0.135) -0.273 (0.153) **

     (0.5,1] -0.137 (0.219) 0.00295 (0.212)

Undirected friend average BMI

     (1,25] --------------------- ---------------------

     (25,30] 0.103 (0.148) 0.116 (0.160)

     (30,60] 0.161 (0.195) -0.100 (0.219)

      none 0.209 (0.168) 0.260 (0.189) *

Average annual percent change in 
undirected friend average BMI

    No change  (-0.5, 0.5] --------------------- --------------------- ---------------------

    Small loss  (-2, -0.5] -0.357 (0.208) ** -0.284 (0.208) * 0.253 (0.267)

     Large loss (-20,-2] -1.07 (0.564) ** -1.03 (0.560) ** -0.147 (0.562)

     Small gain (0.5, 2] -0.0203 (0.140) -0.0116 (0.139) 0.0220 (0.162)

     Large gain (2, 20] 0.237 (0.233) 0.204 (0.234) -0.0168 (0.237)

     Isolate (No friends) 0.0786 (0.155) 0.140 (0.155) 0.240 (0.186) *

In friend average BMI

     (1,25] --------------------- ---------------------

     (25,30] 0.254 (0.170) * 0.171 (0.180)

     (30,60] 0.253 (0.205) 0.117 (0.232)

      none 0.232 (0.164) * 0.126 (0.175)

Average annual percent change in in 
friend average BMI

    No change  (-0.5, 0.5] --------------------- ---------------------

    Small loss  (-2, -0.5] -0.224 (0.231) -0.0590 (0.282)

     Large loss (-20,-2] -0.829 (0.442) ** 0.0324 (0.456)

     Small gain (0.5, 2] 0.00279 (0.164) -0.121 (0.184)

     Large gain (2, 20] 0.0959 (0.254) -0.170 (0.269)

     No in friends -0.0000214 (0.151) -0.0592 (0.173)

Out friend average BMI

     (1,25] --------------------- --------------------- ---------------------

     (25,30] -0.0643 (0.153) 0.127 (0.173) 0.168 (0.172)

     (30,60] 0.0339 (0.195) -0.251 (0.217) -0.263 (0.215)

      none 0.0654 (0.151) 0.209 (0.170) 0.231 (0.169) *

CONTINUED ON FOLLOWING PAGE
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Male Female

Variables Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Crude
Coefficient (Stand. Dev.)

Final
Coefficient (Stand. Dev.)

Average annual percent change in out
friend average BMI

    No change  (-0.5, 0.5] --------------------- ---------------------

    Small loss (-2, -0.5] -0.463 (0.215) ** 0.319 (0.287)

     Large loss (-20,-2] -0.792 (0.503) * -0.0246 (0.540)

     Small gain  (0.5, 2] -0.221 (0.158) * -0.0327 (0.182)

     Large gain (2, 20] 0.0751 (0.234) -0.0928 (0.230)

      No out friends -0.0726 (0.150) 0.198 (0.174)

Mutual friend average BMI

     (1,25] --------------------- ---------------------

     (25,30] -0.0891 (0.216) -0.0217 (0.226)

     (30,60] -0.0262 (0.260) 0.109 (0.275)

      none 0.104 (0.181) 0.00567 (0.181)

Average annual percent change in 
mutual friend average BMI

    No change  (-0.5, 0.5] --------------------- ---------------------

    Small loss (-2, -0.5] -0.275 (0.295) 0.299 (0.354)

     Large loss (-20,-2] -0.195 (0.491) -0.185 (0.605)

     Small gain  (0.5, 2] -0.289 (0.219) * 0.0445 (0.242)

     Large gain (2, 20] 0.281 (0.345) -0.274 (0.307)

      No mutual friends 0.0204 (0.172) -0.00879 (0.195)

Proportion of friends cited who were 
overweight

     0 --------------------- ---------------------

     [1/5, 2/5] -0.317 (0.294) -0.221 (0.285)

     [1/2, 2/3] -0.0112 (0.156) -0.215 (0.179)

     [3/4, 1] -0.0926 (0.123) -0.137 (0.145)

The superscripts in the table indicate significance based on the p-value of the Likelihood Ratio Test, where *** indicates
p<0.01; ** indicates p<0.1; and * indicates p<0.2. 

72



Figure 22 – Shifts in the latent Gaussian coefficient estimates for the male average annual percent
change in BMI model with the inclusion of latent field models

The figure shows that there was very little  difference in  estimates  with the inclusion of  an independent and normally
distributed random latent effect (black to blue and red to green), whereas the shift and increase in uncertainty with the
inclusion of network structure was significant (blue to green and black to red). The coefficients in blue represent those
included in the “Final” column of Table 6.
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Figure 23 – Shifts in the latent Gaussian coefficient estimates for the female average annual  
percent change in BMI model with the inclusion of latent field models

As with the male data, the figure shows a significant shift in the female model coefficient estimates with the inclusion of
network-structured latent effects but not with independent and normally distributed random latent effects. Again, the blue
estimates represent the coefficients ultimately selected for the final female model. 

Age was the first  variable to enter both the male and female models,  again because of the

biological precedent,  but whereas in the sectional models that inclusion was not significant,  it  was

significant in the models for change in BMI. Both males and females in the middle and upper age

groups on average experienced a lesser percent annual increase in BMI than their peers in the lowest

age group. In the case of males aged 55 to 75, there was even a slight annual percent decrease in BMI

on average,  as the absolute  value of the negative coefficient  (-0.547) was greater  than that  of the

positive  intercept  (0.539).  Income variables  entered the final  male model  but  not  the final  female

model: relative to the lowest income category, individuals from families with average monthly per

capita  incomes  in  the  high-intermediate  range of  R$ 2,488-3,741 showed a  tendency to  gain  less

weight,  whereas  those  in  the  highest  income  category  showed  a  tendency  to  gain  more  weight.
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Additionally, as the average annual change in per-capita monthly family income increased for a male,

he became more likely to have also experienced a more positive change in weight. According to the

model, those men who experienced a 10% average annual increase in income would be expected to

also have experienced, on average, a mean annual BMI change 0.031 percentage points more positive

than the BMI change in men who experienced no alteration in income.

No network position variables entered either of the final models, but each included one variable

pertaining to friends' weight statuses. For the female model, that variable was the out-friend average

BMI at Wave 1: women who cited no friends in the network tended to experience greater increases in

BMI than women who cited friends with, on average, normal BMIs. For the male model, that variable

was the average annual percent change in undirected friend BMIs: men whose friends, on average,

experienced large annual  percent losses in weight also tended to experience less positive (or even

negative) changes in BMI compared to men whose friends, on average, experienced little-to-no change

in  BMI.  The direction  of  this  correlation  held  for  weight  gain  – men whose  friends,  on  average,

experienced large annual percent increases in BMI also tended to experience greater increases in BMI –

but the p-values only indicated significance for the coefficients related to weight-loss in friends. 

v. Exponential random graph model – exploratory analysis

Results from the three exponential random graph models are summarized in Table 7. In the

models  including  only  exogenous  effects  and  in  those  including  both  endogenous  and  exogenous

effects,  two individuals with relatively similar BMIs – within 4 kg/m2   of one another – were not

significantly  more  likely  to  become  friends  than  individuals  with  less  similar  BMIs.  Different

approaches to comparative BMI were tested – namely, matched categorical BMIs (normal weight and

underweight,  overweight,  and  obese)  and  matched  obesity  status  (obese/non-obese)  –  and  those

parameters also did not significantly improve the model fit. Even in a model with only the “small BMI

difference”  parameter  (and  no controls  for  other  exogenous  or  endogenous  effects)  the  parameter

proved insignificant (p-value 0.698). The ERGM results therefore indicated that similarity in BMI was

not a significant factor in predicting friendships in ELSA-RioSC.

Model 1 showed that, of the exogenous parameters, if two individuals were within 10 years of

one another in age, if they were of the same sex, if they worked in the same department, or if they had

approximately the same level of education , they were significantly more likely to become friends. If

individuals were of the same sex, for instance, the probability of a friendship existing between them
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increased  by  159% (exp(0.950)  =  2.59),  given  no  change  in  the  other  statistics.  The  probability

increased even more if individuals worked in the same department. The Model 3 results indicate that

these exogenous factors remained significant even after controlling for endogenous effects. In the final

model, the endogenous parameters most significantly affecting the probability of edge formation were

those controlling for “mutual” and transitive (GWESP) effects, but the “isolates” parameter also proved

significant. As in Model 1, in Model 3 the most significant exogenous parameter was shared work

department. 

Table 7 – Exponential random graph model results

Variables Model 1: Exogenous 
effects

Model 2: Exogenous & 
mutual/isolates effects

Model 3: Complete model

     Edges -9.68 (0.0801) *** -9.25 (0.106) *** -9.01 (0.104) ***

     Small BMI difference -0.00730 (0.0453)  0.0334 (0.0593) -0.00776 (0.0718)

     Node sex match  0.950 (0.0512) ***  0.705 (0.0685) ***  0.656 (0.0735) ***

     Node department match  3.02 (0.0500) ***  2.36 (0.0682) ***  2.27 (0.0707) ***

     Small age difference  0.596 (0.0575) ***  0.514 (0.0855) ***  0.380 (0.0848) ***

     Node education match  0.979 (0.0465) ***  0.788 (0.0735) ***  0.598 (0.0624) ***

     Isolates -------------------  0.495 (0.0833) ***  0.289 (0.0975) ***

     Mutual -------------------  5.505 (0.193) ***  4.77 (0.441) ***

     Geometrically weighted    
     edgewise shared partners 
     distribution

------------------- -------------------  1.13 (0.190) ***

For the superscripts in the table, *** indicates p<0.01; ** indicates p<0.1; and * indicates p<0.2. 

Figure 24 indicates that Model 3 much more appropriately described the observed ELSA-RioSC

network  than  did  the  three  algorithm-based  random  graph  models  from the  Exploratory  network

characteristics section. The observed values of edgewise shared partners, in-degrees, and out-degrees

generally  fell  within  the  distributions  of  relatively  common  values  generated  from  the  estimated

parameters.  This  was  not  the  case  for  low  values  of  edgewise  shared  partners,  with  the  model

overestimating the number of isolated edges and underestimating the number of edges sharing only one

partner, but the shape of the edge-wise shared partners distribution still corresponded relatively well to

the observed distribution. 
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Figure 24 – Analysis of the goodness-of-fit of the final ERGM model

Goodness-of-fit of the complete ERGM (Model 3) for several graph characteristics. Starting in the upper left corner and
moving clockwise, the graphs show the edge-wise shared partner distribution, the out-degree distribution, and the in-degree
distribution. The boxplots in each figure indicate the distributions of the proportion of edges, dyads or nodes with a given
value in the series of networks generated from the ERGM parameters, and the bold, black points and lines indicate the
observed values in ELSA-RioSC. 
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VII. Discussion and Conclusions

This study aimed to construct a sociocentric social network graph from responses to the “Social

Network” section of the ELSA Wave 2 Questionnaire and to use that graph to better understand the

relationship between an individual's at-work social environment and his or her BMI. The former was

achieved through a probabilistic linkage process, and the latter through a combination of generalized

linear, latent Gaussian, and exponential random graph modeling. 

The prevalences of obesity and overweight in the ELSA-RioSC network were well above those

in the city of Rio de Janeiro as a whole: in Rio in 2014, 54.4% of adults were above normal weight and

19.4% were obese,23,24 while during approximately the same time period in ELSA-RioSC, 69.4% of

participants were above normal weight and 28.2% were obese. These results alone justify the use of

anti-obesity strategies targeting institutional environments in the city. An understanding of the social

dynamics of weight gain and weight loss at work will help to inform those strategies. 

The results from the modeling processes, which were of principal interest, are considered first,

followed by a discussion of the representativeness and accuracy of those results given the methods

utilized in data collection and analysis. Possible improvements to those methods and directions for

future research are described next. Finally, the study concludes in considering the implications that the

results presented here may carry for work-place anti-obesity interventions at Fiocruz and beyond. 

i. Discussion of the results

The final latent Gaussian models suggest a sex-dependent relationship between an individual's

BMI and the BMIs of those in his or her social network. In general, males and females with no friends

or few friends showed a tendency for both greater BMIs at Wave 2 and greater average annual percent

increases in BMI from Wave 1 to Wave 2 than did those individuals with some or many friends in the

network. These results might be explained in one of three ways: individuals practicing behaviors that

made them more likely to gain weight were more likely to be socially isolated at work, socially isolated

individuals were more likely to develop behaviors associated with weight gain, or individuals already

perceived as overweight were both more likely to continue gaining weight and less likely to be popular.

To distinguish between these possible explanations, longitudinal friendship data would be required. If

an individual was found to lose friends as he or she gained weight, the third explanation would seem

most reasonable, and if individuals who lost friends over time tended to subsequently gain weight,

evidence would support the second explanation. If individuals with few or no friends were found to

both remain unpopular in the network and to gain weight, the first explanation would be favored. While
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studies of adolescent social networks have shown obese adolescents84,85 and adolescents who practice

some obesity-related behaviors to be more socially isolated,68 similar studies are needed for adult social

networks and more specifically for employee social networks. Studies have also shown that individuals

with less social support are more likely to re-gain weight after a weight-loss intervention,64,94 but again,

more research is needed regarding the role of social isolation (both at work and at home) in normally

changing weight statuses. 

Both the sectional Wave 2 BMI and average annual percent change in BMI for the men in the

network showed a positive correlation with the BMIs of their friends (not separated by sex), but the

relationship between a woman's BMI and the BMIs of her friends was less clear. The data for the men

agrees with data from other studies of adult social networks.65,82 The results do not, however allow for

conclusions  to  be  drawn regarding  the  directionality  of  these  associations:  friendships  could  form

around  similar  BMIs  or  similar  eating  and  exercise  habits,  friends  could  respond  to  obesogenic

environments similarly, or friends could affect one another's attitudes about food and exercise. The

observed relationships between men's BMIs and the BMIs of their friends in the ELSA-RioSC network

could also have resulted from some combination of these factors. Further analysis of homophily and

change in eating and exercise habits could help to distinguish between these competing theories. For

instance,  one  ego-centric  at-work  social  network  study  concluded  that  individuals  who  perceived

healthier eating habits in their coworkers were more likely to consume more fruits and vegetables and

less fat,  and individuals who perceived greater  levels of coworker physical  activity  were likely to

exercise more.102 

It is possible that the BMIs of female ELSA-RioSC participants would be associated with the

BMIs  of  their  female  friends.  A study of  the  social  clustering  of  obesity  noted  associations  were

stronger in same-sex friendships,65 while another did not find that such limitations had a statistically

significant effect.82 A sex-restricted analysis represents an important future extension on the present

study. It is also possible that at-work friendships play a bigger part in men's overall social lives than in

women's overall social lives. If this were the case, female civil servants' BMIs might still reflect the

BMIs of those in their social networks, but the influential parts of their social networks might exist

predominantly outside of the workplace. An egocentric analysis including individuals' at-work and at-

home relationships could help to test this theory. For instance, a future questionnaire could first ask

participants to identify the number of individuals they consider to be close friends and then to indicate

how many of those close friends are coworkers. 

79



The strong negative association between the Wave 2 sectional BMIs of women, but not men,

and their levels of education and income – more educated, higher-earning women showed, on average,

lower BMIs – agrees with previous research on adults in Brazil. A study of data from 1999 of adult

employees at a university in Rio de Janeiro also showed an inverse association between schooling and

BMI among women, but not men. That study did not, however, find an association between per capita

monthly family income and BMI in either sex.81   A study of nationally representative data from 2006

found an inverse association between BMI and education level among women and a direct association

among men.86 Another study of national, longitudinal data showed that while in recent decades rates of

obesity  have  tended  to  increase  across  all  socioeconomic  groups  for  Brazilian  men,  rates  have

decreased in  women of high socioeconomic status  and increased in  women of low socioeconomic

status.28 Those trends support the inverse association observed here between socioeconomic status and

BMI in women but not men.

Few studies were found against which to compare the results  from the exponential  random

graph model,  and none were  found specific  to  Brazil.  One ERGM study found that  avoidance of

overweight  friends  was  a  determining  factor  in  adolescent  friendship  formation:  non-overweight

adolescents were less likely to nominate overweight adolescents as friends, but the reverse was not

true.84 Another  ERGM  study  found  that  same-sex  friends  shared  some  obesity-related  eating  and

exercise behaviors.68 The ERGM results for ELSA-RioSC did not address either of those questions,

instead  focusing  on  whether  or  not,  after  controlling  for  potentially  confounding  exogenous  and

endogenous variables, similarity in BMI increases the probability of friendship formation. The results

showed that, both before and after the inclusion of exogenous and endogenous controls, individuals

with similar BMIs (defined by a difference of 4kg/m2 or less) were not significantly more likely to be

friends. On the other hand, the results indicated that all other factors included in the model – namely,

shared sex, shared work department, shared level of education, a small difference in age, the number of

isolates in the network, mutuality, and transitivity – significantly improved the models ability to predict

friendships in ELSA-RioSC. It is possible that conditioning endogenous effects on BMI would reveal a

significant role for BMI in friendship formation, or that similarity in BMI is a predictor of same-sex

friendship formation but not opposite-sex friendship formation. Both of these possibilities represent

potentially important future directions for ELSA-RioSC ERGM-based research. 

Together, the exponential random graph and latent Gaussian model results indicate that while

two  individuals  with  similar  BMIs  are  not  necessarily  more  likely  to  become  friends  than  two
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individuals with dissimilar BMIs, among men (but not women), individuals whose friends' average

BMIs are greater tend to have slightly greater BMIs than individuals whose friends average BMIs are

in the normal to low range. Men's annual percent changes in BMI are also associated with the average

annual percent changes in the BMIs of their friends. Women's BMIs in ELSA-RioSC are more closely

associated with socioeconomic control factors than with at-work social factors. 

ii. Methods, limitations and representativeness

Missing data was extremely limited, as noted in the Results section, and is therefore unlikely to

have affected the analysis, but the lack of Wave 1 friendship information may have had important

implications. In modeling the changes in BMI between Wave 1 and Wave 2, friendships were assumed

to have remained constant over the 2-6 years between data collections. This was a more reasonable

assumption than those made in other studies spanning greater stretches of time,66 but given the relative

fluidity of a work environment, it is likely that some of those friendships did change. If friendship data

is collected again in future ELSA waves, the extent to which friendships change over time at Fiocruz

can be assessed, and the data presented here can be retroactively adjusted to account for a certain

proportion of friendships incorrectly assumed to have remained unchanged. 

The methods in which friendship data was collected and assessed may also have affected the

validity of the analyses and results. The question format allowed for the construction of a sociocentric

ELSA-Rio network, which is more informative than egocentric or dyadic data. The fact that ELSA

participants could name at-work friends regardless of those friends' own participation in ELSA also

insured that ELSA-RioSC was a relatively representative subgraph of the greater unobserved Fiocruz

friendship  network:  participants  weren't  asked  to  confine  their  friendship  nominations  to  ELSA

participants, so the ELSA participants they did name as friends were in fact within their five closest at-

work friends. On the other hand, the fixed choice question format – restricting friendship nominations

to a maximum of five – may have led to individuals limiting their definitions of important friendships

(if  they  had  more  than  five  close  friends  at  work,  as  45.6%  of  individuals  claimed  to  have).

Additionally, approximately 3% of individuals cited fewer than five friends by name despite claiming

to  have  more  than  five  close  friends  at  work,  indicating  either  an  exaggeration  in  their  original

estimation of close friends, an inability to recollect enough information by which to cite those friends,

or an unwillingness to identify friends by name.  

The free recall approach to friendship nominations was considered more viable than a roster-

based approach given the large number of Fiocruz employees,96 but it led to a significant amount of lost
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information from individuals mis-remembering or inadequately citing names; for 6% of cited friends,

only a first name was given. In some cases, this meant that the friend to whom an individual was

referring could not, with sufficient confidence, be identified through linkage. In other cases, incorrect

linkages may have been drawn from false interpretation of the limited available data or from inaccurate

participant-reported data. Together, missing and incorrect friendships, if relatively extensive, may have

hidden true associations in the network or created false associations. Even with a “roster” approach to

friend collection, however, some degree of false identification would have been expected. If free recall

is used again in the future, questionnaire administrators should encourage participants to share as much

accurate  information  as  possible  about  their  friends,  allowing individuals  to  look up their  friends'

names on social media sites or to call them for proper identification information. 

In regards to the linkage process, in future analyses, linkage should be focused on the ELSA

database. Given the large number of outsourced workers not listed in official registries, linkage beyond

ELSA is difficult;  it  is also unnecessary. Friendships between ELSA participants are the only ones

relevant to a sociocentric network, and this subgraph is more informative than the egocentric network

that would result from inclusion of relationships between ELSA participants and non-ELSA employees,

for whom no health-related information was available. Given current software limitations that make

linkage based solely on names difficult, with a well-defined process and criteria, limiting linkage to

ELSA participants would allow for more a more focused and intensive use of resources. As mentioned

above, however, for the sake of accuracy and representativeness, friendship nomination should not be

limited to ELSA, even if the linkage process were to be.

The BMI distribution of ELSA-Rio Wave 2 participants was not representative of national or

city-wide BMI distributions; prevalences of overweight and obesity in both sexes in ELSA-RioSC were

significantly higher than those in Rio or in Brazil.23,24 As expected, the observed rates were also well

above those reported in a 1999 study of adult employees at a university in Rio. In that study, as in this

study, overweight was more prevalent in men than in women, but rates of obesity were similar between

both sexes.81 Data was unavailable regarding the prevalences of overweight and obesity in the entire

Fiocruz  employee  population,  so  no  conclusions  could  be  drawn  regarding  how  well  the  study

population represents the greater  institutional  population.  ELSA-Brasil  was relatively successful  in

meeting its recruitment goals regarding gender, age, and occupation type, but it is unclear how well

those goals reflect the population of Fiocruz employees. Participation was also largely volunteer-based

(76%), with the remaining 24% recruitment-based,97 and it is possible that healthier or more socially
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connected individuals were more likely to learn about – or agree to participate in - the study. If this was

the case, the associations observed in ELSA-RioSC may not apply to the overall Fiocruz employee

social network. 

iii. Implications for the obesity epidemic and its control

Assuming that the associations observed in the ELSA-RioSC network do, in fact, represent real

dynamics in the larger Fiocruz employee social  network, these results have the potential  to inform

future work-based efforts to curb the obesity epidemic. The association between mens' BMIs and the

BMIs of their friends implies that weight-loss efforts aimed at a single person may lead to change in

multiple people, and recruiting friends to at-work weight-loss programs together may be especially

helpful for men. But some overweight men and women may be difficult to reach through socially-based

weight loss programs, as the data showed evidence that men and women with fewer at-work friends

tend to have slightly larger BMIs and to gain more weight. The BMIs of women who cited no friends in

ELSA-RioSC, for instance, increased by 0.231 percentage points more per year than those of women

who cited, on average, low or normal weight friends in the network. The BMIs of isolated men in

ELSA-RioSC also increased by 0.140 percentage points more per year than those of men with friends

whose weights on average did not change significantly. If social isolation leads to weight gain (rather

than weight-gain leading to social isolation), these results indicate that efforts to provide participants in

work-based weight-loss programs with social support may help to make those programs more effective

for both sexes. 

The inverse associations between women's BMIs and their income levels and education levels

are  likely  reflective  of  realities  outside  of  work,  like  the  relatively  low  cost  of  ultra-processed,

obesogenic  foods,  the  limited  availability  and  visibility  of  healthy  food  options  in  lower-income

communities, and the insufficient propagation of information on nutritious eating. Still, much of an

employees' day is spent at work, and work shifts often include at least one meal. The workplace could

therefore represent an important platform through which to affect change that extends to homes and

communities.  Food  options  at  on-site  eating  establishments  should  be  healthy  and  paired  with

information on balanced, nutritious diets, and employers should continue to provide employees with

ample time for sit-down meals with friends to preserve traditional food systems in Brazil. Workplaces

could also provide employees with opportunities to purchase unprocessed groceries on site, thereby
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helping to address the inequality in access to healthy food options. If it is the case, as proposed above,

that women are still affected in their eating and exercise habits by those in their social networks, but

their meaningful social networks exist primarily outside of work, then it is possible that workplace

based  initiatives  to  improve  access  to  lower-cost,  nutritious  foods  and  information  regarding  the

benefits  of  balanced  diets  would  spread  to  communities  through  the  social  networks  of  female

employees.

The  results  presented  here  justify  further  research  regarding  the  associations  between  an

individual's social networks and his or her body weight. In particular, longitudinal friendship data and

detailed information on the eating and exercise habits of employees would be useful in understanding

some of the mechanisms that led to the observed associations in ELSA-RioSC. Fundamentally, the

epidemic  of  overweight  and  obesity  in  Brazil  is  a  product  of  individuals  living  in  unhealthy

environments and adopting unhealthy behaviors. As Ribeiro de Castro notes: “The only actions that

have a chance of being effective are those that integrate measures aimed at people...with measures

aimed at the environments in which they live.”48 What social network analyses recognize is that the

environment in which a person lives includes his or her friends and family: actions aimed at one person

can impact multiple people, and obesogenic environments can include intrapersonal environments. In

Brazil, where eating has traditionally been – and largely continues to be – a social act, an understanding

of the role of social networks in weight-gain, and perhaps more importantly in weight loss, is critical in

planning an effective strategy to combat the so far uncontrolled epidemic of obesity. 
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	V. Methods
	i. Data collection
	ELSA Wave 2

	ii. Linkage
	Figure 5 – Venn diagram of the “cited friend”, “ELSA participant”, and “Fiocruz employee” databases
	Section I represents participant-cited friends who were also ELSA participants and actively employed by Fiocruz; section II represents retired ELSA participants who were no longer in the database of Fiocruz employees; section III represents all participant-cited friends who were not in the Fiocruz or ELSA databases, including both retired non-ELSA Fiocruz employees and individuals working on the Fiocruz campus but employed by a third party; section IV represents retired ELSA participants who were cited as a friend by an active participant; and section V represents Fiocruz employees who were not ELSA participants and were not cited as a friend by any ELSA participants.
	Following linkage, a two-column list of edges was generated, with the first column containing the interviewed individual (or “ego), the second column containing the cited friend (or “alter”), and each row representing one friendship. This edge list was sent to the ELSA data center, where it was codified and returned, along with the variables described in the previous sections, namely: sex, type of work, employment status, age, BMI, family income, and education. These variables were associated with the codes rather than the names of the participants. The separation of the linkage process from the modeling process via codification of the edge-list made it impossible to match participant attributes to their names, minimizing any ethical concerns.

	iii. Network construction and characteristics
	The area in blue shows a simplified model of ELSA-RioSC, the sociocentric network. The area in green shows that the egocentric networks of each ELSA participant extends beyond the Wave 2 actively employed ELSA community.
	

	iv. Generalized linear models and latent Gaussian models
	The BMI data was analyzed separately for men and women, and for each sex, two models were developed: one for Wave 2 sectional BMI, and the other for the average annual percent change in BMI from Wave 1 to Wave 2, as previously described in the “Model Rationale” subsection. For both the sectional and longitudinal data, decisions regarding which variables to include in the models were made through generalized linear modeling. Likelihood ratio testing (LRT) was used to determine whether or not the addition of a given variable significantly improved the model fit, with a p-value less than or equal to 0.20 deemed significant. Variables were added in a step-wise fashion: beginning from models including only age, the independent addition of each remaining control variable was tested, and the variable that led to the greatest improvement in fit (the lowest LRT p-value) was added to the model. The process was then repeated until no further control variables improved the model fit significantly, then the inclusion of network and friend variables were tested via the same mechanism. Once the variables for the final model had been determined, Bayesian methods were used to estimate coefficients for a latent Gaussian model with the same set of variables, and the impact of including three different latent Gaussian effect models was assessed through between-model comparisons of the Deviance Information Criteria (DIC) and the Watanabe-Akaike Information Criterion (WAIC). The latent effect models tested were: an independent random variable model (“iid”), a spacial effect model (“besag”), and a model combining spacial and random effects (“bym”).
	Missing Data
	Wave 2 BMI data was unavailable for 20 of the 1,521 ELSA-RioSC nodes. The average of the Wave 1 BMIs of these individuals, 29.4 kg/m2, was potentially significantly greater than the ELSA-RioSC overall Wave 1 BMI average, 27.1 kg/m2, with a one-sided t-test returning a p-value of 0.081. It was therefore deemed important to address the missing BMI data where possible. For 15 of the 20 individuals, Wave 2 weight was available but height was not. In these cases, Wave 2 BMI was calculated from Wave 1 height under the assumption that height would not have changed significantly for most adults in a two to six year time frame. The remaining 5 individuals were not included in the models. Their Wave 1 BMIs were still greater on average than those of the network at large, at 29.3 kg/m2 (t-test p-value of 0.372), but a loss of five individuals was considered less likely to significantly impact the results than a loss of twenty individuals.
	Aside from Wave 2 BMI, the only other categories with missing values were the age at Wave 2 (one missing) and the per-capita monthly family income at Wave 1 (two missing). For the missing Wave 2 age , the average age difference from Wave 1 to Wave 2 of 4 years was added to the age at Wave 1. For the two missing Wave 1 income data points, the average annual change in income for the age groups to which the individuals belonged was multiplied by their age changes from Wave 1 to Wave 2. This product was then subtracted from the Wave 2 income to arrive at an estimate of the Wave 1 income. Given the limited extent of the missing age and income data – affecting a total of 3 individuals – the impact of these estimations on model fits was likely minimal.
	Of the 1,521 individuals in ELSA-RioSC, therefore, 1,516 were ultimately included in the sectional and longitudinal generalized linear and latent Gaussian models.
	Sectional Wave 2 BMI
	Visual inspection of the male and female Wave 2 BMI probability densities – Figure 7 – showed a positive skew. Both generalized linear models and latent Gaussian models operate on an assumption of normally distributed residuals, and while a skew in the BMI distribution does not necessarily correspond to a skew in the residual distribution after a model has been fit, it seemed possible that a gamma distribution would better fit the data than a Gaussian one. The Shapiro-Wilk test returned p-values of 7.934e-13 and 8.246e-13 for the male and the female data, respectively, leading to rejection of the null hypothesis that the data was sampled from a population with normally distributed BMI. Generalized linear models were fit using both gamma and Gaussian distributions (both with identity link functions) and compared through analyses of the residuals and the Akaike Information Criterion (AIC). The distribution deemed most appropriate was then used for the latent Gaussian model.
	Figure 7 – Probability densities for male and female sectional Wave 2 BMI
	The figure clearly indicates the rightward skews of the distributions. The vertical dotted lines marking the average BMI for each sex show that males and females shared nearly identical averages, but the distributions for each sex were markedly different.
	Average Annual Percent Change in BMI from Wave 1 to Wave 2
	The average annual percent change in BMI was calculated according to Equation [10]. It was thus a continuous variable with a range including negative and positive values. As with the Wave 2 sectional data, the densities of the average annual percent change in BMI for both men and women were skewed to the right, as shown in Figure 8. The Shapiro-Wilk test returned a p-value of less than 2.2e-16 for both sexes. It was again suspected that a non-Gaussian probability distribution might better model the data than a Gaussian one, but a gamma distribution – favored for the sectional analysis – does not accept negative values. To account for this fact, the data was shifted to the right by 10 annual percentage points such that every value became positive. When the shifted data was then modeled with a gamma distribution with an identity link function, the intercept was the only coefficient affected, and it simply required a 10 unit reduction for proper interpretation. The GLM results obtained using gamma and Gaussian probability distributions were evaluated and compared through analysis of the residuals and relative AICs. The more appropriate of the two distributions was then used in the latent Gaussian model, as in the Wave 2 sectional analysis.
	Figure 8 – Probability densities for male and female average annual percent change in BMI
	Distribution of the average annual percent change in BMI between Wave 1 and Wave 2 for males (blue) and females (green). The figure shows that the BMIs of most individuals increased between the two Waves, and the distributions for both sexes appear somewhat skewed to the right.
	Three exponential random graph models were fit to the ELSA-RioSC Wave 2 data. The first ERGM included only exogenous variables (those listed in Table 2). The “small BMI difference” parameter was defined by a difference in BMI of four or less kg/m2, and 10 years or less was considered a “small age difference.” The exogenous variables deemed significant in the first model – as with the generalized linear and latent Gaussian models, based on a p-value of 0.20 or less – were included in the second and third models. P-values were calculated from the sum of the likelihood variations and the MCMC variations. The “small BMI difference” parameter was included in all models regardless of significance as it was of principle interest to this study.
	The second model included the significant exogenous variables from Model 1, the “mutual” and “isolates” endogenous variables, and the endogenous constraint of a maximum out-degree of five. Model 3 included the same variables as Model 2 with the further addition of the geometrically-weighted edgewise shared partners distribution (another endogenous variable). The significance of the “Small BMI difference” parameter was compared across all three models. If the parameter became insignificant or less significant with the inclusion of endogenous effects, those effects might partially explain any apparent social clustering of BMI.
	As the first model only included exogenous factors, it was estimated by MPLE, as described in the “Network Modeling¨ section, Section III.iv. The second and third models, including both exogenous and endogenous variables, were fit using MCMC estimation procedures. The fits of the models were evaluated according to the procedure again described in Section III.iv: a series of graphs was generated from the estimated parameters, and the in-degrees, out-degrees, and edgewise shared-partner values in ELSA-RioSC were compared to the distributions of those same characteristics in the generated series. If the observed values fell within the 95% confidence intervals of the distributions of generated values, the ERGM was deemed a reasonable estimation of one process that may have led to the observed ELSA-RioSC friendship network.


	VI. Results
	i. Data collection, linkage and network construction
	Figure 9 – The shift in the out-degree distribution from pre-linkage to post-linkage to sociocentric restriction

	ii. Exploratory network characteristics
	ELSA-RioSC is a directed graph with 1,521 vertices and 1,973 edges, corresponding to an average undirected degree for each node of 2.59. The reciprocity of the directed edges, defined in the “Theoretical Foundations” section (IV.iii), was relatively high at 0.386, indicating that friendships were often reciprocated, or mutual. The graph density, as defined by Equation [5], was low (0.00085). Given the fixed choice question design, however, the maximum possible graph density – if each of the 1,521 members of ELSA-RioSC had cited exactly five other ELSA-RioSC members as friends – was only 0.0066, as noted in Section IV.iii. The observed density was therefore 13.0% of the maximum density. The degree of transitivity in ELSA-RioSC– as measured by the global clustering coefficient (Equation [6]) – was 0.198. The average undirected path length for vertices in the weak giant component, which included 70.0 % of ELSA-RioSC vertices, was 12.6. The weak giant component is shown visually in Figure 10, with the vertices colored by sex and with the sizes of the vertices proportional to categorical BMI. The in-degree, out-degree, and undirected degree distributions are shown in Figure 11, and the basic network characteristics are summarized in Table 3.
	Figure 10 – The weakly connected giant component of ELSA-RioSC
	The colors of the nodes correspond to the sexes of the participants, while the sizes of the nodes are proportional to BMI categories (normal weight, overweight, or obese).
	Figure 12 shows the average degree of an individual's nearest neighbors by the individual's own degree, where the nearest neighbors are defined as those nodes to which an ego is connected, regardless of the directionality of that connection. Using degree as a measure of connectivity, the most connected individuals (those with the highest degrees) tended to have more highly connected friends than the least connected individuals. For an increase in one in an individual's own degree, the mean degree of his or her nearest neighbors increased, on average, by 0.190.
	Figure 11 – ELSA-RioSC out-degree, in-degree and undirected-degree distributions
	Figure 12 – Average alter degree by ego degree
	The blue trend-line shows that individuals with higher degrees (undirected) were more likely to have well-connected friends than individuals with lower degrees.
	The graph characteristics were compared to those of various random graph models through Monte Carlo methods, as described in the Methods section. The degree number and edge number of the Erdős–Rényi models were defined by the ELSA-RioSC values, so the density in these models was equal to the observed graph density. The algorithms for the Barabási-Albert and Watts-Strogatz models did not allow for precise density specification, but parameters were adjusted to approximate the observed density. The density of the Barabási-Albert models was 0.000657, and the density of the Watts-Strogatz models was 0.00132. Furthermore, the parameters of the Watts-Strogatz algorithm were adjusted so that the model produced undirected degree distributions that approximated the ELSA-RioSC undirected degree distribution. As noted in the Methods section, this was accomplished through a K value of two and a rewiring probability of 0.35. Even with these adjustments, the algorithm did not produce degree distributions that corresponded well to the observed data, as shown in Figure 13.
	Figure 13 – Observed undirected-degree frequencies relative to the distribution of undirected degree frequencies in 1,000 iterations of the Watts-Strogatz model
	The observed frequency of undirected degrees (in red) and the distribution of undirected degrees from 1,000 iterations of the Watts-Strogatz small-world algorithm with K=2 and a rewiring probability of 0.35 (in green). While these model parameters were found to most reasonably approximate the observed data, the figure indicates that it is extremely unlikely that ELSA-RioSC resulted from a small-world mechanism.
	For the two algorithms that allowed for the generation of directed graphs – namely, the Erdős–Rényi and Barabási-Albert models – generated in-degree frequencies were compared with the observed ELSA-RioSC in-degree distribution. Figure 14 shows the intervals that captured 95% of the generated frequency values for each in-degree for the Erdős–Rényi (classical random graph) and Barabási-Albert (preferential attachment) models in green and blue respectively. The observed in-degree frequencies of ELSA-RioSC, shown in red in Figure 14, generally did not fall within those confidence intervals, but at higher in-degrees (3+), the observed in-degree distribution fell within the range of relatively likely Erdős–Rényi values.
	The high degree of reciprocity observed in ELSA-RioSC (0.386) was well outside of the interval capturing 95% of the degrees of reciprocity for the Erdős–Rényi models: [0, 0.00304]. By algorithm design, Barabási-Albert models contain no reciprocated friendships.
	Figure 14 – Observed in-degree frequencies relative to the distributions of in-degree frequencies in iterations of the Barabási-Albert and Erdős–Rényi models
	Comparison of the ELSA-RioSC observed in-degree frequencies (in red) with the ranges that included 95% of the frequencies generated through Monte Carlo methods with the Erdős–Rényi (in green) and Barabási-Albert (in blue) algorithms.
	The statistics calculated under the interpretation of all ELSA-RioSC edges as undirected – namely the average path length, and the global clustering coefficient – further demonstrated that none of the three relatively simplistic random graph models described the observed data appropriately. The transitivity in ELSA-RioSC, 0.198, was again well outside of the 95% interval for all of the random graph models: [0, 0.00402], [0.00235, 0.00235], and [0, 0.00254] for the classical, preferential attachment, and small-world models, respectively. The ELSA-RioSC average path length (12.6) fell within the relatively likely range of values for the small-world model, but not for either of the other two model types, as shown in Figure 15.
	Figure 15 – Observed average path length relative to the distributions of average path lengths in iterations of three random graph models
	The figure shows the ELSA-RioSC average path length – 12.6, denoted by the red dashed line – relative to the distributions of average path lengths generated with three random graph model algorithms, as labeled on the x-axis.
	
	In summary, the observed in-degree was best approximated by the Erdős–Rényi model, although that approximation was only reasonable for in-degrees above two, and the average path length was best approximated by the Watts-Strogatz model. None of the models appropriately approximated more than one of the relevant network statistics. It was therefore deemed very unlikely that ELSA-RioSC developed via a a mechanism similar to those used to generate these three types of random graph models. These results justified the development of an ERGM that might better fit the data. The ERGM results are described below.

	iii. Vertex attributes
	The distributions of attributes within the ELSA-RioSC network are summarized in Table 4. The distribution of BMI among men was significantly different than among women, as shown in Figure 16, and individuals' BMIs generally increased from Wave 1 to Wave 2, as shown in Figure 8. The unidirectional paired Wilcoxon test gave p-values of less than 2.2e-16 for both the male and female BMI data, leading to rejection of the null hypotheses that, on average, BMIs did not significantly increase from Wave 1 to Wave 2. Figure 17 shows that this increase was not simply due to an aging cohort; the distribution of BMI for both sexes was not significantly different across age groups at either Wave 1 or Wave 2, and within age groups, the BMI distribution either did not change or else shifted slightly towards higher values from the first wave to the second.
	Figure 16 – Male and Female BMI probability densities at Waves 1 and 2
	The Wave 1 and Wave 2 BMI distributions for both males (blues) and females (greens). For both sexes, the BMI distribution shifted significantly to the right from Wave 1 to Wave 2.
	Figure 17 – Wave 1 and Wave 2 BMI distributions by age group for each sex
	The figure shows that the BMI distributions either remained relatively constant or shifted towards higher BMIs within all age groups for both males and females.
	Table 4 provides a summary of the distributions of each of the vertex attributes by category, stratified by sex. ELSA-RioSC was 48.4% male and 51.6% female. At Wave 1, 64.9% of participants were either overweight or obese, and by Wave 2, 69.4% of participants fell into one of those two categories. The proportion of participants who were obese also rose from 23.5% in Wave 1 to 28.2% in Wave 2. A smaller proportion of females than males were overweight at both Wave 1 and Wave 2, but a much greater proportion of females than males experienced a “large gain” in BMI – defined as a 2-20% average annual increase - between the first and second Waves (10.2% and 24.3% for males and females, respectively). Whereas the proportions of males and females who were obese at Wave 1 were relatively similar ( 23.0% and 24.1%, respectively), by Wave 2, 30.2% of females were obese compared to only 26.0% of males. Even so, at Wave 2 a greater percentage of males were either overweight or obese (73.7%) than females (65.1%), owing to the significantly greater proportion of overweight males.
	*The 5 individuals (3 male, 2 female) for whom Wave 2 BMI was unavailable and could not be reasonably estimated were omitted from these sections. They therefore total to 1,516, whereas the categories of every other variable total to 1,521.
	
	Of the 1,521 individuals in ELSA-RioSC, 332 were isolates, meaning they were not connected by an edge to any other individual in the network. The average BMIs of both the 172 male and 160 female isolates were greater than the average BMIs of the non-isolates, but possibly not significantly so, with one-sided t-test p-values of 0.110 and 0.360 for males and females, respectively. Income, age, and education level were similar for the isolates and the non-isolates.

	iv. Generalized linear models and latent Gaussian models
	Sectional Wave 2 BMI
	As described in the Methods section, generalized linear modeling was used to determine which variables significantly improved the sectional Wave 2 BMI model fits for both males and females. Models with Gaussian and gamma probability distributions (with identity link functions) were considered, and analysis of the residuals and comparison of the AICs of the models indicated that the gamma distribution was more appropriate for both the male and female data. Latent Gaussian models for each sex were then fit with those variables determined through GLM to be important, again using a gamma distribution with an identity link function, and the models with no latent effects were compared to models with random latent effects, network latent effects, and both network and random latent effects.
	Table 5 shows the results for the crude model – where each variable was considered in isolation – and for the final model. The crude coefficients are those of the generalized linear models, whereas the final model coefficients are those of the Bayesian latent Gaussian models with random latent effects, estimated through integrated nested Laplace approximation. The models with network latent effects were deemed inappropriate and rejected, as discussed below. Figures 18 and 19 show the quality of the fits of the final generalized linear models for males and females, respectively, before the conversion to latent Gaussian models and the inclusion of structured latent effects. In both figures, the “Normal Q-Q” plots show that the residuals were not normally distributed at relatively extreme values (2 or more standard deviations from the mean). The Shapiro-Wilk test for the residuals of the final generalized linear models gave a p-value of 1.98e-14 for the male model and a p-value of 2.54e-13 for the female model, suggesting that the GLM assumption of normally distributed residuals was not met in either case.
	The superscripts in the tablet indicate significance based on the p-value of the Likelihood Ratio Test, where *** indicates p<0.01; ** indicates p<0.1; and * indicates p<0.2.
	The change in the coefficient estimates was extremely small in the transition from the final generalized linear models to the latent Gaussian models with no latent effects. Figures 20 (male) and 21 (female) show the change in the coefficients from the latent Gaussian models with no latent effects to the models with random latent effects, network-structured latent effects, and both random and network latent effects. As those figures show, inclusion of a neighborhood structure in the latent effect significantly shifted the coefficient estimates and decreased the precision of those estimates, especially for network-related variables, like undirected degree in the female model and average BMI of undirected friends in the male model. The use of these network-structured latent effects was ultimately rejected. Network-based variables were already included in the final models, and to also include network information through latent effects was deemed redundant; it added little or no information and greatly reduced the precision of coefficient estimates.
	Figure 18 – Analysis of the residuals of the final GLM male Wave 2 BMI model
	The plots show that none of the points had an out-sized impact on the model fit, but also that the residuals were not normally distributed at the extremes (past two standard deviations from the mean).
	Figure 19 – Analysis of the residuals of the final GLM female Wave 2 BMI model
	As with the male model, none of the points had an out-sized impact on the model fit, but again, the residuals were not normally distributed at the extremes (past two standard deviations from the mean). This was not as significant in the female model as in the male model.
	Figures 20 and 21 also show that the coefficient estimates changed only slightly with the inclusion of a latent independent and normally distributed random variable (the shifts from black to blue). Comparison of the WAICs of the models with and without this random latent effect indicated that both the male and female models benefited from its inclusion, with the male model WAIC improving from 4324 to 4284 and the female model WAIC improving from 4631 to 4598. The coefficient estimates in the “Final” model columns of Table 5 are therefore from Bayesian latent Gaussian models with random latent effects.
	Figure 20 – Shifts in the latent Gaussian coefficient estimates for the male Wave 2 BMI model with the inclusion of latent field models
	The change in the coefficient estimates for the male latent Gaussian models from a model with no latent effect (black) to one with random (blue), network (red), or both random and network (green) latent effects.
	Figure 21 – Shifts in the latent Gaussian coefficient estimates for the female Wave 2 BMI model with the inclusion of latent field models
	The change in the coefficient estimates for the female latent Gaussian models from a model with no latent effect (black) to one with random (blue), network (red), or both random and network (green) latent effects.
	The final male model included the control variables age and income level; the network variable betweenness centrality; and the friend variables “undirected friend average BMI”and “proportion of overweight friends”, as defined in Table 1. The final female model included the control variables age, education, and income level; the network variable undirected degree; and the friend variable “in-friend average BMI”, again as defined in Table 1. For both males and females, age was not significantly associated with Wave 2 BMI, but as with sex, age is a biological property known to affect how one responds to energy consumption and expenditure. It was therefore included in all possible models, regardless of LRT p-values. The only other variable included in both the male and female final sectional models was income level. In women, income level and BMI were negatively correlated, with lower income levels generally corresponding to greater BMIs. The BMIs of those women in the highest income group were, on average, 2.03 kg/m2 less than the BMIs of those women in the lowest income group , when all other variables were kept constant. The association between BMI and income for males was less clear: BMI was significantly greater only for those males in the upper-middle income group (compared with those in the lowest income group). Beyond age and income level, the final female model also included the additional control variable “education level”, which again showed an inverse relationship to BMI and was positively associated with income level: women with greater levels of education tended to earn more and weigh less.
	In regards to network variables – variables measuring an individual's role or relative position in ELSA-RioSC – males with greater betweenness centralities tended to have greater BMIs, and females with intermediate undirected degrees tended to have greater BMIs than females with no ELSA-RioSC friends or five or more friends in the network. Neither of these associations was particularly significant – the p-value for the inclusion of betweenness centrality in the male model was 0.156 and the smallest p-value for inclusion of categorical undirected degree in the female model was 0.138 (for those individuals with a degree of 3 or 4) – but both indicated that, if anything, greater popularity or centrality in ELSA-RioSC was associated with greater weight.
	The association between an individual's BMI and the BMI of his or her friends was more clear in the male model than in the female model. For males, an individual's BMI was positively associated with the BMI of his friends. If the mean of his friends' BMIs fell within the “obese” category, the individual had, on average, a BMI 1.51 kg/m2 greater than if the mean of his friends' BMIs fell within the “normal” weight category, controlling for all other variables. Males with no friends in the network on average had a BMI 1.15 kg/m2 greater than those with a normal “undirected friend average BMI”. The “in-friend average BMI” term in the female model indicated that if the mean BMI of the individuals who cited a woman as a friend fell in the overweight category, the BMI of the woman was, on average, 0.987 kg/m2 greater than the BMI of women cited as friends by individuals whose average BMI fell in the normal weight category. The BMI of women not cited as a friend by anyone was also on average significantly greater (p-value 0.129) than the BMI of women in the baseline group (those with a “normal” in-friend average BMI).
	Average Yearly BMI Change from Wave 1 to Wave 2:
	The process for determining a final model for the male and female average yearly change in BMI was analogous to the process described in the previous section for the sectional models. In this case, comparison of the AICs and residual analyses indicated that for both the male and female data, a Gaussian probability distribution was more appropriate than a gamma distribution once the significant variables had been included. In Table 6, the variables in the “Crude” columns were therefore estimated using GLM with a Gaussian distribution and an identity link function. As with the sectional Wave 2 analysis, the “Normal Q-Q” plots showed that the residuals were not normally distributed at relatively extreme values, and Shapiro-Wilk testing of the residuals returned p-values of 3.17e-12 and 5.01e-11 for the male and female models, respectively. The GLM assumption of normally distributed residuals was thus again violated.
	As in the sectional models, a latent Gaussian model was fit with the same variables, and again, the latent effects with network structures (spacial latent effects) were rejected, as they were deemed to contribute redundant information while greatly increasing the uncertainty of estimates, as shown in Figures 22 and 23 for the male and female models, respectively. Those figures also show that inclusion of a latent independent and normally distributed random effect had very little impact on the estimated coefficients, but the WAIC values improved from 2684 to 2644 for the male model and from 3028 to 3015 for the female model. The latent effect was therefore included in the final model, and the coefficients in the “Final” columns of Table 6 were estimated using INLA with a latent Gaussian model with a Gaussian probability distribution and an independent and normally distributed random latent effect.
	The superscripts in the table indicate significance based on the p-value of the Likelihood Ratio Test, where *** indicates p<0.01; ** indicates p<0.1; and * indicates p<0.2.
	Figure 22 – Shifts in the latent Gaussian coefficient estimates for the male average annual percent change in BMI model with the inclusion of latent field models
	The figure shows that there was very little difference in estimates with the inclusion of an independent and normally distributed random latent effect (black to blue and red to green), whereas the shift and increase in uncertainty with the inclusion of network structure was significant (blue to green and black to red). The coefficients in blue represent those included in the “Final” column of Table 6.
	Figure 23 – Shifts in the latent Gaussian coefficient estimates for the female average annual percent change in BMI model with the inclusion of latent field models
	As with the male data, the figure shows a significant shift in the female model coefficient estimates with the inclusion of network-structured latent effects but not with independent and normally distributed random latent effects. Again, the blue estimates represent the coefficients ultimately selected for the final female model.
	Age was the first variable to enter both the male and female models, again because of the biological precedent, but whereas in the sectional models that inclusion was not significant, it was significant in the models for change in BMI. Both males and females in the middle and upper age groups on average experienced a lesser percent annual increase in BMI than their peers in the lowest age group. In the case of males aged 55 to 75, there was even a slight annual percent decrease in BMI on average, as the absolute value of the negative coefficient (-0.547) was greater than that of the positive intercept (0.539). Income variables entered the final male model but not the final female model: relative to the lowest income category, individuals from families with average monthly per capita incomes in the high-intermediate range of R$ 2,488-3,741 showed a tendency to gain less weight, whereas those in the highest income category showed a tendency to gain more weight. Additionally, as the average annual change in per-capita monthly family income increased for a male, he became more likely to have also experienced a more positive change in weight. According to the model, those men who experienced a 10% average annual increase in income would be expected to also have experienced, on average, a mean annual BMI change 0.031 percentage points more positive than the BMI change in men who experienced no alteration in income.
	No network position variables entered either of the final models, but each included one variable pertaining to friends' weight statuses. For the female model, that variable was the out-friend average BMI at Wave 1: women who cited no friends in the network tended to experience greater increases in BMI than women who cited friends with, on average, normal BMIs. For the male model, that variable was the average annual percent change in undirected friend BMIs: men whose friends, on average, experienced large annual percent losses in weight also tended to experience less positive (or even  negative) changes in BMI compared to men whose friends, on average, experienced little-to-no change in BMI. The direction of this correlation held for weight gain – men whose friends, on average, experienced large annual percent increases in BMI also tended to experience greater increases in BMI – but the p-values only indicated significance for the coefficients related to weight-loss in friends.

	v. Exponential random graph model – exploratory analysis
	Results from the three exponential random graph models are summarized in Table 7. In the models including only exogenous effects and in those including both endogenous and exogenous effects, two individuals with relatively similar BMIs – within 4 kg/m2 of one another – were not significantly more likely to become friends than individuals with less similar BMIs. Different approaches to comparative BMI were tested – namely, matched categorical BMIs (normal weight and underweight, overweight, and obese) and matched obesity status (obese/non-obese) – and those parameters also did not significantly improve the model fit. Even in a model with only the “small BMI difference” parameter (and no controls for other exogenous or endogenous effects) the parameter proved insignificant (p-value 0.698). The ERGM results therefore indicated that similarity in BMI was not a significant factor in predicting friendships in ELSA-RioSC.
	Model 1 showed that, of the exogenous parameters, if two individuals were within 10 years of one another in age, if they were of the same sex, if they worked in the same department, or if they had approximately the same level of education , they were significantly more likely to become friends. If individuals were of the same sex, for instance, the probability of a friendship existing between them increased by 159% (exp(0.950) = 2.59), given no change in the other statistics. The probability increased even more if individuals worked in the same department. The Model 3 results indicate that these exogenous factors remained significant even after controlling for endogenous effects. In the final model, the endogenous parameters most significantly affecting the probability of edge formation were those controlling for “mutual” and transitive (GWESP) effects, but the “isolates” parameter also proved significant. As in Model 1, in Model 3 the most significant exogenous parameter was shared work department.
	For the superscripts in the table, *** indicates p<0.01; ** indicates p<0.1; and * indicates p<0.2.
	Figure 24 indicates that Model 3 much more appropriately described the observed ELSA-RioSC network than did the three algorithm-based random graph models from the Exploratory network characteristics section. The observed values of edgewise shared partners, in-degrees, and out-degrees generally fell within the distributions of relatively common values generated from the estimated parameters. This was not the case for low values of edgewise shared partners, with the model overestimating the number of isolated edges and underestimating the number of edges sharing only one partner, but the shape of the edge-wise shared partners distribution still corresponded relatively well to the observed distribution.
	Figure 24 – Analysis of the goodness-of-fit of the final ERGM model
	Goodness-of-fit of the complete ERGM (Model 3) for several graph characteristics. Starting in the upper left corner and moving clockwise, the graphs show the edge-wise shared partner distribution, the out-degree distribution, and the in-degree distribution. The boxplots in each figure indicate the distributions of the proportion of edges, dyads or nodes with a given value in the series of networks generated from the ERGM parameters, and the bold, black points and lines indicate the observed values in ELSA-RioSC.
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