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year, with cancer accounting for 8.2 million of these deaths. 
Breast cancer is the leading cause of death among women 
worldwide. The disparities in incidence and mortality rates 
of breast cancer observed between developed and developing 
countries are substantial [1]. Personalized cancer risk assess-
ment and prevention offers a new approach to breast cancer 
early detection and treatment that may alleviate global dis-
parities in breast cancer outcomes, but more work is required 
in order to implement precision medicine for all.

Breast cancer is not one disease. Rather, it is a complex 
group of genetically driven diseases caused by the progres-
sive accumulation of genomic alterations involving “driver” 
and “passenger” mutations. In all populations, a fraction of 
breast cancer can be explained by inherited mutations in 
breast cancer susceptibility genes. To date, variants iden-
tified to be associated with breast cancer risk account for 
nearly 50% of the heritability of breast cancer [2]. By iden-
tifying non-genetic risk factors such as age, family history 
of cancer, early menarche, late menopause, age at first birth, 
nulliparity, exogenous hormone use, obesity, exposure to 
radiation, alcohol consumption, healthcare professionals 
can assess patients’ risk of the disease and work together 
with the patients to mediate these risks. It is possible to 
reduce modifiable risk factors, alter environmental factors, 
and adjust screening methods to prevent advanced-stage 
diagnosis in women at risk of the most aggressive breast 
cancer phenotypes.

The Precision Medicine Initiative (PMI), now renamed 
“All of Us” [3] asserts that it is not only important to lower 
disease prevalence in populations, but also to ensure indi-
vidualized care and prevention based on patients’ unique 
environmental, lifestyle, and genomic differences. The 
prior use of “one-size-fits-all” recommendations and treat-
ment approaches is inefficient and ineffective, as over-
diagnosis can be costly and dangerous for false positives, 
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Introduction

Globally, non-communicable diseases (NCDs) currently 
contribute to more than 38 million deaths worldwide each 
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and under-diagnosis fails to identify all individuals at risk. 
Through the application of precision medicine, there is great 
potential to decrease incidence, prevalence, and mortality 
rates of all NCDs, especially cancer.

Genetic testing is one means of identifying those with a 
predisposition to cancer and of more accurately determin-
ing the individual’s risk. Now that sequencing technologies 
have improved and that genetic testing has become more 
affordable than in the past decade, it is possible to sequence 
and analyze the entire human genome in one day with next-
generation sequencing (NGS) methodology [4, 5]. As such, 
individual and population-wide genetic assessments are fea-
sible in clinical settings. Genetic profiles of individuals and 
populations reveal important information about the degree 
of genetic admixture and susceptibility to genetic diseases 
[6]. Unfortunately, there is currently paucity of data on 
genetic basis of disease in non-European ancestry groups. 
To improve population health and reduce health disparities, 
there is an urgent need for data on “All of Us”, as envisaged 
by PMI.

Accordingly, the next decade will usher in the era of 
personalized cancer prevention and early detection. As 
data from sequencing becomes more comprehensive than 
that obtained from prior technologies, extracting meaning-
ful findings from Big Data will be key in driving precision 
prevention that benefits high-risk patients. In this review, 
lessons learned over the past 20 years since the identifica-
tion of BRCA1 and BRCA2 genes are presented in order to 
examine the clinical context and the impact of genetic testing 
in diverse populations across the globe.

BRCA1, BRCA2 and the risk of breast cancer 
in populations

The discoveries of the BRCA1 and BRCA2 genes were one 
of the greatest findings to date in human genetics [7, 8]. 
Mutations in these two genes account for at least 20% of 
hereditary breast cancer cases and an estimated 5–10% of 
all cases in some inbred populations. Previous retrospective 
studies found that penetrance assessments for BRCA1 and 
BRCA2 mutation carriers is substantial and the estimate of 
cumulative breast cancer risk by age 70 years was reported 
with wide confidence intervals (BRCA1: 40–87%; BRCA2: 
27–84%) [9, 10]. These observations support the hypothesis 
that genetic and lifestyle/hormonal factors modify cancer 
risks for women with these mutations. Based on a recent 
prospective cohort study of 6036 BRCA1 and 3,820 BRCA2 
female mutation carriers, the cumulative breast cancer risk 
by age 80 years was 72 and 69% for BRCA1 and BRCA2, 
respectively [11].

Germline pathogenic mutations in BRCA1 and BRCA2 
are inherited in an autosomal dominant manner. As such, 

mutations in these two genes should be suspected if the indi-
vidual or her/his family has a history of early-onset breast 
cancer. However, because of the penetrance of these muta-
tions, there can be differences in the age of breast cancer 
onset both among and within families. Regardless, breast 
cancer onset for individuals with a BRCA1 or BRCA2 muta-
tion is typically before age 50 [12, 13]. Knowledge of the 
burden of aggressive, early-onset breast cancer caused by 
BRCA mutations has led to recommendations of cascade 
testing in families to identify all family members at risk once 
a mutation is identified, and, in some instances, calls for 
large-scale population screening to identify at-risk individu-
als. However, there is paucity of data in non-European popu-
lations, which makes accurate risk estimates for diverse pop-
ulations difficult to provide. Moreover, the economic, social 
and cultural barriers to widespread adoption of genetic test-
ing remain poorly understood, which underscores the need 
for additional research on how best to disseminate advances 
in cancer genetics to benefit all populations.

Research teams around the world, including in Africa 
[14], Europe [15], Latin America [16], Oceania [17], and 
Asia [18], have described pathogenic mutations in these 
genes that contribute to defective transcripts and malfunc-
tioning proteins and their segregation with breast and ovar-
ian cancer in high-risk families. Some of these pathogenic 
BRCA mutations are fixed in certain populations as “founder 
mutations.” Founder mutations are informative and valuable 
for developing cancer gene screening panels, which help to 
analyze genetic susceptibility profiles rapidly and inexpen-
sively when the patient’s ancestral background is known. 
For example, BRCA1 c.68_69delAG (185delAG), BRCA1 
c.5266dupC (5382insC), and BRCA2 c.5946_5946delT 
(6174delT) are fixed in Ashkenazi Jewish population [19, 
20]. However, further research revealed these mutations 
in other populations in Europe, Latin America, and North 
Africa, which then led to the hypothesis that these muta-
tions were not, in fact, Jewish founder mutations; haplotype 
analysis has shown that these mutations entered Ashkenazi 
populations after they arose in an ancestral individual in 
Northern Europe [15, 16, 21–26].

BRCA1 and BRCA2 founder (or recurrent) mutations 
have been observed throughout the world (Table 1) and have 
led population geneticists to examine how these mutations 
became fixed in populations. The fixation of these BRCA1 
and BRCA2 founder mutations in the Ashkenazi Jewish 
population can be explained by the unique degree of homo-
geneity and intra-group marriage compared to other popula-
tions since the degree of genetic admixture of one popula-
tion is associated with how the population was formed. For 
example, the number of ancestral populations contributing 
to the resulting population and under which conditions, often 
influence the degree of genetic admixture factors such as 
cultural barriers, geographical location, wars, economics, 
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politics, and religion could limit the amount of admixture 
in any population.

In contrast to Ashkenazi Jewish population, the Brazilian 
population for example is highly admixed. Each region of 
Brazil has yielded populations with distinct genetic ances-
tries, with a greater African ancestry contribution in the 
northeast, and a greater European ancestry contribution 
in the south [27–31]. These differences began as a result 
of how these populations were formed during settlement 
in 1500 C.E. by the Portuguese. However, other popula-
tions from Europe, Asia, and Africa also arrived in Brazil 
at different periods in time [32]. Thus, BRCA1 and BRCA2 
founder mutations from Europeans, Africans, and Asians 
can be found in Brazilians. Founder mutations in Brazilians 
include BRCA1 c.5266dupC (5382insC, Northern European 
origin), BRCA1 c.3331_3334delCAAG (3450del4, Hispanic 
origin), BRCA1 c.211A>G (p.R71G, Hispanic origin), 
BRCA2 c.156_157insAlu (Portuguese origin), and many 
others [21, 33–38]. As such, the BRCA1 and BRCA2 muta-
tion spectra in the Brazilian population reflect its ancestral 
populations, but it is not identical due to bottleneck and drift 
events.

To date, the spectrum of recurrent mutations in diverse 
populations suggest that all populations have genetic predis-
positions toward breast cancer, but that the burden of inher-
ited mutations is variable due to differences in population 
structure across populations [14–18]. Depending on how 
populations are structured, some risk alleles could become 
major risk alleles, as seen in Ashkenazi Jewish individu-
als. Because these genetic factors vary by both individual 
and population, efforts to improve the health of individuals 
should also be different according to individual- and popu-
lation-specific risks.

Though much has been learned about mutations in breast 
cancer susceptibility genes, there has been a lag in research 
and analysis of distinct (and often minority) populations. 
Initially, very little was known about mutations in African 
Americans. Gao et al. [39] provided one of the first descrip-
tions of the BRCA1 mutation spectrum in African Ameri-
can families affected by breast cancer and noted recurrent 
BRCA1 mutations, including three novel mutations that 
were unique to the population: c.1713_1717delAGAAT 
(1832del5), c.5177_5180del4 (5296del4), and c.3764dupA 
(3883insA). These findings were later confirmed by Nanda 
et al. [40], who noted vast differences in the spectra of 
BRCA1 and BRCA2 mutations between families of Euro-
pean and African descent. These were also corroborated by 
recent findings showing that the genetic profile of African 
American women affected by breast cancer are different 
than that of Caucasian American, Ashkenazi Jewish, His-
panic, and Asian women, as shown in Table 1. In a South-
west Nigeria population, Fackenthal et al. [41] showed that 
Nigerian breast cancer patients have an exceptionally high 

frequency of BRCA1 and BRCA2 mutations (7.1 and 3.9%, 
respectively) and the data support enrichment for genetic 
risk factors in this relatively young cohort. By evaluating 
BRCA1 and BRCA2 mutations in 396 black women with 
breast cancer under 50 years old recruited in Florida, Pal 
et al. [9] reported a similarly high prevalence (12.4%) of 
BRCA1 and BRCA2 mutations and eight recurrent mutations 
accounted for 49% of all the deleterious mutations. In Carib-
bean populations, 23% of breast cancer patients carried one 
of the seven founder mutations identified in a Bahamas pop-
ulation [42–44] and the prevalence of BRCA1 and BRCA2 
mutations was 5.6 and 3.7% in Trinidad and Tobago [45]. In 
Latin America, the prevalence of BRCA1 and BRCA2 muta-
tions in unselected breast cancer patients was reported to 
be low in Colombians (approximately 1.2%) [46]. However, 
another study showed that the frequencies of two BRCA1 
founder mutations (c.3331_3334delCAAG and c.5123C>A) 
and two BRCA2 founder mutations (c.1763_1766delATAA 
and c.2808_2811delACAA) in 1,022 Colombian unselected 
breast cancer cases were 5.5 and 1.5%, respectively [47, 48]. 
Furthermore, the frequencies of deleterious mutations in 
BRCA1 and BRCA2 among African and Latin populations 
undergoing clinical testing at Myriad Genetic Laborato-
ries are much higher than other groups at 15.6 and 14.8%, 
respectively, compared to other populations of European 
ancestry groups that vary between 12.1 and 13.5% [49].

Other breast cancer susceptibility genes

With advances in genomic technologies, researchers have 
made significant discoveries in clinical cancer genetics in 
the past three decades. Important genes that play key roles 
in the development of cancer such as RB1 [50–53] and TP53 
[54–56] were discovered in the 1980s, APC [57, 58], MSH2 
[59–61], MLH1 [62, 63], CDKN2A [64–67], CDH1 [68, 69], 
and BRCA1 and BRCA2 [7, 8] in the 1990s. In the era of 
NGS, we can now examine a large panel of cancer suscepti-
bility genes simultaneously in a reliable and robust manner. 
Recently, a cancer susceptibility gene panel, the BROCA 
panel [70], was designed for massive parallel sequencing to 
capture more than 50 genes associated with different can-
cers. Using this panel in 289 African Americans with breast 
cancer, Churpek et al. [71] detected 57 different pathogenic 
mutations in eight different genes among 65 patients. It sup-
ports the clinical utility of simultaneous multi-gene NGS, 
rather than relying on a limited cancer screening panel or 
a gene-by-gene approach. Most of the mutations identi-
fied (76%) were in the BRCA1 or BRCA2 genes, but other 
genes (BARD1, PALB2, CHEK2, ATM, PTEN and TP53) 
also appeared to have pathogenic mutations. The penetrance 
of these genes and their relative contribution to the breast 
cancer burden in diverse populations remain understudied.
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It has been suggested that CHEK2, a gene included in 
most breast cancer panels as a breast cancer susceptibility 
gene with the highest frequencies of deleterious mutations 
in populations of Northern and Eastern Europe ancestries, 
remains poorly studied in Non-European populations. 
Cybulski et al. [72, 73] reported that germline mutations in 
CHEK2 are associated with a two-fold increased susceptibil-
ity to breast, prostate, colon, thyroid, and renal cancers in 
Poland. The most recurrent mutations in the CHEK2 gene, 
c.1100delC, c.444+1>A, and c.470T>C, are founder muta-
tions. The association of the CHEK2 c.1100delC deleterious 
mutation and breast cancer was noticeably demonstrated in 
a population-based study done by the CHEK2 Breast Can-
cer Consortium [74]. The study encompasses breast cancer 
cases and control who are non-carriers of BRCA1 or BRCA2 
mutations from the United Kingdom, Germany, the Nether-
lands, and the United States. CHEK2 c.1100delC mutation 
was found in the control group with a frequency of 1.1%, 
but it had a statistically significantly higher frequency in the 
breast cancer group (5.1%). However, previous studies using 
a more diverse population of breast cancer cases and con-
trols in the United States had suggested that CHEK2 was not 
an important susceptibility gene for breast cancer because 
of the low frequency of CHEK2 c.1100delC among breast 
cancer cases (<2%) [75, 76]. These conflicting conclu-
sions underscore the need for studies in diverse populations 
because mutation spectra vary in different populations with 
distinct genetic makeups. Unfortunately, minority groups in 
the United States are grossly underrepresented in genetic 
epidemiology studies to make more accurate risk estimates 
of specific mutations in individual patients.

In addition to the BROCA panel, other multi-gene testing 
panels for breast cancer were constructed, including Breast-
Next from Ambry Genetics, OncoGeneDx from GeneDx, 
myRisk from Myriad Genetics, TruSight Cancer from Illu-
mina, and others [77]. Given the higher incidence of aggres-
sive, early-onset breast cancer among women of African 
ancestry, and the potential heterogeneous inherited mutation 
spectrum in the African diaspora, it is necessary to evalu-
ate breast cancer susceptibility genes in large, population-
based cohorts of breast cancer patients of African and other 
understudied ancestries. After more than two decades of 
research to establish the contribution of other genes, BRCA 
and BRCA2 remain the most important predictors of breast 
cancer risk in all populations. There is ongoing debate about 
screening all unaffected young women for BRCA mutations 
by age 30 [78]. This population-based screening approach 
could be beneficial for disease prevention and early detec-
tion and would be an incredible advancement in the field. 
More research is urgently needed to examine penetrance of 
BRCA mutations in diverse populations and to refine breast 
cancer risk prediction models that can be integrated into 
population-based screening strategy in different countries. 

The aggressive nature of BRCA-associated breast cancers 
makes this a high priority for more effective cancer control 
efforts and health equity.

BRCA‑associated breast cancer phenotype

As a complex disease, breast cancer can be categorized by 
different subtypes, based on immunohistochemistry or gene 
expression profiling. Triple-negative breast cancer (TNBC, 
lack of expression of estrogen receptor [ER], progesterone 
receptor [PR], and human epidermal growth factor recep-
tor 2 [HER2]), is an aggressive subtype that confers poor 
prognosis and it is overrepresented in women of African 
ancestry. In a population-based study of invasive breast 
cancer patients, Clarke et al. [79] found the highest percent 
of TNBC among African Americans (20%), followed by 
Hispanic (13%), Asian (9%) and Caucasian (9%) groups. In 
addition, Huo et al. [80] observed that the majority of tumors 
from indigenous African women were hormone-recep-
tor–negative, and only 25% were hormone-receptor-positive. 
Furthermore, a recent study in The Cancer Genome Atlas 
revealed that, after adjusting for age, black breast cancer 
patients had a higher odds of basal-like and HER2-enriched 
subtypes than white patients [81]. Differences in tumor sub-
type distribution across populations suggest heterogeneity in 
breast cancer etiology.

Breast cancer phenotype is a result of interactions of 
genotype and environmental factors, we can observe con-
siderable differences when looking at the phenotype of 
breast cancer patients. The differences observed in the 
genotypes among populations are greater when taking into 
account the disease phenotypes, which increase the degree 
of heterogeneity of breast cancer [80, 82, 83]. Sorlie et al. 
[84], observed that women with germline BRCA1 muta-
tions exhibit basal-like expression in their tumors while 
the tumors of BRCA2 mutation carriers exhibit luminal A 
expression patterns. Grushko et al. [85] verified the non-
amplification of HER2/neu in BRCA1-associated tumors 
compared to sporadic tumors. In addition, other studies 
that mainly focused on whites have reported that BRCA1 
mutation carriers have an increased risk of TNBC [86–88]. 
By analogy, the high prevalence of TNBC in the Nigerian 
population [80, 92] can be explained, at least in part, by 
the high BRCA1 mutation rate in the same population [41]. 
Therefore, a better understanding of breast cancer genotype-
phenotype correlation in diverse populations can be benefi-
cial to improve clinical strategies for mutation screening and 
to develop risk-prediction algorithms accordingly, by taking 
bother mutational and clinical-pathological characteristics 
into account.



 G. E. S. Felix et al.

1 3

Breast cancer risk prediction models

Differences in genetic profiles and environments across 
populations require the careful development and calibration 
of risk prediction models. Such risk prediction models will 
be needed for population risk stratification and precision 
medicine to improve clinical outcomes in at-risk individu-
als. While there are several risk prediction models in clinical 
use, their performance in diverse populations varies greatly. 
Nanda et al. [40] initially found differences in the perfor-
mance of the BRCAPRO risk prediction model in popula-
tions of European versus African ancestry. The predicted 
risk of having BRCA1 or BRCA2 mutations and the observed 
incidence among the groups varied; BRCAPRO underesti-
mated risk at the lowest quartile, while overestimating it at 
the highest quartile in African Americans. Huo et al. [89] 
also tested the performance of BRCAPRO model among 
ethnic minority families (African American, Hispanic, and 
Asian) compared to Caucasians. Again, the BRCAPRO 
model did not perform as well in predicting the risk of 
BRCA1 or BRCA2 mutations in African American families 
compared to Non-African American families.. These studies 
highlight the importance of having a reliable genetic predic-
tor tool, especially for those in developing countries (par-
ticularly within African, Asian, and Latin American popu-
lations) that cannot easily afford genetic testing. In these 
already budget-constrained nations, reliable and affordable 
tools would be particularly helpful to efficiently and effec-
tively assess portions of the population that are at the high-
est risk for more concerted interventions to reduce risk and 
promote early detection of breast cancer.

Fischer et  al. [90] analyzed the performance of four 
genetic risk models (BOADICEA, IBIS, BRCAPRO and 
Claus) in 7352 families from Germany. In contrast to previ-
ous work by Nanda et al. [40] and Huo et al. [89] in women 
of African descendant, BRCAPRO and BOADICEA per-
formed better than the other risk predictor models in breast 
cancer families from Germany. BRCAPRO has been recently 
upgraded for estimating the risk of contralateral breast can-
cer [91]. Kurian et al. [92] also evaluated the performance 
of BOADICEA and BRCAPRO in Hispanic, African Ameri-
can, and Caucasian women. Although the performance of 
the BOADICEA and BRCAPRO was previously reported 
to be similar, Kurian et al. [92] found that the prediction 
models were most accurate for non-Ashkenazi Jewish whites 
than for the two minority groups studied (African Ameri-
cans and Hispanics). Data from these studies demonstrate 
the importance of calibrating breast cancer risk prediction 
models in each population before widespread adoption.

Besides the calibration of the prediction models in each 
population, the inclusion of others risk factors could also 
improve the performance and the accuracy of risk prediction. 
For instance, BOADICEA included pathology information 

to improve the prediction accuracy since BRCA1 tumors 
often have a distinct basal-like phenotype. Consequently, 
for women of African ancestry (who present with higher 
incidence of this type of tumor and also have higher rates of 
BRCA1 mutations), the BOADICEA could be a useful tool 
and needs to be validated in populations of African ancestry 
[40, 43–47].

It is crucial to ensure sufficient representation from 
minority groups in databases that curate genotypes and phe-
notypes for breast cancer. It is known that African Ameri-
cans, Asians, Latin Americans, and Native Americans are 
underrepresented and underserved populations in breast 
cancer genetics databases [93]. With investment in research 
among diverse populations, translation of such research in 
the clinic could improve quality of cancer care. In addition 
to knowledge gaps about minority groups, access to genetic 
testing and preventive health care is also limited due to lack 
of health insurance coverage and poor personal risk aware-
ness. Even among health care professionals there is lack of 
breast cancer risk awareness and poor utilization of genetic 
services [94].

Summary

Global health disparities across different populations exist 
and the gap is likely to continue to widen. Health profes-
sionals have to think globally, but act locally, in order to 
reduce the death rates of cancer, because each population 
is unique. Understanding the genetic profile of a population 
is important, because each population has a unique degree 
of genetic admixture in addition to environmental, social, 
and cultural factors. Researchers now know that individuals 
who carry alterations in breast cancer susceptibility genes 
can be empowered to use this knowledge to preempt and 
prevent disease [95]. The medical benefit of having knowl-
edge about patients’ genetic susceptibility profile after the 
disease is diagnosed is undoubtedly suboptimal [96]. Early 
screening and detection, as an outcome of a differentiated, 
individualized approach, is a more appropriate model than 
“one-size-fits-all” [97]. Studies have indicated that enhanced 
screening technologies such as Magnetic Resonance Imag-
ing more accurately reflect breast architecture, which allows 
more precise detection of small cancers [98]. Additionally, 
information gained from genetic testing could be utilized 
to predict the disease before symptoms even begin [96]. 
Beyond utilizing appropriate technologies, we also have to 
increase public awareness about cancer and how individu-
als can be empowered to modify their own risk. In order to 
achieve this, we have to reach widespread consensus about 
the risks posed for each population group by identifying 
more precisely the unique intrinsic and extrinsic factors that 
play key roles in breast cancer development. Finally, with 
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this data, we can make adequate and effective health care 
policies in cancer prevention and provide adequate treatment 
for each distinct population [99, 100].
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