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Abstract The Zika virus has emerged as a global public health concern. Its rapid geographic

expansion is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers

are still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic in

Brazil and was one of the first urban centres to report Zika infections. Using a climate-driven

transmission model and notified Zika case data, we show that a low observation rate and high

vectorial capacity translated into a significant attack rate during the 2015 outbreak, with a

subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a potential Zika-

related, low risk for microcephaly per pregnancy, but with significant public health impact given

high attack rates. The balance between the loss of herd-immunity and viral re-importation will

dictate future transmission potential of Zika in this urban setting.

DOI: https://doi.org/10.7554/eLife.29820.001

Introduction
The first cases of Zika virus (ZIKV) in Brazil were concurrently reported in March 2015 in Camaçari

city in the state of Bahia (Campos et al., 2015) and in Natal, the state capital city of Rio Grande do

Norte (Zanluca et al., 2015). During that year, the epidemic in Camaçari quickly spread to other

municipalities of the Bahia state, including the capital city of Salvador, which together accounted for

over 90% of all notified Zika cases in Brazil in 2015 (Faria et al., 2016a). During this period, many

local Bahia health services were overwhelmed by an ongoing Chikungunya virus (CHIKV, East Central

South African genotype) epidemic, that was first introduced in 2014 in the city of Feira de Santana

(FSA) (Nunes et al., 2015; Faria et al., 2016b). The role of FSA in the establishment and subsequent

spread of CHIKV highlights the importance of its socio-demographic and climatic setting, which may

well be representative for the transmission dynamics of arboviral diseases in the context of many

other urban centres in Brazil and around the world.

On the 1
st February 2015 the first ZIKV cases were reported in FSA, followed by a large epidemic

that continued into 2016. The rise in ZIKV incidence in FSA coincided temporally with an increase in
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cases of Guillain-Barré syndrome (GBS) and microcephaly (Faria et al., 2016a), with an unprece-

dented total of 21 confirmed cases of microcephaly in FSA between January 2015 and May 2017.

There is wide statistical support for a causal link between ZIKV and severe manifestations such as

microcephaly (Rubin et al., 2016; de Araújo et al., 2016; Soares de Araújo et al., 2016;

Honein et al., 2017; Brasil et al., 2016; de Oliveira et al., 2017), and the proposed link in 2015 led

to the declaration of the South American epidemic as an international public health emergency by

the World Health Organization (WHO) in 2016; the response to which has been limited to vector

control initiatives and advice to delay pregnancy in the affected countries (WHO, 2016b;

WHO, 2016a). With few cohort studies published (Honein et al., 2017; Brasil et al., 2016) and the

lack of an established experimental model for ZIKV infection (Aman and Kashanchi, 2016;

Dowall et al., 2016), modelling efforts have taken a central role for advancing our understanding of

the virus’s epidemiology (Chowell et al., 2016; Ferguson et al., 2016; Bogoch et al., 2016;

Nishiura et al., 2016; Zhang et al., 2016; Perkins et al., 2016; Messina et al., 2016). In particular,

our knowledege on parameters of public health importance, such as the basic reproduction number

(R0), the duration of infection (Ferguson et al., 2016), attack and reporting rates (Kucharski et al.,

2016), the risk of sexual transmission (Maxian et al., 2017; Gao et al., 2016; Moghadas et al.,

2017) and birth-associated microcephaly (Bewick et al., 2016; Perkins et al., 2016) has advanced

significantly from studies using transmission models. Climate variables are critical for the epidemio-

logical dynamics of Zika and other arboviral diseases, such as dengue (Lourenço and Recker, 2014;

Feldstein et al., 2015; Kraemer et al., 2015; van Panhuis et al., 2015) and chikungunya

(Poletti et al., 2011; Mourya et al., 2004; Salje et al., 2016). Although these have also been previ-

ously addressed in mapping and/or modelling studies (e.g. (Bogoch et al., 2016; Zhang et al.,

2016; Perkins et al., 2016; Messina et al., 2016)), their effects as ecological drivers for the

eLife digest Mosquitoes can transmit viruses that cause Zika, dengue and several other tropical

diseases that affect humans. Zika virus usually causes mild symptoms, but it is thought that infection

during pregnancy can lead to brain abnormalities, including microcephaly, where babies are born

with an abnormally small head. Recent studies have shed light on how the Zika virus spread from

Africa to reach South America, the Caribbean and North America. However, much less is known

about the ecological factors that contribute to the spread of the virus within towns, cities and other

local areas.

In 2015, Brazil was struck by an outbreak of the Zika virus that led to an international public

health emergency. Lourenço et al. used a mathematical model to explore the local conditions within

Feira de Santana (a major urban center in Brazil) that contributed to the outbreak. The model took

into account numerous factors, including temperature, humidity, rainfall and the mosquito life-cycle,

which made it possible to reconstruct the history of the virus over the past three years and to make

projections for the next decades.

It revealed that most of the infections occured during 2015, with approximately 65% of the

population infected. The incidences of new infections declined in 2016, as increasing numbers of

local people had already been exposed to the virus and became immune. Temperature and

humidity appeared to have played a critical role in sustaining the mosquito population carrying the

Zika virus.

Further analysis suggests that the risk of Zika virus causing microcephaly is very low – only 0.3–

0.5% of the pregnant women in Feira de Santana who were infected with Zika gave birth to a baby

with the condition. What therefore makes Zika a public health concern is the combination of a low

risk with very high infection rates, which can affect a large number of pregnancies.

This study will help researchers and policy makers to predict how the Zika virus will behave in the

coming years. It also highlights the limitations and successes of the current system of surveillance.

Moreover, it will help to identify critical time periods in the year when mosquito control strategies

should be implemented to limit the spread of this virus. In future, this could help shape new local

strategies to control Zika virus, dengue and other diseases carried by mosquitoes.

DOI: https://doi.org/10.7554/eLife.29820.002
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emergence, transmission and endemic potential of the Zika virus, especially in the context of a well

described outbreak, have not yet been addressed in detail.

In this study, focusing on an urban centre of Brazil (Feira de Santana), we explicitly model the

mosquito-vector lifecycle under seasonal, weather-driven variations. Using notified case data of both

the number of suspected Zika infections and confirmed microcephaly cases, we demonstrate how

the combination of high suitability for viral transmission and a low detection rate resulted in an

extremely high attack rate during the first epidemic wave in 2015. The rapid accumulation of herd-

immunity significantly reduced the number of cases during the following year, when total ZIKV-asso-

ciated disease was peaking at the level of the country. Projecting forward we find that the demo-

graphic loss of herd-immunity together with the frequency of reintroduction will dictate the risk of

reemergence and endemic establishment of Zika in Feira de Santana. The conclusions of this study

should be transferable to major urban centres of Brazil and elsewhere with similar climatic and

demographic settings.

Methods summary
To model the transmission dynamics of ZIKV infections and estimate relevant epidemiological

parameters, we fitted an ento-epidemiological, climate-driven transmission model to ZIKV incidence

and climate data of FSA between 2015 and 2017 within a Bayesian framework, similar to our previ-

ous work on a dengue outbreak in the Island of Madeira (Lourenço and Recker, 2014).

The model is based on ordinary differential equations (ODE) describing the dynamics of viral

infections within the human and mosquito populations (Equations 1-5 and 6-10, respectively). The

human population is assumed to be fully susceptible before the introduction of ZIKV and is kept con-

stant in size throughout the period of observation. After an infectious mosquito bite, individuals first

enter an incubation phase, after which they become infectious to a mosquito for a limited period of

time. Fully recovered individuals are assumed to retain life-long immunity. We assumed that sexual

transmission did not significantly contribute to transmission dynamics and therefore ignored its

effects (Yakob et al., 2016; Moghadas et al., 2017; Maxian et al., 2017).

For the dynamics of the vector populations we divided mosquitoes into two life-stages: aquatic

and adult females. Adult mosquitoes were further divided into the epidemiologically relevant stages

for arboviral transmission: susceptible, incubating and infectious. In contrast to human hosts, mos-

quitoes remain infectious for life. The ODE model comprised 8 climate-dependent entomological

parameters (aquatic to adult transition rate, aquatic mortality rate, adult mortality rate, oviposition

rate, incubation period, transmission probability to human, hatching success rate and biting rate),

whose dependencies on temperature, rainfall and humidity were derived from other studies (see

Table 1).

Four parameters (baseline mosquito biting rate, mosquito sex ratio, probability of transmission

from human-to-vector and human lifespan) were fixed to their expected mean values, taken from the

literature (see Table 2). To estimate the remaining parameters, alongside parameter distributions

regarding the date of first infection, the human infectious and incubating periods, and the observa-

tion rate of notified ZIKV cases, we fitted the ODE model to weekly notified cases of ZIKV in FSA

using a Bayesian Markov-chain Monte Carlo (MCMC) approach. The results are presented both in

Table 1. Model climate-dependent parameters.

Notation Description

�vAðtÞ transition rate from aquatic to adult mosquito life-stages

�v
AðtÞ mortality rate of aquatic mosquito life-stage

�v
V ðtÞ mortality rate of adult mosquito life-stage

�vðtÞ (human) intrinsic oviposition rate of adult mosquito life-stage

gvðtÞ (vector) extrinsic incubation period of adult mosquito life-stage

fv!hðtÞ vector-to-human probability of transmission per infectious bite

cvðtÞ egg hatching success

avðtÞ adult vector biting rate

DOI: https://doi.org/10.7554/eLife.29820.003
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terms of mean dynamic behaviour of the ODE under the MCMC solutions and posterior distributions

of key epidemiological parameters. A full description of the fitting approach and the estimated

parameters can be found in the section Materials and methods.

Results
On the 1

st February 2015 the first Zika virus (ZIKV) case was reported in Feira de Santana (FSA).

Weekly cases remained very low for the following two months, adding up to just 10 notified cases

by the end of March that year (Figure 1A). A rapid increase in the number of cases was observed in

April, coinciding with Micareta, a local carnival-like festival that takes place across the urban centres

of Bahia. The epidemic peaked in July 2015, which was followed by a sharp decline in notified cases

over the next 1–2 months. This first epidemic wave was followed by a significantly smaller outbreak

in 2016, peaking around March, and an even smaller outbreak in 2017 with no discernable epidemic

peak.

Confirmed (and monthly aggregated) microcephaly (MC) cases were absent by November 2015,

after which a small epidemic was observed with peak counts in January 2016. We found a time lag

of 5–6 months (20–24 weeks) between the first reported Zika epidemic wave and the MC peak in

case counts. This coincides with previous observations suggesting a link between the development

of neurological complications in newborns and ZIKV infection during the second trimester

(Faria et al., 2016a). We note that our lag may be offset by around 1–4 weeks, however, since the

date of MC cases in our dataset represents the date of diagnostic confirmation, which is usually

done postpartum.

Overall, the epidemic behaviour in FSA was in sharp contrast with trends observed in notified

cases across Brazil (BR) as a whole, for which the second epidemic in 2016 was approximately 6

times larger than the one in 2015 (Figure 1A), suggesting the Bahia state as a focus point in the

emergence and initial spread of ZIKV in Brazil (Faria et al., 2016c; Faria et al., 2016a). Nonetheless,

a clear temporal synchronization between country level and FSA case counts could be observed.

The age distribution of notified ZIKV cases in FSA suggested a higher proportion of cases

between 20 and 50 years of age, but with no discernible differences between the two epidemics

(Figure 1B, top panel). However, when corrected for the expected number of cases assuming an

equal risk of infection per age class, we found the number of cases within this age group to be closer

to most other groups (incidence rate ratio, IRR, close to 1, Figure 1B, bottom panel). The per capita

case counts within the youngest age class (<1 years) appeared higher than expected, with an IRR sig-

nificantly above 1 and also higher in 2016 (IRR = 4.4, 95% CI [2.8, 7.0]) than in 2015 (IRR = 1.95, 95%

CI [1.5, 2.6]), possibly indicating biased reporting and/or health care seeking with increased aware-

ness of the disease. There was also a consistent trend towards reduced IRR in the elderly (>65 years),

although with significant uncertainties. Finally, a small increase in IRR could be detected in the 20–34

year olds, which could potentially be a signature of sexual transmission in this age group (Gao et al.,

2016; Carlson et al., 2016; Foy et al., 2011; Turmel et al., 2016; Yakob et al., 2016;

Maxian et al., 2017; Moghadas et al., 2017). At this stage and without more detailed data it was

not possible to ascertain whether these findings indicated age-related risk of disease, age-depen-

dent exposure risk or simply notification biases in particular age groups, however.

The spatial distribution of total notified cases for BR highlighted the expected clustering of ZIKV

cases within the Bahia state by the end of 2015 as well as the wider geographical range by July 2016

(Figure 1C). We speculate that the difference in geographical range could explain the higher num-

ber of cases observed during the 2016 epidemic at the country level. This, on the other hand, did

Table 2. Model constant parameters.

Notation Value Description References

av 0.25 per day mosquito biting rate [ 76, 88 ]

f 0.5 proportion of females (sex ratio) [ 52, 59 ]

fh!v 0.5 human-to-vector probability of transmission per infectious bite –

1=�h 75 years human mean lifespan [ 83 ]

DOI: https://doi.org/10.7554/eLife.29820.004
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not explain why the second epidemic in FSA was nearly 7 times smaller than the first and with only

sporadic cases in 2017. To answer this question and to obtain robust parameter estimates of ZIKV

epidemiological relevance we utilised a dynamic transmission model, which we fitted to notified
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Figure 1. Zika virus epidemics in Feira de Santana and Brazil (2015–2016). (A) Comparison of weekly notified Zika cases (full red line) with monthly

Microcephaly cases (blue bars) in Feira de Santana (FSA), overimposed with total Zika cases at the level of the country (BR, black dotted line). BR data

for weeks 50–52 was missing. Green area highlights the time period for the Micareta festival and the dotted grey line the date of first notification.

Incidence series is available as Dataset 3 and Microcephaly series as Dataset 4. (B) Age distribution and incidence rate ratio (IRR) for the 2015 (blue) and

2016 (green) FSA epidemics (data available as Dataset 2). The top panel shows the number of cases per age (full lines) and the proportion of total cases
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case data and local climate variables of FSA within a Bayesian framework (see Materials and

methods).

Climate-driven vectorial capacity
The reliance on Aedes mosquitoes for transmission implies that the transmission potential of ZIKV is

crucially dependent on temporal trends in the local climate. We therefore investigated daily rainfall,
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Figure 2. Eco-epidemiological factors and model fit to notified cases. (A) Zika case data (black) and daily climatic series for rainfall (gold), humidity

(blue) and mean temperature (green) for Feira de Santana (FSA). Climate data available as Dataset 1. (B) Resulting Bayesian MCMC fit to weekly (black

line: data, purple line: model fit) and cumulative incidence (black line: data, grey line: model fit). (A,B) The grey areas highlight the period before the

Zika outbreak, the white areas highlight the period for which notified case data was available, and the yellow shaded areas highlight the period for

which mean climatic data was used (see Materials and Methods). (C) Climatic series as in A and estimated R0 for the period of the outbreak (2015–2017)

(R0 absolute values in Figure 2—figure supplement 3). (D) Correlations between the estimated R0 and climatic variables (intercepts: 0.839 for humidity,

0.067 for rainfall and 0.658 for temperature). (E) Correlations between the case counts and climatic variables (intercepts: 0.487 for humidity, 0.024 for

rainfall and 0.862 for temperature). (D,E) Points presented are from timepoints (weeks) for which incidence was notified. (A–E) Y-axis normalised

between 0 and 1 for visualisation purposes.

DOI: https://doi.org/10.7554/eLife.29820.006

The following figure supplements are available for figure 2:

Figure supplement 1. Relationship between temperature and egg hatching success.

DOI: https://doi.org/10.7554/eLife.29820.007

Figure supplement 2. Prior selection and sensitivity.

DOI: https://doi.org/10.7554/eLife.29820.008

Figure supplement 3. Eco-epidemiological factors and model fit to notified cases.

DOI: https://doi.org/10.7554/eLife.29820.009
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humidity and mean temperature data in FSA between 2013 and May 2017 (Figure 2A). The data

showed erratic fluctuations in rainfall with sporadic episodes of intense rain but without a clear sea-

sonal trend. Temperature, on the other hand, presented a much clearer seasonal signature with fixed

amplitudes between 22 and 27 degree Celsius, peaking between December and May. Humidity

showed an intermediate scenario and appeared correlated with periods of intense rainfall but nega-

tively correlated with temperature.

By fitting our climate-driven transmission model to the local climate and ZIKV case data (see

Material and Methods and Figure 2B) we obtained parameter estimates for the mosquito lifespan as

well as the viral extrinsic incubation period (EIP) for the same period. Mosquito lifespan and EIP are

main drivers of vectorial capacity and both showed seasonal oscillations with median values of

around 9 and 5 days, respectively (Figure 2—figure supplement 3), which are in line with ranges

found in the literature (Trpis et al., 1995; Trpis and Hausermann, 1986; Andraud et al., 2012;

Hugo et al., 2014 and Table 3). Importantly, there was a strong negative temporal correlation

between these two variables, with periods of longer EIP coinciding with shorter lifespans and vice-

versa. This negative relationship resulted in large temporal variations in vectorial capacity and thus

seasonal oscillations in the daily reproductive numbers, R0, with a median value of 2.7 in the period

2015–2017 (range 1.0–4.3, Figure 2—figure supplement 3), and 2.2 before 2015, peaking in the

local summer months between December and April (Figure 2C). Importantly, R0 remained above 1

for the entire period, indicating a high suitability for ZIKV in FSA. It should be noted that R0 in this

context is a time-dependent variable, i.e. R0ðtÞ, but out of convenience we simply refer to it as R0.

We also looked at the relationship between each climatic variable and R0 and case counts

(Figure 2D and E, respectively). The transmission potential was strongly and positively correlated

with temperature (r2 ¼ 0:728) and negatively with humidity (r2 ¼ 0:26). As expected, from the highly

random patterns in the climate series, there was no correlation between R0 and rainfall (r2 ¼ 0:008).

In contrast, there was an opposite trend in the relationship between the climatic variables and case

counts, with a positive correlation with humidity (r2 ¼ 0:28) and a negative correlation with tempera-

ture (r2 ¼ 0:23). As with R0 there was only a weak observable trend in the relationship between rain-

fall and the number of Zika cases. It should be understood that this macroscopic analysis does not

take into account the expected temporal lags due to mosquito development, incubation periods

etc., so the purpose here was simply to identify a general qualitative relationship between climate,

vectorial capacity and disease incidence.

Model fit and parameter estimates
Four parameters of public health importance were estimated by our MCMC framework: the date of

introduction, the human infectious period, the human (intrinsic) incubation period, and the case

observation rate (Table 4). The posterior for the introduction date showed a strong support for an

introduction into FSA in early-mid December 2014 (estimated median: 10th of December), i.e. around

7–8 weeks before the first notified case (Figure 3A). The estimated human infectious period was » 6

days (Figure 3C, median = 5.9, 95% CI [5.47–6.14]), which was very similar to the estimated incuba-

tion period (Figure 3D, median = 5.8, 95% CI [5.6–6.15]) and in line with previously estimated ranges

for ZIKV (Table 3). In this context it is important to note that informative priors had been used for

these 2 parameters (Figure 2—figure supplement 2.), and the posterior for the incubation period

presented an adjustment of » � 0:5 days relative to the proposed distribution from the literature.

Table 3. Literature-based reports on key ZIKV epidemiological and entomological parameters.

Parameter/Function Values and ranges reported References

Intrinsic incubation period 6.5, 5.9 days [ 34, 50 ]

Human infectious period 4.7, 9.9 days [ 34, 50 ]

Extrinsic incubation period 8.2, 10, 7 days [ 34, 51, 84 ]

Attack rates 74, 50, 73, 94, 52% [ 17, 26, 47, 28 ]

R0 3.2, 2.5, 4.8, 2.05, 2.6–4.8, 4.3–5.8, 1.8–2.0 [ 17, 37, 38, 47, 64 ]

Observation rate 0.024, 0.06, 0.03, 0.11 [ 17, 37, 47 ]

DOI: https://doi.org/10.7554/eLife.29820.010
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Of particular interest here was the very low observation rate (Figure 3B), with a median of just

under 0.004 (median = 0.0039, 95% CI [0.0038–0.0041]), which equates to less than 4 in 1000 infec-

tions having been notified during the epidemic in FSA. Although lower than other previously

reported estimates, this would explain the relatively long period of low viral circulation before the

epidemic took off in April 2015. That is, based on our estimates, there were around 2,700 Zika infec-

tions during the first 2 months, of which only 10 were notified. More importantly, when applying this

rate to the total number of cases we found that by the end of the first epidemic wave around 65%

(95% CI [57.0–72.9]) of the population in FSA had been infected by the virus. This high attack rate is

not unusual for Zika, however, and is in general agreement with observations elsewhere (Table 3).

Future transmission potential for Zika virus
As illustrated by the cumulative attack rate in Figure 4A, and similar to estimates from other regions

in the world (Table 3), nearly 65% of the population got infected by ZIKV by the end of 2015, which

rose to over 75% (95% CI [76.9–84.3]) by the end of 2016. During the first wave most cases occurred

off-season, here defined by our estimated daily reproductive number (R0), while the second wave

appeared much more synchronized with the period of high transmission potential. Notably, this tem-

poral phenomenon has also been observed for the chikungunya virus (CHKV) when it was first intro-

duced into FSA in 2014 (Faria et al., 2016b).

The amassed accumulation of herd-immunity during the first wave resulted in a marked difference

between the estimated basic reproductive number, R0, and the effective reproductive ratio (Re) by

the end of 2015 (Figure 4A). This in turn might explain the marked reduction in Zika cases in FSA in

2016, at a time when the virus was infecting large numbers of individuals elsewhere in the country

(Figure 1A,C). At the start of 2016, Re was estimated to be more than 3 times smaller than R0, which

increased to 5 by the beginning of 2017. Projecting into the future using average climate data for

this region showed that the mean effective reproductive number is expected to remain low and

close to 1 for the next few years, suggesting a very weak potential for ZIKV endemicity in the near

future. In fact, the sporadic nature of Zika cases in 2017 strongly suggest that herd immunity in this

region is at a sufficiently high level to prevent sustained transmission. Furthermore, during 2017, Re

was on average less than 1 (mean: 0.62, range: 0.25–1.06), and we would therefore argue that the

small number of cases (1.4% of 2015–2017) were mostly a result of small transmission chains, either

from resonant transmission from the previous year, or from introduction events from nearby loca-

tions. Crucially, this would also explain why our ODE model matched both the dynamics and the

sizes of the first two epidemic waves in FSA between 2015 and 2016 but failed to capture the small

number of cases during 2017 (Figure 2B).

Without external introductions of infectious individuals (human or vector) our results predicted an

epidemic fade-out by 2017, in accordance with the lack of notified cases after March 2017

(Figure 4A). We therefore projected ZIKV’s epidemic potential over the next two decades (until

2040) using stochastic simulations (see Material and Methods) while assuming different rates of viral

introduction (Figure 4B,C). Our results showed that the potential for ZIKV to cause another outbreak

or to establish itself endemically in FSA is strongly dependent on the frequency of re-introductions,

whereby higher rates of external introductions might in fact help to sustain high levels of herd

Table 4. Model estimated parameters.

Notation Description Ranges / priors

t0 time point of first case (in a human) (¥, ¥)

K aquatic carrying capacity (0, ¥)

h linear factor for mosquito mortality (0, ¥)

a linear factor for extrinsic incubation period (0, ¥)

� non-linear factor for effects of humidity and rainfall (0, ¥)

sh human infectious period (0, 15)

gh human (intrinsic) incubation period (0, 15)

z observation rate (0, 1)

DOI: https://doi.org/10.7554/eLife.29820.011
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Figure 3. Estimated epidemiological and ecological parameters. MCMC posterior distributions, based on model fitting to notified case data between

2015–2017 and obtained from sampling 1 million MCMC steps after burn-in. (A) Posterior of the introduction date with median 10
th December 2014

(95% CI [01–16 Dec]). (B) Posterior of the observation rate with median 0.0039 (95% CI [0.0038–0.0041])). (C) Posterior of the human infectious period

with median 5.9 days (95% CI [5.47–6.14]). (D) Posterior of the human (intrinsic) incubation period with median 5.8 days (95% CI [5.6–6.15]).

Representative samples of 500 MCMC chain states are available in Supplementary files 1–6. See Figure 3—figure supplement 1 for sample chain

behaviour.

DOI: https://doi.org/10.7554/eLife.29820.012

The following figure supplements are available for figure 3:

Figure supplement 1. Sensitivity output for MCMC chains.

DOI: https://doi.org/10.7554/eLife.29820.013

Figure supplement 2. Eco-epidemiological factors and model fit to notified cases when using 2 observation rates.

DOI: https://doi.org/10.7554/eLife.29820.014
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immunity, whereas infrequent introductions are more likely to result in notable outbreaks. That is,

semi-endemic behaviour was only observed in simulations with low introduction rates (Figure 4B–C),

as these scenarios strike a fine balance between a low number of new cases affecting herd-immunity

levels and population turnover. In contrast, high introduction rates quickly exhaust the remaining

susceptible pool, resulting in very long periods without epidemic behaviours.

Sensitivity to reporting and microcephaly risk
In effect, our estimated observation rate entails the proportion of real infections that would have

been notified if symptomatic and correctly diagnosed as Zika. Based on the previously reported Yap

Island epidemic of 2007 (Duffy et al., 2009), the percentage of symptomatic infections can be

assumed to be close to 18%. Unfortunately, measures of the proportion of individuals seeking medi-

cal attention and being correctly diagnosed do not exist for FSA, although it is well known that cor-

rect diagnosis for DENV is imperfect in Brazil (Silva et al., 2016). We therefore performed a

sensitivity analysis by varying both the proportions of infected symptomatic individuals seeking med-

ical attention and the proportion of those being correctly diagnosed for Zika. Figure 5A shows that

if any of these proportions is less than 10%, or both between 15–20%, our observation rate of 3.9

per 1000 infections can easily be explained.

Finally we investigated the sensitivity of our results with regards to the expected number of new-

borns presenting microcephaly (MC). Following the observation that virtually all reported MC cases

were issued before the summer of 2016 and with a lag of 5–6 months (Figure 1A), we assumed that

the vast majority of Zika-associated MC cases would have been a consequence of the first epidemic

wave in 2015. We used the estimated attack rate of approximately 65% from 2015 (Figure 4A) and

varied the local birth rate and the theoretical risk of MC to obtain an expected number of cases. In

agreement with other reports (de Araújo et al., 2016; Cauchemez et al., 2016; Jaenisch et al.,

2016; Johansson et al., 2016), our model predicted a relatively low risk for MC given ZIKV infection

during pregnancy (Figure 5B,C). In particular, using a conservative total of 21 confirmed MC cases

in FSA, i.e. rejecting suspected or other complications, we estimate an average risk of approximately

0.35% of pregnancies experiencing ZIKV infection. Including the 3 foetal deaths where ZIKV infec-

tions were confirmed during pregnancy, i.e. using a total of 24 cases, only increased the risk to

0.39%. More generally, based on the results from our fitting approach and using the average birth
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rates of FSA as guideline, we estimate that on average 3–4 MC cases are expected per 100 k individ-

uals at 65% exposure to the virus.

Discussion
Using an ento-epidemiological transmission model, driven by temporal climate data and fitted to

notified case data, we analysed the 2015–2017 Zika outbreak in the city of Feira de Santana (FSA), in

the Bahia state of Brazil and determined the conditions that led to the rapid spread of the virus as

well as its future endemic and epidemic potential in this region. Given FSA’s high suitability for ZIKV

mosquito-vectors and its particular geographical setting as a state commerce and transport hub, our

results should have major implications for other urban centres in Brazil and elsewhere.

The pattern of reported ZIKV infections in FSA was characterized by a large epidemic in 2015, in

clear contrast to total reports at the country-level, peaking during 2016. Most notably for FSA was

the epidemic decay in 2016 and fadeout in 2017. In order to resolve whether this was due to a lower

transmission potential of ZIKV in 2016/2017 in FSA, we calculated the daily reproductive number (R0)

between 2013 and 2017 but found no notable decrease in 2016. Interestingly, the maximum R0 in

that period was observed in the season 2015/2016, coinciding with El Niño (Golden Gate Weather

Services, 2017) and thus in line with the hypothesis that this phenomenon may temporary boost

arboviral potential (Caminade et al., 2017; van Panhuis et al., 2015). By fitting our model to weekly

case data we also estimated the observation rate, i.e. the fraction of cases that were notified as Zika

out of the estimated total number of infections. It has previously been reported that the vast major-

ity of Zika infections go unnoticed (Table 3), which is in agreement with our estimates of an observa-

tion rate below 1%. Based on this, around 65% of the local population were predicted to have been

infected by ZIKV during the first wave in 2015, which is in the same range as the reported Zika out-

breaks in French Polynesia (66%) (Cauchemez et al., 2016) and Yap Island (73%) (Duffy et al.,

2009). The accumulation of herd-immunity caused a substantial drop in the virus’s effective repro-

ductive number (Re) and hence a significantly lower number of cases during the second wave in 2016

and subsequent demise in 2017. In the context of FSA, it is possible that the high similarity of case

definition to DENV, the concurrent CHIKV epidemic, and the low awareness of ZIKV at that time

could have resulted in a significant number of ZIKV infections being classified as either dengue or
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chikungunya. Furthermore, based on our analysis, we would argue that the percentage of correctly

diagnosed ZIKV infections and infected individuals seeking medical attention must have been excep-

tionally low (both lower than 20%).

The age structure of notified cases showed a higher than expected incidence risk ratio (IRR) for

individuals under the age of 4 years and a lower than expected risk for individuals aged + 50 years.

This contrasts the observation during the Zika outbreak on Yap Island in 2007, where all age classes,

except the elderly, presented similar attack rates (Duffy et al., 2009). We note here, however, that

the Yap Island analysis was based on both a retrospective analysis of historical hospital records and

prospective surveillance (serology, surveys). It is therefore possible that the signatures amongst the

youngest and oldest individuals in FSA may reflect deficiencies and/or biases in local notified data.

Such signatures could emerge by both a rush of parents seeking medical services driven by a hyped

media coverage or prioritization of child-care due to the emergence of microcephaly during the Zika

epidemic and a small proportion of the elderly seeking or having access to medical attention. In fact,

the increased risk in young children in 2016 may have been a result of increased awareness as well

as the interventions by the WHO in the second year. We also found a small increase in IRR in the 20–

34 years age group, particularly during 2016, which could be indicative of the small contribution of

sexual transmission (Moghadas et al., 2017; Maxian et al., 2017). Most of these observations are

speculative, however, and more detailed data will be required to fully understand these age-related

risk patterns. For instance, initiatives such as the ZiBRA Project (ZIBRA, 2016; Faria et al., 2016c;

Faria et al., 2017), which perform mobile and real-time sampling with portable genome sequencing,

could prove to be essential for a retrospective and future analysis of the ZIKV epidemic in Brazil,

especially in areas where high levels of herd-immunity will prevent large-scale circulation in the com-

ing years (Ferguson et al., 2016).

The implicit consideration of climate variables as drivers of vector biology allowed us to ascertain

the relative roles of temperature, humidity and rainfall for Zika’s basic and effective reproductive

potentials (R0 and Re, respectively). Similar to other studies in temperate and tropical settings, we

found that temperature, with its direct influence on mosquito lifespan, aquatic development and

extrinsic incubation period, was the key driver of seasonal oscillations in the transmission potential

(Lourenço and Recker, 2014; Mordecai et al., 2016; Mourya et al., 2004; Feldstein et al., 2015).

Rainfall, on the other hand, only seemed to play a marginal role and we argue that it may be a rele-

vant player for arboviral transmission mainly in tropical regions subject to intense rain seasons, such

as areas in South East Asia (Cuong et al., 2011; Hii et al., 2012; Xuan et al., 2014). We also noted

that the correlations between climatic variables and case counts were inverted when addressed

against the transmission potential. For instance, while temperature was positively correlated with R0

it was negatively correlated with Zika cases. This implies that the transmission potential is readily

responsive to climatic variation but that the Zika epidemics in FSA showed a slight but expected

delay in relation to the peak in transmission potential, with case numbers generally increasing after a

stable period of maximum R0, followed by epidemic peaks that tended to coincide with declining R0.

An interesting observation is that the 2015 epidemic peaked approximately 3 months after the esti-

mated peak in the virus’s transmission potential, whereas there was much higher synchrony during

the second wave in 2016. The same behaviour has been described for the CHIKV outbreak in FSA in

2014–2015 and which has been linked to highly discordant spatial distributions between the first two

epidemics (Faria et al., 2016b). It is likely that similar spatial effects (Kraemer et al., 2017) were

present in FSA’s ZIKV outbreaks. Unfortunately we did not have access to sufficiently detailed spatial

data to explore this hypothesis further.

A phylogenetic analysis has proposed that the introduction of ZIKV into Bahia took place between

March and September 2014, although without direct evidence for its circulation in FSA at that time

(Naccache et al., 2016). Our estimated date of introduction showed support for a date in early-mid

December 2014, a few months after the proposed introduction into Bahia and just over 7 weeks

before the first case of Zika was notified in FSA. Similar periods between the first notification and

estimated introduction often represent the time taken to complete one or more full transmission

cycles (human-mosquito-human) before a cluster of cases is generated of sufficient size for detection

by passive surveillance systems (Lourenço and Recker, 2014). The case data also shows a 2 months

period after the first notification during which weekly case numbers remained extremely low. This

long period was unexpected as persistent circulation of ZIKV could hardly be justified by the

observed total of only 10 cases. Given our estimated observation rate, however, the number of ZIKV
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infections during this time could have amounted to over 2700 actual cases. In April, the number of

cases increased rapidly, coinciding with the Micareta festival, which we argue may have played a

role in igniting the exponential phase of the epidemic by facilitating human-vector mixing as well as

a more rapid geographical expansion.

After calibrating our model to the 2015–2017 epidemic, we projected the transmission of ZIKV

beyond 2017 using stochastic simulations and average climatic variables for this region. Without the

possibility of externally acquired infections, local extinction was very likely by 2017 due to the high

levels of herd-immunity. According to our study, Zika’s reproductive potential (Re) reached its lowest

point in 2017, and it is expected to remain low for the next couple of years, given the slow replenish-

ment of susceptibles in the population through births. When explicitly modelling the importation of

infectious cases our projections for the next two decades corroborated the conclusions of previous

modelling studies that suggest a weak endemic potential for ZIKV after the initial exhaustion of the

susceptible pool (Ferguson et al., 2016; Kucharski et al., 2016). However, our simulations also

showed that the future epidemic behaviour is strongly dependent on the frequency of re-introduc-

tions, where sporadic and unpredictable epidemics could still be in the order of hundreds of cases.

Furthermore, given our estimated observation rate for the 2015–2017 epidemic, passive surveillance

systems are unlikely to fully detect the scale and occurrence of such small epidemics, missing their

actual public health impact, and as such efforts should thus be placed to improve ZIKV detection

and diagnosis in order to optimize the local reporting rates and potential for control.

Human sexual and vertical transmission of ZIKV is an important public health concern, especially

within the context of potential Zika-associated microcephaly (MC) and other neurological complica-

tions in pre- and neonatals. With a total of over 10,000 live births in 2015 in FSA, our crude estimate

for the risk of Zika-associated MC per pregnancy was below 4 cases per 100,000 individuals in a gen-

eralized population under an attack rate of 65%. As discussed elsewhere (Cauchemez et al., 2016),

this risk is extremely low when compared to other known viral-associated complications, such as

those caused by infections by cytomegalovirus (CMV) and the rubella virus (RV) (De Santis et al.,

2006; Naing et al., 2016). It is therefore crucial to reiterate that what makes the ZIKV a public health

concern is not necessarily the per pregnancy risk of neurological complications, but rather the com-

bination of low risk with very high attack rates. Other studies have reported that the risk for compli-

cations during the 1
st trimester of gestation is higher than the one estimated here. For example, in

the French Polynesia (FP) outbreak (Cauchemez et al., 2016), the risk associated with ZIKV infection

during the 1
st trimester was 1%, while the overall, full pregnancy risk was 0.42%, similar to our FSA

estimates. For the Yap Island epidemic, no microcephaly cases have been reported. With an esti-

mated 24 births per 1000 females (census 2000 as in (Duffy et al., 2009)) and using an overall risk of

approximately 0.4% per pregnancy, only 0–3 cases per 100,000 individuals would have been

expected. However, the island’s small population size (7391 individuals (Duffy et al., 2009))

together with a general baseline of 0–2 microcephaly cases per 100,000 in many areas of the world

(Johansson et al., 2016; Butler, 2016; EUROCAT, 2003) would explain the absence of reported

cases. It is also important to consider that a variety of birth defects have been found to be statisti-

cally associated with Zika virus infection during pregnancy, of which MC is one possible outcome.

While the risk for birth defects per pregnancy is consistently reported to be high, estimations for the

risk of MC vary considerably. For example, recent clinical trials (Honein et al., 2017; Brasil et al.,

2016) suggested that the risk of Zika-associated MC could be an order of magnitude higher than

the estimate reported in this or other previous studies (Cauchemez et al., 2016; Duffy et al., 2009).

At this stage it is not possible to explain these differences, but it is tempting to speculate that other

factors must influence either the actual or estimated risk. For example, there could be diagnostic

biases or differences between epidemiological and clinical studies. Alternatively, viral or host genetic

background, as well as the pre-exposition to other arboviruses may influence the absolute risk expe-

rienced by local populations or cohorts.

Official notification of Zika infections in Brazil started on the 1
st of January 2016, although cases

were reported in many other regions in Brazil during 2015. It is therefore plausible that the observa-

tion rate changed upon official guidelines and that the capacity to accurately diagnose and report

Zika infections could have been lower in 2015 compared subsequent years. To explore this, we reran

our fitting approach allowing for a possible change in the observation rate for 2016 and onwards

(Figure 3—figure supplement 2) and found a similar observation rate for 2015 (0.0039 versus

0.0034) as well as a similar attack rate between the two model variants. However, the estimated
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observation rate for 2016 and beyond was » 4 times larger than for 2015, implying a positive change

due to changes in the surveillance system. Nevertheless, only about 13–14 out of 1000 Zika cases

were reported after the 1
st of January 2016. It is hard to discern where the positive changes took

place, but we suggest the revised diagnosis guidelines may have increased the proportion correctly

diagnosed while the proportion of symptomatic individuals visiting medical facilities did not change.

It is also tempting to speculate that the 2015/2016 imbalance in reporting may have been a general

phenomenon across Brazil. As described elsewhere, it is thus possible that FSA is a good example of

states and urban centres that may have witnessed larger epidemics than reported in 2015

(de Oliveira et al., 2017). This, together with our conclusion that low MC risk with very high attack

rates makes ZIKV a public health concern, could explain why most MC reports at the level of the

country were in 2015 (de Oliveira et al., 2017), although for many regions the total reported num-

ber of ZIKV cases may have been surprisingly small that year.

There are certain limitations to our approach, many of which could be revisited when more

detailed data becomes available. For example, we assumed homogeneous mixing between human

and mosquito hosts but it is possible that spatio-temporal heterogeneities may have played a role in

FSA. Furthermore, we have curated and integrated functional responses of key entomological

parameters to temperature, rainfall and humidity variation, which were originally reported for den-

gue viruses. Our fitting approach is also dependent on notified case data and it is possible that the

reported cases are not representative of the initial expansion of the virus, which may have thwarted

the obtained posterior of the introduction date. Finally, our future projections for the endemic and

epidemic potential of ZIKV are based on average climatic trends of past years and do not capture

the occurrence of natural variation between years, in particular for years affected by major Southern

American climate events, such as the El Niño (Caminade et al., 2017).

In this study we have addressed the local determinants of ZIKV epidemiology in the context of a

major urban centre of Brazil. Our results imply that control and surveillance of ZIKV should be

boosted and focused in periods of high temperature and during major social events. These factors

could identify windows of opportunity for local interventions to mitigate ZIKV introduction and trans-

mission and should be transferable to other areas for which both temperature data and community

event schedules are available. We further confirm that the high transmission potential of ZIKV in

urban centres can lead to the exhaustion of the local susceptible pool, which will in turn dictate the

long-term epidemic and endemic behaviour of the virus. Depending on the rate of re-introduction,

sporadic outbreaks are to be expected, although these will be unlikely to result in a notable increase

in the number of microcephaly cases due to their limited sizes and low risk per pregnancy. Nonethe-

less, these local sporadic occurrences could still have important public health consequences, and we

argue that much better diagnostics and reporting rates are required for local authorities to detect

and respond to such events in the near future. Our integrated mathematical framework is capable of

deriving key insights into the past and future determinants of ZIKV epidemiology and its findings

should be applicable to other major urban centres of Brazil and elsewhere.

Materials and methods

Demographic and socio-economic setting
Feira de Santana (FSA) is a major urban centre of Bahia, located within the state’s largest traffic junc-

tion, serving as way points to the South, the Southeast and central regions of the country. The city

has a population of approximately 620.000 individuals (2015) and serves a greater geographical set-

ting composed of 80 municipalities (municipios) summing up to a population of 2.5 million. Although

major improvements in water supply have been accomplished in recent decades, with about 90% of

the population having direct access to piped water, supply is unstable and is common practice to

resort to household storage. Together with an ideal (tropical) local climate, these are favourable

breeding conditions for species of the Aedes genus of mosquitoes, which are the main transmission

vectors of ZIKV, CHIKV and the dengue virus (DENV) that are all co-circulating in the region

(Kraemer et al., 2015; Carlson et al., 2016). FSA’s population is generally young, with approxi-

mately 30% of individuals under the age of 20% and 60% under the age of 34. In the year of 2015,

the female:male sex ratio in FSA was 0.53 and the number of registered births was 10352, leading to

a birth rate standard measure of 31 new-borns per 1000 females in the population.
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Climate data
Local climatic data (rainfall, humidity, temperature) for the period between January 2013 and May

2017 was collected from the Brazilian open repository for education and research (BDMEP, Banco

de Dados Meteorológicos para Ensino e Pesquisa) (Brazil BDMEP, 1961). The climate in FSA is

defined as semi-arid (warm but dry), with sporadic periods of rain concetrated within the months of

April and July. Between 2013 and 2015, mean yearly temperature was 24.6 celsius (range 22.5–26.6),

total precipitation was 856 mm (range 571–1141), and mean humidity levels 79.5% (range 70.1–

88.9%). Temperature, humidity and precipitation per day is available as Dataset 1.

Zika virus notified case data
ZIKV surveillance in Brazil is conducted through the national notifiable diseases information system

(Sistema de Informação de Agravos de Notificação, SINAN), which relies on passive case detection.

Suspected cases are notified given the presence of pruritic maculopapular rash (flat, red area on the

skin that is covered with small bumps) together with two or more symptoms among: low fever, or

polyarthralgia (joint pain), or periarticular edema (joint swelling), or conjunctival hyperemia (eye

blood vessel dilation) without secretion and pruritus (itching) (Brazil SINAN, 2016; Brazil, 2016).

The main differences to case definition of DENV and CHIKV are the particular type of pruritic macu-

lopapular rash and low fever (as applied during the Yap Island ZIKV epidemic (Duffy et al., 2009)).

The data presented in Figure 1 for both Brazil and FSA represents notified suspected cases and is

available as Dataset 3 (please refer to the Acknowledgement section for sources). Here, we use the

terms epidemic wave and outbreak interchangeably (but see (Perkins et al., 2016)).

Microcephaly and severe neurological complications case data
A total of 53 suspected cases with microcephaly (MC) or other neurological complications were

reported in FSA between January 2015 and February 2017. Using guidelines for microcephaly diag-

nosis provided in March 2016 by the WHO (as in (Faria et al., 2016c)), a total of 21 cases were con-

firmed after birth and follow-up. A total of 3 fetal deaths were reported for mothers with confirmed

ZIKV infection during gestation but for which no microcephaly assessment was available. The first

confirmed microcephaly case was reported on the 24
th of November 2015 and virtually all subse-

quent cases were notified before August 2016 (with the exception of 2). The microcephaly case

series can be found in Dataset 4.

Ento-epidemiological dynamic model
The ordinary differential equations (ODE) model and the Markov-chain Monte Carlo (MCMC) fitting

approach herein used are based on the framework previously proposed to study the introduction of

dengue into the Island of Madeira in 2012 (Lourenço and Recker, 2014). We have changed this

framework to relax major modelling assumptions on the mosquito sex ratio and success of egg

hatching, have included humidity and rainfall as critical climate variables, and have also transformed

the original least squares based MCMC into a Bayesian MCMC. The resulting framework is

described in the following sections, in which extra figures are added for completeness.

The dynamics of infection within the human population are defined in Equations 1-5. In summary,

the human population is assumed to have constant size (N) with mean life-expectancy of �h years,

and to be fully susceptible before introduction of the virus. Upon challenge with infectious mosquito

bites (lv!h), individuals enter the incubation phase (Eh) with mean duration of 1=gh days, later

becoming infectious (Ih) for 1=sh days and finally recovering (Rh) with life-long immunity.

dSh

dt
¼�hN�lv!h ��hSh (1)

dEh

dt
¼lv!h �ghEh ��hEh (2)

dIh

dt
¼ghEh �shIh��hIh (3)

dRh

dt
¼shIh ��hRh (4)

N ¼ShþEh þ Ih þRh (5)
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For the dynamics of the mosquito population (Equations 6-10), individuals are divided into two

pertinent life-stages: aquatic (eggs, larvae and pupae, A) and adult females (V ) as in (Yang et al.,

2009). The adults are further divided into the epidemiologically relevant stages for arboviral trans-

mission: susceptible (Sv), incubating (Ev) for 1= _gv days and infectious (Iv) for life. The _ (dot) notation is

here adopted to distinguish climate-dependent entomological factors (further details in the follow-

ing sections).

dA

dt
¼ _cvf _�v 1�

A

K Rþ 1ð Þ

� �

V �ð _�vAþ _�v
AÞA (6)

dSv

dt
¼ _�vAA�lh!v� _�v

VS
v (7)

dEv

dt
¼lh!v� _gvEv� _�v

VE
v (8)

dIv

dt
¼ _gvEv � _�v

VE
v (9)

V ¼Sv þEv þ Iv (10)

Here, the coefficient _cv is the fraction of eggs hatching to larvae and f the resulting female pro-

portion. For simplicity and lack of quantifications for local mosquito populations, it is assumed that

the sex ratio remains at 1:1 (i.e. f ¼ 0:5). Moreover, _�vA denotes the rate of transition from aquatic to

adult stages, _�v
A the aquatic mortality, _�v

V the adult mortality, and _�v is the success rate of oviposition.

The logistic term ð1� A
K Rþ1ð ÞÞ can be understood as the ecological capacity to receive aquatic individ-

uals (Tran et al., 2013), scaled by a carrying capacity term K Rþ 1ð Þ in which K determines the maxi-

mum capacity and R is the local rainfall contribution (further details on following sections).

From Equations 6-10, the mean number of viable female offspring produced by one female adult

during its life-time, i.e. the basic offspring number Q, was derived (Equation 11). Most parameters

defining Q are climate-dependent, and for fixed mean values of the climate variables (ex. mean rain-

fall �R), expressions were derived for the expected population sizes of each mosquito life-stage mod-

elled (A0;V0) which are used to initialize the vector population (Equations 12-13).

Q¼
_�vA

_�vAþ _�v
A

_cf _�v

_�v
V

(11)

A0 ¼K �Rþ 1ð Þ 1�
1

Q

� �

(12)

V0 ¼K �Rþ 1ð Þ 1�
1

Q

� �

_�vA
_�v
V

(13)

Viral transmission
In respect to the infected host-type being considered, the vector-to-human (lv!h) and human-to-vec-

tor (lh!v) incidence rates are assumed to be, respectively, density-dependent and frequency-depen-

dent (Equations 14-15). Here, _av is the biting rate and _fv!h and fh!v are the vector-to-human and

human-to-vector transmission probabilities per bite. Conceptually, this implies that (i) an increase in

the density of infectious vectors should directly raise the risk of infection to a single human, while (ii)

an increase in the frequency of infected humans raises the risk of infection to a mosquito biting at a

fixed rate. The basic reproductive number (R0) is defined similarly to previous modelling approaches

(Equation 16) (Wearing and Rohani, 2006; Lourenço and Recker, 2013). We further derived an

expression for the effective reproductive ratio (Re, Equation 17), taking into account the susceptible

proportion of the population in real-time.

lv!h ¼ _av _fv!hIvSh=N
� �

/ Iv (14)

lh!v ¼ _av _fh!vIhSv=N
� �

/ Ih=N (15)

R0 ¼
ðV=NÞ~ _av ~ _av ~ _fv!h

~fh!v
~ _gv

~gh

_�v
V ðs

h þ�hÞðgh þ�hÞð _gvþ _�v
V Þ

(16)

Re ¼ðSh=NÞ� ðSv=NÞ�R0=ðV=NÞ (17)
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Markov chain monte carlo fitting approach
For the fitting process, the MCMC algorithm by Lourenco et al. is here altered to a Bayesian

approach by formalising a likelihood and parameter priors (Lourenço and Recker, 2014). For this,

the proposal distributions (q) of each parameter were kept as Gaussian (symmetric), effectively

retaining a random walk Metropolis kernel. We define our acceptance probability a of a parameter

set Q, given model ODE output y as:

a¼minf1;
pðyjQ$ÞpðQ$ÞqðQojQ$Þ

pðyjQoÞpðQoÞqðQ$jQoÞ
g (18)

where Q
$ and Q

o are the proposed and current (accepted) parameter sets (respectively); pðyjQ$Þ and

pðyjQoÞ are the likelihoods of the ODE output representing the epidemic data given each parameter

set; pðQoÞ and pðQ$Þ are the prior-related probabilities given each parameter set. We fit the Zika

virus cumulative case counts per week, for which no age-related or geographical data is taken into

consideration.

For computational reasons and based on a previous approach (Dorigatti et al., 2013), the likeli-

hoods p were calculated as the product of the conditional Poisson probabilities of each epidemic

data (di) and ODE (yi) data point:

pðyjQÞ ¼
Y

N

i¼1

Prfyi ¼ dig½ � (19)

Note, in this case where we have low cases numbers in a large population, the Poisson likelihood

represents a reasonable approximation to the Binomial process, which is expected to underlie the

observed data.

Fitted parameters
With the MCMC approach described above, all combinations of the open parameters in the ODE

system that most likely represent the outbreak are explored (Table 4). In summary, the MCMC esti-

mates the distributions for: (1) the carrying capacity K, an indirect estimate of the number of adult

mosquitoes per human; (2) time point of the first case t0, assumed to be in a human; (3) a linear coef-

ficient h that scales the effect of temperature on aquatic and adult mortality rates; (4) a linear coeffi-

cient a that scales the effect of temperature on the extrinsic incubation period; (5) a non-linear

coefficient � that scales the effects of humidity and rainfall on entoi

mological parameters; (6) the human infectious period 1=sh; and (7) the human incubation period

1=gh.

By introducing the linear coefficients h and a, the relative effect of temperature variation on mor-

tality and incubation is not changed per se, but instead the baselines are allowed to be different

from the laboratory conditions used by Yang et al. (Yang et al., 2009). For solutions in which

h;a ! 1, the laboratory-based relationships are kept. For a discussion on possible biological factors

that may justify h and a please refer to the original description of the method in (Lourenço and

Recker, 2014) and (Brady et al., 2013). Finally, the introduction of � allows the MCMC to vary the

strength by which entomological parameters react to deviations from local humidity and rainfall

means. In practice, the effect of rainfall and humidity can be switched off when � ! 0 and made

stronger when � ! þ¥ (details below).

Initial analysis of the MCMC output raised an identifiability issue between the human infectious

period (1=sh) and the linear coefficient (h) that scales the effect of temperature on vector mortality

(h scales the baseline mortality without changes to the response of mortality to temperature). Hence,

changes in both h and 1=sh result in similar scaling effects on the transmission potential R0 (Equa-

tion 16) and thus unstable MCMC chains for h and 1=sh, with the resulting posteriors appearing to

be bimodal (for which there was no biological support). We addressed this issue by using informative

priors for four parameters for which biological support exists in the literature: h, 1=sh, 1=gh, and a.

Gaussian priors were used with means and standard deviations taken from the literature (see Fig-

ure 2—figure supplement 2).
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Constant parameters
The framework described above has only 4 fixed parameters that are neither climate-dependent nor

estimated in the MCMC approach (Table 2). Amongst these, fh!v is the per bite probability of trans-

mission from human-to-mosquito, which we assume to be 0.5 (Lounibos and Escher, 2008;

Mohammed and Chadee, 2011); the sex ratio of the adult mosquito population f is assumed to be

1:1 (Lounibos and Escher, 2008; Mohammed and Chadee, 2011); the life-expectancy of the human

population is assumed to be an average of 75 years (WHO, 2016c); and the biting rate is taken to

be on average 0.25 although with the potential to vary dependent on humidity levels (details below)

(Trpis and Hausermann, 1986; Yasuno and Tonn, 1970).

Climate-Dependent parameters
For each of the temperature-dependent entomological parameters, polynomial expressions are

found de novo or taken from previous studies fitting laboratory entomological data with tempera-

ture (T) values used in Celsius. For rainfall (R) and humidity (U), positive or negative relationships to

entomological parameters are introduced using simple expressions, with values used after normaliza-

tion to ½0; 1�. We assume that some parameters are affected by a combination of temperature with

either rainfal or humidity, but take their effects to be independent. A list of climate-dependent

parameters and references is found in Table 1.

Polynomials of 4th degree for the mortality (�v
A; �

v
V ) and success ovipositon (�v) rates are taken

from the study by Yang and colleagues under temperature-controlled experiments on populations

of Aedes aegypti (Equations 19-21) (Yang et al., 2009). For aquatic to adult (�vA) rate we use the 7
th

degree polynomial of the same study (Equation 20). For the relationship between the extrinsic incu-

bation period (1=gv) and temperature we apply the formulation by Focks et al. which assumes that

replication is determined by a single rate-controlling enzyme (Focks et al., 1995; Schoolfield et al.,

1981; Otero et al., 2006) (Equation 24). The probability of transmission per mosquito bite (fv!h) is

here modelled (Equation 25) as estimated by Lambrechts and colleagues (Lambrechts et al., 2011).

Finally, the relationship between temperature and the fraction of eggs that successfully hatch (cv) is

estimated de novo (Equation 26) by fitting a 3
rd degree polynomial to Aedes aegypti and albopictus

empirical data described by Dickerson et al. (see Figure 2—figure supplement 1) (Dickerson, 2007;

Mohammed and Chadee, 2011).

�vAðTÞ ¼0:131� 0:05723T þ 0:01164T2 � 0:001341T3 þ 0:00008723T4 (20)

� 0:000003017T5 þ 5:153� 10
�8T6 � 3:42� 10

�10T7

�v
AðTÞ ¼2:13� 0:3797T þ 0:02457T2 � 0:0006778T3 þ 0:000006794T4 (21)

�v
V ðTÞ ¼0:8692� 0:1599T þ 0:01116T2 � 0:0003408T3 þ 0:000003809T4 (22)

�vðTÞ ¼� 5:4þ 1:8T � 0:2124T2 þ 0:01015T3 � 0:0001515T4 (23)

gvðTÞ ¼
0:003359 Tk

298
� expð15000

R
ð 1

298
� 1

Tk
ÞÞ

1þ expð6:203�1021

R
ð 1

�2:176�1030
� 1

Tk
ÞÞ

(24)

fv!hðTÞ ¼0:001044T �ðT � 12:286Þ� ð32:461�TÞ1=2 (25)

cvðTÞ ¼ð�184:8þ 27:94T � 0:9254T2 þ 0:009226T3Þ=100:0 (26)

We normalise the time series of rainfall (R) and humidity (U), further using the mean normalised

values (�R; �U) as reference for extreme deviations from the expected local tendencies (Bicout and

Sabatier, 2004; Tran et al., 2013). Rainfall is assumed to affect positively the fraction of eggs that

successfully hatch (cv) (Alto and Juliano, 2001; Rossi et al., 2015; Tran et al., 2013; Madeira et al.,

2002). A similar positive relationship is taken for the vector biting rate (av) and humidity levels

(Yasuno and Tonn, 1970), in contrast to a negative effect on the adult mosquito mortality rate (�v
V )

(Alto and Juliano, 2001).

cvðRÞ ¼ðR� �RÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðR� �RÞ2
q

(27)

avðUÞ ¼ðU� �UÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðU� �UÞ2
q

(28)

�v
V ðUÞ ¼�U�ðU� �UÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðU� �UÞ2
q

(29)
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Below is the complete formulation for each entomological parameter in time (t), depending on

the climatic variables for which relationships are assumed to exist, including the MCMC fitted linear

(a;h) and non-linear (�) factors described above.

�vAðtÞ ¼�vAðTÞ (30)

�v
AðtÞ ¼h�v

AðTÞ (31)

�v
V ðtÞ ¼h�v

V ðTÞ½1þ�v
V ðUÞ�� (32)

�vðtÞ ¼�vðTÞ (33)

gvðtÞ ¼agvðTÞ (34)

fv!hðtÞ ¼fv!hðTÞ (35)

cvðtÞ ¼cvðTÞ½1þ cvðRÞ�� (36)

avðtÞ ¼av½1þ avðUÞ�� (37)

Stochastic formulation of the ento-epidemiological model
A stochastic version of the ento-epidemiological framework was developed by introducing demo-

graphic stochasticity in the transitions of the dynamic system. This followed the original strategy

described in (Lourenço and Recker, 2014), in which multinomial distributions are used to sample

the effective number of individuals transitioning between classes per time step. Multinomial distribu-

tions are generalized binomials - Binomialðn; pÞ - where n equals the number of individuals in each

class and p the probability of the transition event (equal to the deterministic transition rate). This

approach has also been demonstrated elsewhere (Lampoudi et al., 2009).

Source code
The approach used in this study uses code in C/C++, bash and R scripts and is available at https://

github.com/lourencoj/ArboWeD2/tree/ArboWeD2_V1. A copy is archived at https://github.com/eli-

fesciences-publications/ArboWeD2.
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of microcephaly and Guillain-Barré syndrome. World Health Organization. http://bit.ly/HealthEmergency
[Accessed June 2017].

WHO. 2016c. World Health Organization - Brazil - Statistics. World Health Organization. http://www.who.int/
countries/bra/en/. [Accessed June 2017].

Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of
Zika virus in Singapore. PLoS Neglected Tropical Diseases 7:e2348. DOI: https://doi.org/10.1371/journal.pntd.
0002348, PMID: 23936579

Xuan LTT, Van Hau P, Thu DT, Toan DTT. 2014. Estimates of meteorological variability in association with
dengue cases in a coastal city in northern Vietnam: an ecological study. Global Health Action 7:23119.
DOI: https://doi.org/10.3402/gha.v7.23119, PMID: 28672611

Yakob L, Kucharski A, Hue S, Edmunds WJ. 2016. Low risk of a sexually-transmitted Zika virus outbreak. The
Lancet Infectious Diseases 16:1100–1102. DOI: https://doi.org/10.1016/S1473-3099(16)30324-3,
PMID: 27676337

Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM. 2009. Assessing the effects of temperature
on the population of Aedes aegypti, the vector of dengue. Epidemiology and Infection 137:1188–1202.
DOI: https://doi.org/10.1017/S0950268809002040, PMID: 19192322

Yasuno M, Tonn RJ. 1970. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bulletin of the World
Health Organization 43:319–325. PMID: 5312528

Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K. 2015. First report of autochthonous
transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz 110:569–572. DOI: https://doi.org/10.
1590/0074-02760150192, PMID: 26061233

Zhang Q, Sun K, Chinazzi M, Pastore-Piontti A, Dean NE, Rojas DP, Merler S, Mistry D, Poletti P, Rossi L, Bray M,
Halloran ME, Longini IM, Vespignani A. 2016. Projected spread of Zika virus in the Americas. bioRxiv. 066456.

ZIBRA. 2016. Zika in Brazil Real Time Analysis Project. http://www.zibraproject.org/ [Accessed June 2017].

Lourenço et al. eLife 2017;6:e29820. DOI: https://doi.org/10.7554/eLife.29820 25 of 25

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.1073/pnas.1501375112
http://www.ncbi.nlm.nih.gov/pubmed/26438851
https://doi.org/10.1073/pnas.0602960103
http://www.ncbi.nlm.nih.gov/pubmed/16868086
http://bit.ly/ZikaEmergencyPrepar
http://bit.ly/HealthEmergency
http://www.who.int/countries/bra/en/.
http://www.who.int/countries/bra/en/.
https://doi.org/10.1371/journal.pntd.0002348
https://doi.org/10.1371/journal.pntd.0002348
http://www.ncbi.nlm.nih.gov/pubmed/23936579
https://doi.org/10.3402/gha.v7.23119
http://www.ncbi.nlm.nih.gov/pubmed/28672611
https://doi.org/10.1016/S1473-3099(16)30324-3
http://www.ncbi.nlm.nih.gov/pubmed/27676337
https://doi.org/10.1017/S0950268809002040
http://www.ncbi.nlm.nih.gov/pubmed/19192322
http://www.ncbi.nlm.nih.gov/pubmed/5312528
https://doi.org/10.1590/0074-02760150192
https://doi.org/10.1590/0074-02760150192
http://www.ncbi.nlm.nih.gov/pubmed/26061233
https://www.biorxiv.org/content/early/2016/07/29/066456
http://www.zibraproject.org/
https://doi.org/10.7554/eLife.29820

