
Managing Workflows on top of a Cloud Computing

Orchestrator for using heterogeneous environments on

e-Science

Abel Carrióna,, Miguel Caballera, Ignacio Blanquera, Nelson Kotowskib,
Rodrigo Jardimb, Alberto Martin Rivera Dávilab

aInstituto de Instrumentación para Imagen Molecular (I3M)
Centro mixto CSIC - Universitat Politècnica de València

Camino de Vera s/n, 46022, Valencia
bComputational and Systems Biology Laboratory.

Oswaldo Cruz Institute.
Rio de Janeiro. RJ, Brazil, 21040-360

Abstract

Scientific Workflows (SWFs) are widely used to model processes in e-Science.
SWFs are executed by means of Workflow Management Systems (WMSs),
which orchestrate the workload on top of computing infrastructures. The
advent of cloud computing infrastructures has opened the door of using on-
demand infrastructures to complement or even replace local infrastructures.
However, new issues have arisen, such as the integration of hybrid resources
or the compromise between infrastructure reutilization and elasticity. In
this article we present an ad-hoc solution for managing workflows exploit-
ing the capabilities of cloud orchestrators to deploy resources on demand
according to the workload and to combine heterogeneous cloud providers
(such as on-premise clouds and public clouds) and traditional infrastructures
(clusters) to minimize costs and response time. The work does not propose
yet another WMS, but demonstrates the benefits of the integration of cloud
orchestration when running complex workflows. The article shows several
configuration experiments from a realistic comparative genomics workflow
called Orthosearch, to migrate memory-intensive workload to public infra-
structures while keeping other blocks of the experiment running locally. The
article computes running time and cost suggesting best practices.

Email address: abcarcol@i3m.upv.es (Abel Carrión)

Preprint submitted to Elsevier 9th March 2018

Keywords: Workflow, Workflow Management Systems, Cloud
Orchestrator, Multi-platform, e-Science, Cloud Computing, Comparative
genomics

1. Introduction

Initially proposed in the business context, workflows were adopted by
e-Science to model its applications. The execution of these workflow applic-
ations comprises many details. A typical workflow is composed of hundreds
of tasks that must be executed in a coordinated way. Moreover, all these
tasks must be submitted to specific computing resources and the required
inputs must be made available to the application. In data intensive applica-
tions, the staging of the input files could require transferring huge amounts
of data between resources. In a complex scenario like this one, it is possible
to identify several single points of failure: the reception of user inputs, the
data transfer between tasks, task executions, hardware crashes, etc. Thus,
in these cases it is necessary to carry out actions for resuming the execu-
tion, such as retrying the data transfer, rescheduling the task or resetting
the resources. Software in charge of dealing with all these aspects are called
Workflow Management Systems.
As new computing paradigms emerge and infrastructure evolve, so do the
WMSs that support these computing back-ends. Traditionally, Scientific
Workflow Applications have been extensively deployed in high performance
computing infrastructures, such as powerful clusters and supercomputers.
Later, a highly distributed infrastructure, the Grid, appeared as an alternat-
ive to traditional approaches. In the last years, a new distributed computing
paradigm, Cloud Computing, has appeared as another viable [1] platform for
running scientific applications. Some of their main features, such as rapid
elasticity, resource pooling, and pay per use, are well suited to the nature
of scientific applications that experience a variable demand during its execu-
tion. In fact, a typical scenario involves the execution of a scientific workflow
whose stages or phases have different computational requirements and there-
fore, a single infrastructure cannot deal with the whole workflow. In order
to avoid outsourcing the whole workflow to external resources for a high
cost, it is crucial that WMSs offer multi-platform support where only cer-
tain parts of the workflow are migrated to external resources. In order to
achieve it, legacy WMSs have been updated to support multiple platforms

2

for the execution of workflow applications, but they cannot benefit from all
the features that the cloud computing provides. This is because most legacy
WMSs are derived from grid computing projects and thus are optimized for
grids [2]. On the other hand, new generation WMSs normally are focused
on fully supporting a small number of cloud computing providers and ignore
older computing platforms (i.e Grid, cluster and supercomputers). So, in this
work we demonstrate how a multi-platform WMS can be developed on top of
a cloud orchestration system for executing SWFs on a heterogeneous comput-
ing environment (such as on-premise clouds, clusters and public clouds). It is
important to remark that the aim of this work is not to provide yet another
WMS, but to show the usefulness of cloud orchestrator systems for running
complex workflows. As such, the cloud orchestrator used in this work al-
lows on-demand and automatic infrastructure deployment depending on the
workload. The infrastructures are contextualized according to the user’s re-
quirements and it is possible to use any Virtual Machine Image (VMI) from
any source. Based on this, the paper’s contributions are evaluated using, as
use case, a realistic comparative genomics workflow called Orthosearch with
different configurations. These scenarios suggest best practices for minimiz-
ing costs and running times.
The remainder of the paper is structured as follows. Firstly, Section 2 offers
an overview of the related work found in the literature. Afterwards, Section
3 explains in detail the design of the multi-platform WMS and the cloud
orchestrator system. Then, Section 4 introduces the use case for the exper-
iments, the bioinformatics pipeline called Orthosearch. Section 5 explains
the different experiments carried out with our WMS as well as an exhaustive
analysis of the results. To sum up, conclusions and future working lines are
discussed.

2. Related work

Due to the crucial role that workflow applications play in the scientific
community, most current WMSs were developed to enable the execution of
these applications in grid computing platforms. When the Cloud Computing
became mainstream, legacy WMSs were extended to support it while new
WMSs were developed around this new paradigm. Although the aim our
work is not to offer another yet WMS but an execution system that can be
abstracted from WMSs, related work can only be found in the state-of-the-
art WMSs. Moreover, given the impact of the cloud computing paradigm in

3

the WMS landscape, we split them into two categories: pre-cloud era WMSs
and post-cloud era WMSs.

The following ones belong to the pre-cloud era:

ASKALON [3] is an application development and computing environment
whose aim is to simplify the execution of applications that can benefit from
the potential of Grid and Cloud infrastructures. Although [4] shows the
execution of a meteorological application in public and private clouds (Eu-
calyptus and Amazon EC2), there is no proof of a multi-platform execution,
where different infrastructures are used simultaneously.
Galaxy [5] is an open, web-based approach that facilitates genomics research.
It provides a collaborative environment for performing complex analyses,
with automatic provenance tracking, allowing the transparent sharing of com-
putational details, intent and context. Its objective is to offer accessible, re-
producible and transparent computational research. A Galaxy instance can
utilize compute clusters for running jobs, and can be easily interfaced with
portable batch system (PBS) or Sun Grid Engine (SGE) clusters. Galaxy can
be also instantiated on cloud computing infrastructures, primarily Amazon
Elastic Computing Cloud (EC2). The approach used by Galaxy in the cloud
consists on deploying a cloud cluster with a particular Galaxy AMI (Amazon
Machine Image) at the beginning of the workflow execution. The drawback
of this static virtual cluster is the under usage of the resources when pro-
cessing complex pipelines with variable resource demands.
Taverna [6] is a WMS with a strong focus on bioinformatics where all com-
putational workflow steps are Web Services. Workflows can be designed and
executed on local desktop machines through the workbench or through other
clients or web interfaces using the server mode. The server accepts requests
from many users to execute remote workflows with support of supercom-
puters, Grids or cloud environments.
MOTEUR [7] is a workflow engine originally designed to run Taverna [6]
workflows in European Grid infrastructures. Its main feature is to enable
data, service and workflow parallelism during the execution of the workflow.
Although designed to efficiently exploit Grid infrastructures, MOTEUR is
an agnostic infrastructure workflow enactor. To the best of our knowledge,
there are no examples in the literature that show the behaviour of this engine
in a cloud or multi-platform scenario.
Pegasus [8] is a mature WMS that combines features such as portability

4

across a wide range of infrastructures (clusters, grids and clouds), scalabil-
ity, data management capabilities, exhaustive monitoring and complex work-
flow restructuring or transformations. It can be used with popular program-
ming languages among the scientific community (such as Java, Python, Perl)
through its APIs (application programming interfaces) and also supports
submission via web portals. According to [9], in order to deploy Pegasus
workflows in the cloud, users have to configure cloud instances as an HT-
Condor pool. Similar to the Galaxy case, all the resources needed by the
workflow are deployed statically. Moreover, the VM image used for worker
instances must contain HTCondor, the Pegasus client tools, and the applica-
tion, and must be configured to contact the submit node to receive jobs. So,
users cannot use a VM image of their choice.
SwinDeW-C [10] (Swinburne Decentralised Workflow for Cloud) is a decent-
ralized (based on peer to peer) WMS derived from its predecessor, SwinDeW-
G, a decentralized grid workflow system. Due to its decentralized approach,
the system excels at QoS management. Moreover, because it inherits the
components of a previous grid project, the workflows can be executed on
grid and the cloud. SwinDeW-C has been only tested in SwinCloud, a cloud
computing environment built on the computing facilities of the Swinburne
University of Technology.
Triana [11] is a workflow environment focused at the Web services level. This
Web service orientation enables the execution of mixed-component workflows
which interconnect WS-RF services, P2P services, Grid services and Cloud
services.
VGrADS [12] is a WMS that provides abstract management of grid and cloud
resources. The execution system includes fault tolerance and deadline mech-
anisms. Because the project is more oriented towards batch-driven workflows
than data-intensive workflows, the executions can be configured to use ad-
vanced reservation of resources.
WS-PGRADE [13] is a generic distributed computing infrastructure gateway
framework that provides a workflow-oriented framework that enables the de-
velopment, execution and monitoring of scientific workflows where the nodes
of these workflows can access several infrastructures including clusters, Grids,
desktop Grids, academic and commercial clouds. WS-PGRADE leverages
the use of a web service based application called the Distributed Computing
Infrastructure Bridge. This web application enables workflow management
systems to access transparently several infrastructures using the BES inter-
face. The cloud resources that users can access through the DCI Bridge

5

must be previously registered by the Bridge’s administrator (cloud provider
endpoint, VM id, VM size, VM quota). From the end-user’s point of view,
this fact limits the cloud resources that can be accessed. In our solution, the
resources are contextualized following the requirements expressed by the user.

In the post-Cloud era we find the following tools:

The Globus Galaxies platform [14] is a group of components that enable
the deployment of SaaS(Software as a Service) scientific gateways. The plat-
form leverages the Galaxy [5] workflow system for the execution of scientific
workflows; Globus transfer for transferring large amounts of data; Globus
Nexus [15] for identity managements and authentication; and other com-
ponents such as Swift [16] for parallel execution and HTCondor for schedul-
ing. Although Goblus Galaxies implements elastic scaling by providing on-
demand cloud computing resources, it mainly supports Amazon Elastic Cloud
Computing (EC2).
SciCumulus [17] is a cloud middleware that acts as intermediary between
WMSs and cloud infrastructures, promoting the workflow parallelism follow-
ing the MTC (Many Tasks Computing) paradigm. It makes transparent the
complexity behind the management of cloud computing platforms to the sci-
entists and collects distributed provenance data for reproducibility purposes.
Analogous to the Galaxy case, the system deploys static virtual clusters for
the workflow executions.

The features that distinguish our solution from the previous ones are:

• Multi-platform support (clusters and any kind of clouds) for using dif-
ferent infrastructures simultaneously. Different stages of the workflow
can be executed in different platforms.

• Just-in-time and automatic infrastructure deployment when the work-
flow requires particular resources. The resorces are provisioned at stage
level enabling to adapt the number of deployed resources to the special
needs of the workflow.

• High-level infrastructure contextualization according to the user’s re-
quirements using ANSIBLE devops tool.

• No pre-packaged images are needed so any VMI from any source can
be used.

6

Table 1: Comparative between available solutions.

Infrastructures Multi-platform Resource provisioning VMI customization
ASKALON Grid and Cloud No Static No
Galaxy Cluster and Cloud No Static No
MOTEUR Any (Grid oriented) No No No
Pegasus Cluster, Grid and Cloud Yes Static No
SwinDeW-C Grid and Cloud No Static No
Taverna Cluster, Grid and Cloud Yes Static No
Triana Grid and Cloud Yes Static No
VGrADS Grid and Cloud No Reservation No
WS-PGRADE Cluster, Grid and Cloud Yes Static No
Globus Galaxies Cloud(EC2) No Static cloud-init based
SciCumulus Cloud No Static No
Our work Cluster and Cloud Yes Just-in-time ANSIBLE based

These features are provided through the use of a state-of-the-art cloud orches-
trator system. The solution is released under GPL v3 license and it is avail-
able for downloading at github (https://github.com/abel-carrion). Table 1
summarizes and compares the features of all the tools reviewed.
The meaning of each column is the following:

• Infrastructures: List of infrastructure types supported.

• Multi-Platform: If the WMS offers the possibility of using several in-
frastructures simultaneously in a single workflow execution.

• Resource provisioning: The way in which resources are provided. It
can be ‘Static’ if all the resources needed by the workflow are leased
before the beginning of the execution, ‘Just in time’ if the resources
are requested adaptively only when they are actually used, and ‘Re-
servation’ of resources if the deployment is batch-oriented instead of
data-oriented.

• VMI customization: Specifies the type of customization support provided
by the tool.

3. System architecture

The aim of this section is to describe the design and implementation of
the architecture behind the WMS developed. The overall organization of
the system is depicted in Figure 1. This schema is slightly based on the
one showed in [18], one of the most cited papers about the taxonomy of

7

Users

Workflow Design
& Definition

Build Time
Run Time

Workflow Execution
& Control

Interaction with
Computing
Resources

Workflow Management System

Cloud resourcesCluster resources

Private
Cloud

Public
Cloud

Parser &
Validator

Planner

Runtime

Fault
Tolerance

Data
Manager

Persistence &
Provenance

User
Storage

Workflow
Specification

Connectors / Drivers

Cloud Orchestrator

Figure 1: WMS architecture.

Grid WMSs. Our architecture is similar but extended to support an het-
erogeneous environment. In fact, our WMS currently supports execution on
clusters, public clouds (Amazon EC2, Google Cloud Platform and Microsoft
Azure), private clouds (OpenNebula and OpenStack) and federated cloud
environments (such as EGI FedCloud or FogBow). The next subsections
describe each element involved in the architecture.

3.1. Workflow structure

Most scientific applications can be modelled using the workflow program-
ming model. In this model, the application is composed of multiple tasks that

8

are connected according to their dependencies. In our system workflows are
expressed using Directed Acyclic Graphs (DAGs) where the nodes represent
computational tasks and the directed edges the dependencies between them.
A task has dependencies in the form of files and it will start its execution
only when the output file(s) of the task(s) it depends on are available.
There are variations of the model in which the workflow also contains con-
ditional branches (a task may be executed or not depending on the result
of previous tasks) and loops (the execution of a part of the workflow is re-
peated). This workflow structure is known as non-DAG. Although there
are WMSs that provide conditional and loop functionalities, the workflow
language complexity is higher and therefore its adoption might be limited.

3.2. Workflow composition system

Workflow composition systems are designed to enable users to compose
their workflows. For that purpose, systems must provide a high level view
of the workflow applications, hiding the complex aspects of the underlying
infrastructures. Following the taxonomy of workflow composition systems
showed in [18], there are two types: user-directed and automatic. User-
directed composition systems allow users to edit workflows directly while
automatic composition systems generate workflows for users automatically.
In turn, user directed can be split into two categories: language-based mod-
elling and graph-based modelling. Our WMS provides user-directed compos-
ition where users use language-based modeling.
While almost every state-of-the-art workflow uses markup languages, such
as the XML format, for expressing workflows, we have chosen Java Script
Object Notation (JSON) [19]. JSON offers some benefits over XML: it is less
verbose, easier to write and read for humans and does not require writing
end tags.

3.3. Workflow specification

A workflow specification (also called workflow model) defines a workflow
including its task definition and structure (task connectivity). There are two
types of workflow models: abstract and concrete (executable).

3.3.1. Abstract workflow

The abstract model describes the workflow in an abstract form without
referring to the specific computing platforms for task execution. In fact, it is
a template that includes the task that must be executed and for each of these

9

tasks, the inputs, outputs, software & hardware requirements, commands and
arguments to be used when invoked. To exemplify this, Listing 1 shows a
JSON template of a test workflow. The template is interpreted as follows:
the workflow contains only one stage named process0 that must invoked in
the resource named ramses using as Operating System the 64-bit version
of Ubuntu. The desired hardware requirements are 4-single core nodes with
4GB RAM and a 20GB disk. The execution of the stage requires invoking,
for each node, the program test using as arguments the filenames of two files
contained in input0. The output of the stage (and in this case the output of
the workflow) are all the .txt files generated by the program. Notice that all
the values that start with ‘#’ are references to JSON objects defined in the
same file or the resource configuration file described below.

3.3.2. Resource information file

To transform the abstract workflow into a multi-platform executable
workflow, the WMS needs information about the hosts, the environments
and the input files of the initial stages of the DAG (i.e. those stages that
do not have input dependences with other stages). This information can be
found in a JSON configuration file like the one showed in Listing 2 for the
previous workflow. The array hosts contains a list with the data for accessing
the resources, such as: the host name, type, port and different credentials
depending on platform to be used (for instance, a certificate for Windows
Azure and user/password pair for OpenNebula). Environments is an ad-hoc
field for executions on cloud computing platforms. It defines the required
features of the VMI to use as a base to create the VMs: Operating System
and the software packages that should be installed on it. VMIs are obtained
from the image repository associated to each deployment. Last, but not least,
the section inputFiles declares the input files of the workflow: the identifier,
the type (File, Parameter, etc.) and the physical location (URI).

3.4. Workflow conversion

The process of generating an executable workflow based on an abstract
workflow is known as workflow conversion. During that process, the original
workflow undergoes a series of refinements geared towards optimizing the
overall performance and transformations for cloud-support and data man-
agement. Thanks to this conversion, the WMS is capable of dynamically
leasing and releasing computing resources.

10

{

"stages": [

{

"id": "process0",

"hostId": "#ramses",

"environmentId": "#ubuntu64bit",

"nodes": [

{

"numNodes": "4",

"coresPerNode": "1",

"memorySize": "4096m",

"disks": [

{

"nDisk": "0",

"diskSize": "20g"

}

]

}

],

"execution": [

{

"path": "./test",

"arguments": "#input0(2)"

}

],

"stageIn": [

{

"id": "#input0"

}

],

"stageOut": [

{

"id": "output0",

"type": "File",

"filterIn": "*.txt",

"replica": "none"

}

]

}

]

}

Listing 1: Workflow template example

11

{

"hosts": [

{

"hostId": "ramses",

"type": "Cloud",

"subType": "OpenNebula",

"hostName": "ramses.i3m.upv.es",

"port": "1111",

"credentials": {

"userName": "userName",

"password": "passWord"

}

}

],

"environments": [

{

"environmentId": "ubuntu64bit",

"osName": "linux",

"arch": "x86_64",

"osFlavour": "ubuntu",

"osVersion": "14.04",

"packages": [

"unzip"

]

}

],

"inputFiles": [

{

"id": "input0",

"type": "File",

"values": [

"db.zip"

],

"extract": "true"

}

]

}

Listing 2: Configuration file

As Figure 2 displays, the mapper performs sequential transformations to the
abstract workflow.

1. Fusion of two or more sequential tasks (for simplifying the flow), given

12

S0 S1

S

SN S0-SN

COPY S S

COPY S S DEPLOY S COPY S S

1)

2)

3)

...

Figure 2: Workflow planner conversions.

the following conditions:

(a) All the stages are executed on the same infrastructure with the
same environment.

(b) Only the first stage has 0 or more input dependencies with stages
that do not belong to the sequence.

(c) Only the last stage has 0 or more output dependencies with stages
that do not belong to the sequence.

2. Addition of COPY and COPYOUT stages, for data management pur-
poses, before every stage obtained in the previous point and after each
final stage, respectively.

3. Addition of DEPLOY and UNDEPLOY stages taking into account:

(a) Stage S is executed in a cloud computing environment
(b) DEPLOY stages are created before COPY stages.
(c) UNDEPLOY stages for stage S are added after all the subsequent

COPY stages which stage-in products of S have finished.

4. Addition of CLEANUP stages for deleting data after the execution in
a cluster.

Figure 3 shows the mapping process of a sample workflow with 5 sequen-
tial tasks where stages S0 and S1 are executed on the same cloud platform

13

S0

DEPLOY
S01

S01

COPY
S01

COPY
S2

COPY
S4

S4

UNDEPLOY
S01

S2

S4 COPYOUT
S4

UNDEPLOY
S3

S1

S01

S2 S3

S01

COPY
S01

COPY
S2

S2

COPYOUT
D

COPY S4

S2 S3

S4

COPY
S3

S3

S4

DEPLOY
S3

COPY
S3

S3

CLEANUP
S4

CLEANUP
S2

Figure 3: Transformation steps of an abstract workflow into an executable workflow. From
left to right: 0(abstract workflow), 1(fusion), 2(data stages), 3(cloud ad-hoc stages)

with the same environment, S2 and S4 are run on a cluster and S3 is executed
also in the cloud.

3.5. Workflow execution

Once the mapper has produced the executable, it is submitted to the
workflow execution engine. The execution of the workflow begins with the
initialization of every element: the state of the tasks are set to IDLE and the
state of the inputs/outputs to DISABLED. Next, due to the data-flow nature
of the workflow system, the inputs provided by the user are ENABLED,
allowing the execution of the first task(s). The workflow execution engine is
controlled by two core functions: runTask and getStatus. The runtime checks
if all the inputs of a task are enabled, calling runTask in that case. When
a task is submitted, the engine periodically monitors its status through the

14

getStatus function and if it has finished successfully, enables the outputs of
the tasks (which in turn are normally inputs of the next tasks). Obviously,
the behaviour of runTask and getStatus will vary according to infrastructure
(cluster and cloud) and the task type (deploy, copy, user-defined, undeploy,
cleanup or copyout). The next sections explain the functionality of runTask
and getStatus for each task type.

3.5.1. Deploy task execution

The execution of a deploy task is required when the user desires to execute
a task of the abstract workflow in a cloud platform. In order to dynamically
deploy cloud computing resources, the system makes a request to the cloud
orchestrator system, the Infrastructure Manager(IM) [20]. The IM is a cloud
computing orchestrator that eases the use of IaaS (Infrastructure as a Service)
clouds by automating the VMI selection, deployment, configuration, software
installation, monitoring and update of Virtual Appliances. The main features
of this tool are:

• A language specification of software and hardware requirements for
the user applications that can be used by both non-expert (since it
is easy to encapsulate recipes as building blocks) and advanced users
(due to its high expressivity), called RADL (Resource and Application
Description Language) [20].

• Another component, the VMRC (Virtual Machine Resource Catalog) [21]
is used to select the most suitable Virtual Machine Image (VMI) based
on the user expressed requirements.

• Provision of Virtual Machines on both, public clouds (Amazon EC2,
Windows Azure, etc.), private clouds (OpenNebula, OpenStack, etc.)
and federated cloud environments (such as EGI FedCloud or FogBow).

• Run-time contextualization of the infrastructure that installs and con-
figures the software required that may not be pre-installed in the VMIs
selected, using the Ansible [22] tool.

• Elasticity management support.

• Last but not least, it provides two APIs to enable high-level components
to access the functionality: XML-RPC and REST APIs. These APIs
provide a set of simple functions for clients to create, destroy, and get

15

VMRC

Infrastructure Manager

Cloud
Selector

VMRC

Cloud Connector

Conf.
Manager

Ficheros
Conf & CTX

XML-RPC API REST API

Web Interface CLI Interface

MV

MV

MV

...

RADL

VM Master

Cntxt.
Agent

Ansible

OpenNebula OpenStack EC2 ...

Ansible

VMRC

...

Figure 4: Infrastructure Manager architecture.

information about the infrastructures. The RADL language is used
both to create and to get the information about the infrastructures.
The IM also provides functions to add and remove resources and modify
the features of the existing ones, both hardware and software on run-
time.

Figure 4 shows the architecture of the Infrastructure Manager. On the
top, the client interfaces currently available for users are depicted (Web and
Command Line Interfaces). The IM in the center of the figure provides the

16

upper layers with the functionality through the APIs provided (XML-RPC
and REST). The IM uses the ”Cloud Selector” component to connect to the
VMRC service to get the list of VMIs that best fit the user requirements
(expressed in the RADL document) and merge this information with the list
of available cloud deployments for the user, in order to get the best option.
The “Cloud Connector” layer makes effective the provision of VMs in the
cloud deployments. It provides an homogeneous interface to connect with
the different cloud middlewares. Finally, once the VMs are deployed and in
the running state, the “Configuration Manager” is in charge of managing the
contextualization of all the VMs of the infrastructures using the Ansible tool.

In order to request the services of the IM, the WMS uses the API based
on the XML-RPC protocol. The runTask function in a deploy task needs
to build a RADL document with the hardware and software requirements of
the task expressed in the JSON document. Using this RADL document, the
WMS invokes the IM to configure the cloud deployment as a Portable Batch
System (PBS) cluster where all nodes share the same disk via NFS. In this
manner, PBS acts as the scheduler of the jobs that the stage should execute.
The getStatus invokes the API function that queries the status of the infra-
structure. The task is considered to be finished when the status returned by
the IM is configured. From this point on, the WMS interacts with the cloud
infrastructure through SSH, using the information returned by the API call
(public IP and user credentials).

3.5.2. Copy task execution

The copy task is in charge of the data management during the execu-
tion, one of the most crucial parts of any WMS. These tasks are executed
regardless of the computing platform used (cluster or cloud). When runTask
is called for a copy task, the first step is to declare an unique name for the
execution directory (our system uses the current epoch time). Then, this exe-
cution identifier is used for creating the execution directory in the file system
of the target infrastructure. Now that the execution directory is ready for
hosting the task data, the function of runTask is staging-in the data. As
a convention, our system distinguishes between two types of stage-ins: the
ones that begin with the word input and the ones that begin with output.
Inputs are user-provided data while outputs are data whose origin is another
task of the workflow (i.e intermediate data).
With respect to the input data, the system can download any file that can

17

be retrieved with the protocols supported by the unix wget command (http,
https and ftp). If the URI of the input file defined in the configuration file
does not use any of these protocols, the system assumes that the file is in the
user local space. Another important issue is the possibility of explicitly in-
dicating that the input files should be extracted on the destination resources.
However, since there are tools that require compressed data as input, this
extraction should be optional. In any case, the stage-in of an input file trig-
gers the submission of a job to the physical or virtual cluster scheduler for
downloading the file and next, if it is required, extracting the file. The sys-
tem supports almost every popular compression format (.zip, .rar, .gz, .tar).
The other type of stage-ins are the intermediate results produced by previous
tasks in the DAG. To handle the transference of this kind of data, the WMS
submits a basic job that invokes the scp (Secure Copy Protocol) program
with the corresponding credentials and arguments.
The goal of getStatus in a copy task is to make sure that all the copy jobs
submitted by runTask have finished successfully. If there is a least one job
pending, the status of the copy task returned is RUNNING, otherwise the
system considers that the task is completed (status FINISHED) and enables
the stage-outs of the stage.

3.5.3. User-defined task execution

In contrast to the previous tasks, user-defined tasks are the same that
appear in the abstract workflow specification but now they are executable.
In our WMS, a user-defined task is said to be executable when two conditions
are met: firstly, the target infrastructure is already available (the cluster is
accessible or the cloud computing platform is deployed), and secondly, the
input data needed by the tasks has been staged-in to these resources. As it
can be appreciated, both conditions correspond to the actions performed by
the DEPLOY task and COPY task, respectively.
According to the abstract workflow, a task can contain a block of executions
or commands to execute. When the runTask function is invoked for this kind
of tasks, the WMS analyses the commands to determine if there is parallel-
ism in the submission of the job or not. The parallelism of a task is explicitly
indicated by the user in the abstract workflow, appending the “(x)” expres-
sion to an argument where x is the granularity (i.e. the number of files used
per job). For instance, let’s suppose the scenario showed in Figure 5. The
WMS submits a job for each group of two files contained in db.zip. If after
the analysis the token “(x)” is not found, then the system considers that the

18

process0
./test #input0(2)

file0.txt
file1.txt
file2.txt
file3.txt

file0.txt
file1.txt
file2.txt
file3.txt

input0
db.zip

./test file0.txt
file1.txt

PBS

./test file2.txt
file3.txt

Figure 5: Execution of a parallel task.

task is not parallel and only one job is submitted in that case, passing all the
arguments as parameters to the job.

Once runTask has submitted all the jobs of the stage to the infrastructure,
the goal of getStatus is monitoring the status of all jobs until all of them reach
a final state (finished or failed).

3.5.4. Undeploy task execution

Due to the variable demand of resources that scientific workflows exper-
ience during the execution of the different stages, when a cloud computing
task finishes and the output data has been staged-out, the resources assigned
to it are no longer needed and they must be freed. Moreover, because of the
pay as you go model of this paradigm, the undeployment of resources keeps
the user costs down.
As in the deployment task execution case, the runTask function calls the
proper function of the IM XML-RPC API, destroyInfrastructure.
The aim of getStatus in this case is to make sure that the infrastructure re-
moval operation is correctly carried out. This is especially important when
public clouds are used to avoid incurring in unnecessary costs.

3.5.5. Cleanup task execution

The cleanup task is the equivalent of the undeploy task but for the case of
clusters. Because a workflow stage usually generates large amounts of data
and clusters are infrastructures shared with other users, a best practice con-
sists on cleaning up the data once it has been staged-out. Thus, the function

19

runTask simply deletes via SSH the whole execution directory created for
the task and getStatus makes sure that the operation is actually done.

3.5.6. Copyout task execution

From the user’s point of view, the purpose of the copyout tasks is to
retrieve the data products of the computations. The mapper attaches these
special tasks only to the final tasks of the abstract workflow specification (i.e
tasks which do not have dependencies with other tasks).
The runTask function starts the stage-out of the output to one or more
locations. The default action is to transfer the data to the user local space
(where the submit host is being executed). If besides the field replica of the
output contains references to another data storage sites, the data will be also
copied to these locations. The other function, getStatus, will monitor the
data transference until all of them are completed.

3.6. Performance optimizations

This section lists a set of optimizations geared towards improving the
performance efficiency, in terms of time and costs, of the experiments.

3.6.1. Custom load balancing

When dealing with short running tasks (on the order of minutes or seconds),
one of the most common problems of distributed computing infrastructures
is the overhead as a consequence of the queueing time on the computing re-
source schedulers. This fact results on an increase of the response time of the
scientific applications. When the WMS executes a parallel stage composed
of several tasks, it uses task clustering techniques that group short tasks into
coarse-grained tasks, thus greatly reducing the queuing time in the target re-
sources. Our WMS currently implements two clustering techniques, although
advanced users can implement and include their own strategies with minimal
effort. These are the cluster techniques available by default in the WMS:
Random clustering. This strategy is recommended when the computa-
tional cost of processing the input files is similar or unknown. The system
computes the clustering granularity, taking into account that: firstly, the
number of jobs has to be greater or equal than the number of parallel in-
stances available and secondly, the total estimated execution time of a single
job cannot exceed a certain walltime value.
Size clustering. If the runtime of the tasks has a high variance, the previous
technique may load balance poorly in some situations, producing clustered

20

jobs of small tasks and others of larger tasks. In these cases, if the computa-
tional load of a task depends on the file size, the size clustering strategy can
be used to create jobs with approximately the same total file size (i.e. the
same amount of time required to process).

3.6.2. Partial enabling of outputs

If a stage of the workflow executes many trivially parallel jobs, the en-
abling of the stage-outs can be done in two modes: standard and partial.
The standard mode is the one in which the runtime waits for every parallel
job of the stage to have finished successfully, before enabling the stage-outs.
On the contrary, in the partial activation mode, the runtime enables a stage-
out as soon as a partial output is available. When using cloud computing
infrastructures this behaviour can be very effective for overlapping the de-
ployment and copy stages of the next stages while the previous stage is still
in execution. Nevertheless, it also increases the usage of the infrastructures.

3.6.3. Prefetching: Partial enabling stages

Similar to the partial enabling of outputs, in some cases, it could be
interesting to allow the partial enabling of a stage (i.e. the stage is considered
by the runtime as ENABLED when at least one of its input dependencies
is ENABLED). As it will be showed below, in the experimentation section,
this functionality is useful for pre-fetching input data to the next stages of
the workflow. This feature can be enabled using the field “prefetch=True”
inside a stage object in the abstract workflow specification.

3.7. Persistence

As it was mentioned before, we assume that the user has access where
the WMS is running and it has permanent connection during the workflow
execution. Nevertheless, a typical use case involves executing a scientific
workflow composed of stages with a significant computational cost (in the
order of days or even weeks) and so, demanding a permanent connection
to the user machine is not a viable measure. For that reason, the system
includes a persistence layer that periodically saves the state of the workflow,
allowing users to interrupt the execution and resume it later. The persistence
has been implemented using the NoSQL MongoDB [23]. In addition to the
features offered by the NoSQL approach (simplicity of design, horizontal
scaling, among others) over the traditional relational databases, MongoDB

21

uses JSON-like documents, favouring the straightforward translation between
the workflow descriptions and the database documents.

3.8. Fault tolerance

Because failures in distributed computing environments are common,
fault tolerance measures are of most importance. It is necessary to provide
the proper fault-tolerance mechanisms to handle failures and support the
reliable execution in the presence of software or hardware failures. Due to
the difference in terms of requirements between the stages that compose a
workflow, the WMS defines different fault tolerance policies for each stage.
The policies simply define the number of retries in case of software failure
or hardware failure. The user indicates such values in the abstract workflow
specification, using the object retries and its fields OnWallTimeExceeded,
OnSoftwareFailure and OnHardwareFailure inside a stage object. If, for some
reason, a task exceeds the maximum number of retries for any type of failure,
the execution of the workflow is aborted.

3.9. Provenance

Workflow provenance is crucial for users to be able to follow the evolution
of their executions and to determine the cause behind a failure. For that
purpose, the WMS implements a custom provenance module that registers
in a file the events that occur during the execution. This information is not
only useful for monitoring the progress of the experiment but also enables
its future reproducibility.

4. Use case: Orthosearch

OrthoSearch (Orthologous Gene Searcher) [24] [25] is a genomics com-
parative workflow. Initially conceived as a Perl-based routine, it is a profile-
protein, reciprocal best hits (RBH) based solution for homology inference
among species. It comprises several stages and uses distinct bioinformatics
tools, such as Mafft [26] and HMMER [27] which confront an orthologous
database with an organism multifasta protein data. The abstract workflow
is depicted in Figure 6.

Figure 6 displays that the structure of the Orthosearch pipeline is com-
posed of 8 stages: mafft, fasta2stockholm, hmmbuild, hmmsearch, cat, hm-
mpress, hmmscan and Reciprocal Best Hits.

22

Organism

Multifasta

Protein Data

fasta2stockholm

Mafft

hmmbuild

cat

hmmpress

hmmscan

hmmsearch

Reciprocal

Best Hits

Data

Reciprocal

Best Hits

Ortholog

Database

Figure 6: Orthosearch abstract workflow.

5. Experimentation and results

5.1. Data selection

We selected a subset of EggNOG database version 4 [28] which comprises
eukaryotic ortholog groups only, EggNOG KOG.
The protozoan specie selected to be confronted with EggNOG KOG data-
base was Cryptosporidium hominis. Cryptosporidium species causes acute
gastroenteritis and diarrhea. It is potentially dangerous, with high levels of
morbidity and mortality in AIDS patients [29]. In fact, there is no effective
treatment or prevention for such infection in humans so far [30].
This protozoan specie is responsible for the death of thousands to millions
humans. In addition, there are either no vaccines for such or the available
treatments are mostly inadequate due to toxicity and drug resistance [31] [32].
Therefore, comparative genomics experiments among such pathogens gen-
omes that may lead us to a deeper knowledge of these organisms biology are
of public health interest. These may aid on the discovery of new issues re-

23

lated to the pathogenicity of such, as well as help to design new, more specific
drugs to treat the infected patients or even prevent the infection itself.

5.2. Infrastructures used

Among the resources that we use for running the experiments, there is
a private Cloud that runs OpenNebula and is based on 8 machines, each
equiped with 2 processors with 14 core nodes (28 cores per node) and 64
GB of main memory. Therefore the entire infrastructure provides 224 cores
and 512 GB of main memory. We also run our experiments on Amazon EC2
using instances of the type m4.xlarge type. Finally, some experiments make
use of a cluster named kahan with 6 dual processor nodes, where each node
contains 2 AMD Opteron processors with 16 cores and 8GB of main memory.

5.3. Sequential execution

The serialized version of the pipeline was entirely executed in two different
computing resources with similar performance capabilities: a cluster and a
VM instance, both provided with 16 CPU cores, 16GB RAM and 100GB
disk.

Figure 7 shows a Gantt chart for the sequential execution of Orthosearch
when using the cluster resource while Figure 8 the corresponding chart when
using the cloud computing asset.

Figure 7: Orthosearch serial execution using a cluster.

24

Figure 8: Orthosearch serial execution using a Virtual Machine instance.

From the previous Gantt charts, we extract two interesting facts. Firstly,
only three stages of the pipeline take an average of 86,14% of the total time
for both scenarios. These computing intensive stages are: mafft, hmmbuild
and hmmscan. Secondly, the serial execution of the pipeline in the cloud
is slightly slower (0,9%) than the cluster one, as a result of the overheads
derived from the deployment and undeployment of the asset and in lesser
extent to the use of virtualized resources.

5.4. Cloud Computing WMS-aided execution

The next step of experimentation involved executing the pipeline in a
private Open-Nebula based cloud computing infrastructure, using the WMS
developed in this work. Table 2 summarizes the configuration defined in the
JSON document (abstract workflow) for every stage of the pipeline.

In order to better understand the Gantt charts showed below, Figure 9
depicts the executable workflow generated by the planner component of the
WMS after processing the abstract workflow specification. As it can be
appreciated, according to the planner optimizations and cloud conversions
exposed in previous sections, the 8 original stages of the workflow have been
simplified to 5 stages: mafft/fasta2stockholm/hmmbuild; hmmsearch; cat;
hmmpress/hmmscan and best-hits. For brevity and clarity, the following
Gantt charts cut down the names of the fused stages using only the name of
the first stage (i.e hmmpress/hmmscan will be referenced as hmmpress).

25

DEPLOY

COPY

Mafft
f2stockholm
hmmbuild

DEPLOY

COPY COPY

hmmsearch
hmmpress
hmmscan

DEPLOY

COPY

Best-Hits

COPYOUT

UNDEPLOY
Best-Hits

UNDEPLOY
hmmpress
hmmscan

UNDEPLOY
hmmsearch

Ortholog
Database

Organism
Multifasta

Protein Data

UNDEPLOY
Mafft

f2stockholm
hmmbuild

DEPLOY

DEPLOY

COPY

cat

UNDEPLOY
cat

Figure 9: Executable workflow for Orthosearch.

26

Table 2: Configuration parameters for each Orthosearch stage

#Node Cores/node Memory Disk Parallel

mafft 16 1 4GB 40GB Trivially
fasta2stockholm 16 1 4GB 40GB Trivially
hmmbuild 16 1 4GB 40GB Trivially
hmmsearch 16 1 4GB 40GB Trivially
cat 1 1 4GB 40GB None
hmmpress 1 4 16GB 40GB None
hmmscan 1 4 16GB 40GB None
best-hits 1 1 16GB 50GB None

5.4.1. Execution without pre-fetching

Figure 10 shows the Gantt diagram for the execution of Orthosearch
when the pre-fetching option of the WMS is not enabled. In this chart,
processing times in the nodes are depicted with red bars while blue bars
correspond to data transference actions. The striped pattern in some of the
data transference bars (blue) means that it is an intermittent action. As
an example, let’s examine the “COPY hmmsearch” timeline. The WMS
only will copy a hmmsearch input file when a new partial output of mafft
is available. After transferring a partial result, the COPY hmmsearch stage
will go idle, waiting for a new result from mafft. Finally, the black arrows
delimit the time between the deployment and undeployment of a stage and
the number of nodes deployed, pointing out the cost associated.

5.4.2. Execution with pre-fetching

The execution of Orthosearch with the pre-fetching option of the WMS
enabled can be seen in Figure 11. The main difference with respect the
scenario without pre-fetching is that the last stage of the pipeline, best-hits,
is activated by the WMS runtime once the first partial result of hmmsearch is
available for copying. At the same time, the undeployment of the computing
resources associated to hmmsearch is activated sooner. As it is shown below,
these differences will have an impact on minimizing the usage of resources.

5.4.3. Performance comparison

The aim of this section is to compare both scenarios (with pre-fetching
and without pre-fetching) in terms of makespan or response time of the ex-

27

Figure 10: Orthosearch execution using the WMS with pre-fetching not enabled.

Figure 11: Orthosearch execution using the WMS with pre-fetching enabled.

28

periment and total CPU usage. With respect to the response time, we see
that both scenarios require approximately the same time to be completed:
an average of 466.3 minutes. However, when analysing the total CPU usage,
we can observe an important difference. The total CPU usage for a stage is
the time that the associated resources are deployed (time difference between
the end of DEPLOY and the end of UNDEPLOY), linearly weighted with
the number of nodes. Graphically, the total CPU is the sum of the longitudes
of the black arrows showed in the Gantt chart, individually multiplied by the
number of nodes of the stage. According to that, the total CPU usage for
the scenario with pre-fetching is 5888 minutes and 9851 for the case without
pre-fetching of best-hits (an increase of 67% in resource usage). Thus, to
optimize the execution of the experiment, the user has to properly config-
ure the parameters of the WMS, leveraging its empiric knowledge about the
behaviour of the workflow being deployed.

5.5. Overall analysis

Figure 12 and Figure 13 show a comparison in terms of makespan (re-
sponse time) and total CPU usage, respectively, for the 4 scenarios presented
in the previous sections: serial execution using a cluster, serial execution in a
VM instance and cloud computing WMS-aided executions (with and without
pre-fetching). Paying attention to the response time, we can clearly see the
benefits of using a distributed approach with the aid of the WMS: a reduction
from 2060,7 minutes (about 1 day and 10 hours) to only 466,3 minutes (7,7
hours). Obviously, this speed-up of the makespan comes at the expense of
using more computational resources, as it is reflected in the blue bars of the
graph. Nevertheless, as it was commented before, it is possible to minimize
the resource usage in the WMS case by properly configuring the parameters
which control the execution (load balancing, granularity, pre-fetching, etc.).

5.6. Hybrid platform execution

The goal of the present section is to highlight the benefits of using the
multi-platform (cluster and cloud) feature of the WMS developed in this
work.

5.6.1. Orthosearch’s critical path

In order to understand the scenarios presented below, it is necessary
to be aware of the critical path for the Orthosearch executable workflow.

29

Figure 12: Response time comparison for different scenarios.

Figure 13: CPU usage comparison for different scenarios.

30

The critical path can be seen in Figure 9, following the dependency ar-
rows with greater thickness. Thus, the critical path is composed of the
following sequence of stages: mafft/fasta2stockholm/hmmbuild - cat - hm-
mpress/hmmscan - best-hits.

5.6.2. Performance analysis

In Figure 14, there are three time-lines that show the execution time of
Orthosearch’s critical path for three different scenarios: full cluster on the
top, hybrid (cluster and Amazon EC2) in the middle and full cloud (Amazon
EC2) in the bottom. In turn, each time-line is divided into three sections or
portions: mafft-cat (red bar), hmmpress/hmmscan (green bar) and best-hits
(blue bar).
The analysis begins with the execution of Orthosearch in the cluster described
above. We can clearly identify that hmmpress/hmmscan is the longest pro-
cess, taking 69% of the total time. The explanation behind this bottleneck
is that the hmmpress and hmmscan processes for the input data selected
require about 12GB of memory size to avoid the “swapping” effect and the
‘kahan’ cluster has only a total of 8GB. Thus, we proceed to optimize the
execution by requesting the deployment of this memory-intensive process in
a public cloud (Amazon EC2) with a single 16GB memory VM (m4.xlarge
type). The results can be checked in the middle bar of Figure 14. Now,
because the data to be processed fits in the memory of the EC2 VM (cache
effect), the execution time of hmmpress/hmmscan is reduced by 30%, des-
pite of the overheads associated to a cloud execution. Furthermore, we notice
that the transference data between different platforms incurs in another over-
head that can be mitigated by executing the whole workflow in the public
cloud (Amazon EC2), where all the transferences are done between nodes of
the same platform, which usually are geographically close. In this way, we
achieve a reduction of the total time of 16% with respect the hybrid scenario
and 32,43% with respect the full cluster case. Moreover, taking into account
that the cluster is an infrastructure with marginal additional operation cost,
each reduction of the time achieved in the previous scenarios incurs in a
greater cost. Thus, we conclude that full cluster is the slowest scenario but
the cheapest one; full cloud is the fastest one but also the most expensive;
and the hybrid scenario is a compromise of both.

31

Figure 14: Time-line of Orthosearch’s critical path for 3 scenarios.

6. Conclusions and future directions

In the context of e-Science, the effective and efficient use of all the avail-
able computational resources is becoming increasingly important for perform-
ing scientific research, due to the overflowing amount of data being generated.
Because e-Science processes are modelled with workflows, software compon-
ents called Workflow Management Systems (WMSs) play a crucial role in
this data deluge scenario.
Moreover, the advent of Cloud Computing and its core characteristics (rapid
elasticity, resource pooling, and pay-per-use, among others) are well-suited
to the nature of scientific applications that experience a variable demand
during its execution. As a consequence, many WMSs derived from projects
in the area of grid computing were updated to support the execution on
Cloud resources. However, many of their features are optimized for grids
and thus are unable to offer the most key aspects. On the other hand, new
generation WMSs normally are focused on fully supporting a small number
of cloud computing providers and ignore older computing platforms. In this
work, our aim is not to offer yet another WMS but to highlight the useful-
ness of cloud orchestration systems for developing a multi-platform WMS
that adaptively executes SWFs on a heterogeneous computing environment
(clusters and different flavours of clouds). In fact, the cloud orchestration
system can be ported to any state-of-the-art WMS.
The tool developed in this work has been successfully tested using a compar-
ative genomics pipeline, called Orthosearch. An exhaustive analysis has been

32

performed, using several scenarios with different configurations. The current
working line entails adding support for using Grid computing infrastructures.

Acknowledgments

This paper wants to acknowledge the support of the EUBrazilCC project,
funded by the European Commission (STREP 614048) and the Brazilian
MCT/CNPq N◦ 13/2012 , for the use of its infrastructure. The authors would
like also to thank the Spanish “Ministerio de Economı́a y Competitividad” for
the project “Clusters Virtuales Elásticos y Migrables sobre Infraestructuras
Cloud Hı́bridas” with reference TIN2013-44390-R.

References

[1] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
J. Good, On the Use of Cloud Computing for Scientific Workflows, in:
2008 IEEE Fourth International Conference on eScience, IEEE, ISBN
978-1-4244-3380-3, 640–645, doi:\bibinfo{doi}{10.1109/eScience.2008.
167}, URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4736878, 2008.

[2] R. N.CalHeiros, R. Buyya, Adaptive Execution of Scientific Workflow
Application on Clouds, in: O. Terzo, L. Mossucca (Eds.), Cloud Com-
puting with e-Science Applications, CRC Press, NW, 2015.

[3] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, H. L.
Truong, ASKALON: A tool set for cluster and Grid computing, Concur-
rency Computation Practice and Experience 17 (December 2003) (2005)
143–169, ISSN 15320626, doi:\bibinfo{doi}{10.1002/cpe.929}.

[4] G. A. Morar, F. Sch??ller, S. Ostermann, R. Prodan, G. Mayr, Met-
eorological simulations in the cloud with the ASKALON environ-
ment, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7640 LNCS (2013) 68–78, ISSN 03029743, doi:\bibinfo{doi}{10.1007/
978-3-642-36949-0\ 9}.

[5] J. Goecks, A. Nekrutenko, J. Taylor, Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational

33

research in the life sciences., Genome biology 11 (2010) R86, ISSN 1465-
6906, doi:\bibinfo{doi}{10.1186/gb-2010-11-8-r86}.

[6] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. With-
ers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher,
J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la
Hidalga, M. P. Balcazar Vargas, S. Sufi, C. Goble, The Taverna work-
flow suite: designing and executing workflows of Web Services on
the desktop, web or in the cloud., Nucleic acids research 41 (Web
Server issue) (2013) W557–61, ISSN 1362-4962, doi:\bibinfo{doi}{10.
1093/nar/gkt328}, URL http://nar.oxfordjournals.org/content/

early/2013/05/02/nar.gkt328.short.

[7] T. Glatard, J. Montagnat, D. Lingrand, X. Pennec, Flexible and Ef-
ficient Workflow Deployment of Data-Intensive Applications On Grids
With MOTEUR, International Journal of High Performance Comput-
ing Applications 22 (2008) 347–360, ISSN 1094-3420, doi:\bibinfo{doi}
{10.1177/1094342008096067}, URL http://hpc.sagepub.com/cgi/

content/abstract/22/3/347.

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny,
K. Wenger, Pegasus, a workflow management system for sci-
ence automation, Future Generation Computer Systems 46 (2015)
17–35, ISSN 0167739X, doi:\bibinfo{doi}{10.1016/j.future.2014.10.
008}, URL http://www.sciencedirect.com/science/article/pii/

S0167739X14002015.

[9] E. Deelman, K. Vahi, M. Rynge, G. Juve, R. Mayani, R. F. da Silva,
Pegasus in the Cloud: Science Automation through Workflow Tech-
nologies, IEEE Internet Computing 20 (2016) 70–76, ISSN 1089-7801,
doi:\bibinfo{doi}{10.1109/MIC.2016.15}, URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7373501.

[10] X. Liu, D. Yuan, G. Zhang, J. Chen, Y. Yang, SwinDeW-C: a
peer-to-peer based cloud workflow system, Handbook of Cloud Com-
puting (2010) 1–24doi:\bibinfo{doi}{10.1007/978-1-4419-6524-0\
13}, URL http://link.springer.com/chapter/10.1007/

978-1-4419-6524-0_13.

34

[11] I. Taylor, M. Shields, I. Wang, A. Harrison, The triana workflow en-
vironment: Architecture and applications, Workflows for e-Science: Sci-
entific Workflows for Grids (2007) 320–339doi:\bibinfo{doi}{10.1007/
978-1-84628-757-2\ 20}.

[12] L. Ramakrishnan, T. M. Huang, K. Thyagaraja, D. Zagorodnov,
C. Koelbel, Y.-S. Kee, R. Wolski, D. Nurmi, D. Gannon, G. Obertelli,
A. YarKhan, A. Mandal, VGrADS, Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis - SC
’09 (June 2015) (2009) 1, doi:\bibinfo{doi}{10.1145/1654059.1654107},
URL http://dl.acm.org/citation.cfm?doid=1654059.1654107.

[13] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K. Ka-
roczkai, I. Marton, WS-PGRADE/gUSE Generic DCI Gateway Frame-
work for a Large Variety of User Communities, Journal of Grid Com-
puting 10 (2012) 601–630, ISSN 15707873, doi:\bibinfo{doi}{10.1007/
s10723-012-9240-5}.

[14] R. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez, D. Su-
lakhe, D. Kelly, U. Dave, I. Foster, The Globus Galaxies plat-
form: delivering science gateways as a service, Concurrency and
Computation: Practice and Experience (October) (2015) n/a–n/a,
ISSN 15320626, doi:\bibinfo{doi}{10.1002/cpe.3486}, URL http://

doi.wiley.com/10.1002/cpe.3486.

[15] R. Ananthakrishnan, J. Bryan, K. Chard, I. Foster, T. Howe, M. Lid-
man, S. Tuecke, Globus Nexus: An identity, profile, and group man-
agement platform for science gateways and other collaborative sci-
ence applications, Cluster Computing (CLUSTER), 2013 IEEE Interna-
tional Conference on (2013) 1–3doi:\bibinfo{doi}{10.1109/CLUSTER.
2013.6702693}.

[16] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster,
Swift: A language for distributed parallel scripting, Parallel Computing
37 (2011) 633–652, ISSN 01678191, doi:\bibinfo{doi}{10.1016/j.parco.
2011.05.005}, URL http://dx.doi.org/10.1016/j.parco.2011.05.

005.

[17] D. de Oliveira, E. Ogasawara, F. Baião, M. Mattoso, SciCumulus:
A Lightweight Cloud Middleware to Explore Many Task Comput-

35

ing Paradigm in Scientific Workflows, 2010 IEEE 3rd International
Conference on Cloud Computing (2010) 378–385doi:\bibinfo{doi}{10.
1109/CLOUD.2010.64}, URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=5557969.

[18] J. Yu, R. Buyya, A Taxonomy of Workflow Management Systems for
Grid Computing, Journal of Grid Computing 3 (3-4) (2006) 171–200,
ISSN 1570-7873, doi:\bibinfo{doi}{10.1007/s10723-005-9010-8}, URL
http://link.springer.com/10.1007/s10723-005-9010-8.

[19] JavaScript Object Notation, http://json.org/, accessed: 2015-02-24,
2015.

[20] M. Caballer, I. Blanquer, G. Moltó, C. de Alfonso, Dynamic Man-
agement of Virtual Infrastructures, Journal of Grid Computing ISSN
1570-7873, doi:\bibinfo{doi}{10.1007/s10723-014-9296-5}, URL http:

//link.springer.com/10.1007/s10723-014-9296-5.

[21] J. V. Carrión, G. Moltó, C. De Alfonso, M. Caballer, V. Hernández,
A Generic Catalog and Repository Service for Virtual Machine Images,
2nd International ICST Conference on Cloud Computing CloudComp
2010 (Vm).

[22] Ansible, http://www.ansible.com/, accessed: 2015-12-21, 2015.

[23] MongoDB, http://www.mongodb.org/, accessed: 2015-02-24, 2015.

[24] S. M. S. da Cruz, M. Mattoso, V. Batista, A. M. R. Dávila,
E. Silva, F. Tosta, C. Vilela, M. L. M. Campos, R. Cuadrat,
D. Tschoeke, OrthoSearch, in: Proceedings of the 2008 ACM sym-
posium on Applied computing - SAC ’08, ACM Press, New York,
New York, USA, ISBN 9781595937537, 1282, doi:\bibinfo{doi}{10.
1145/1363686.1363983}, URL http://dl.acm.org/citation.cfm?id=

1363686.1363983, 2008.

[25] S. M. S. da Cruz, V. Batista, E. Silva, F. Tosta, C. Vilela, R. Cuadrat,
D. Tschoeke, A. M. R. Dávila, M. L. M. Campos, M. Mattoso, Detecting
distant homologies on protozoans metabolic pathways using scientific
workflows., International journal of data mining and bioinformatics 4 (3)
(2010) 256–80, ISSN 1748-5673, URL http://www.ncbi.nlm.nih.gov/

pubmed/20681479.

36

[26] K. Katoh, D. M. Standley, MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability., Mo-
lecular biology and evolution 30 (4) (2013) 772–80, ISSN 1537-
1719, doi:\bibinfo{doi}{10.1093/molbev/mst010}, URL http://mbe.

oxfordjournals.org/content/30/4/772.short.

[27] R. D. Finn, J. Clements, S. R. Eddy, HMMER web server: inter-
active sequence similarity searching., Nucleic acids research 39 (Web
Server issue) (2011) W29–37, ISSN 1362-4962, doi:\bibinfo{doi}{10.
1093/nar/gkr367}, URL http://nar.oxfordjournals.org/content/

early/2011/05/18/nar.gkr367.short.

[28] S. Powell, K. Forslund, D. Szklarczyk, K. Trachana, A. Roth, J. Huerta-
Cepas, T. Gabaldón, T. Rattei, C. Creevey, M. Kuhn, L. J. Jensen,
C. von Mering, P. Bork, eggNOG v4.0: nested orthology infer-
ence across 3686 organisms., Nucleic acids research 42 (Database is-
sue) (2014) D231–9, ISSN 1362-4962, doi:\bibinfo{doi}{10.1093/nar/
gkt1253}, URL http://nar.oxfordjournals.org/content/early/

2013/11/30/nar.gkt1253.short.

[29] M. S. Abrahamsen, T. J. Templeton, S. Enomoto, J. E. Abrahante,
G. Zhu, C. A. Lancto, M. Deng, C. Liu, G. Widmer, S. Tzipori,
G. A. Buck, P. Xu, A. T. Bankier, P. H. Dear, B. A. Konfortov,
H. F. Spriggs, L. Iyer, V. Anantharaman, L. Aravind, V. Kapur,
Complete genome sequence of the apicomplexan, Cryptosporidium par-
vum., Science (New York, N.Y.) 304 (5669) (2004) 441–5, ISSN 1095-
9203, doi:\bibinfo{doi}{10.1126/science.1094786}, URL http://www.

sciencemag.org/content/304/5669/441.short.

[30] P. Xu, G. Widmer, Y. Wang, L. S. Ozaki, J. M. Alves, M. G. Ser-
rano, D. Puiu, P. Manque, D. Akiyoshi, A. J. Mackey, W. R. Pear-
son, P. H. Dear, A. T. Bankier, D. L. Peterson, M. S. Abraham-
sen, V. Kapur, S. Tzipori, G. A. Buck, The genome of Crypto-
sporidium hominis., Nature 431 (7012) (2004) 1107–12, ISSN 1476-
4687, doi:\bibinfo{doi}{10.1038/nature02977}, URL http://dx.doi.

org/10.1038/nature02977.

[31] M. P. Barrett, S. L. Croft, Management of trypanosomiasis
and leishmaniasis., British medical bulletin 104 (2012) 175–96,

37

ISSN 1471-8391, doi:\bibinfo{doi}{10.1093/bmb/lds031}, URL
http://bmb.oxfordjournals.org/content/early/2012/11/22/bmb.

lds031.short.

[32] W. Gatei, C. N. Wamae, C. Mbae, A. Waruru, E. Mulinge, T. Waithera,
S. M. Gatika, S. K. Kamwati, G. Revathi, C. A. Hart, Cryptosporidiosis:
prevalence, genotype analysis, and symptoms associated with infections
in children in Kenya, Am J Trop Med Hyg 75 (1) (2006) 78–82, URL
http://www.ajtmh.org/content/75/1/78.short.

38

