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Abstract

Background: The three trypanosomatids pathogenic to men, Trypanosoma cruzi, Trypanosoma brucei and
Leishmania major, are etiological agents of Chagas disease, African sleeping sickness and cutaneous leishmaniasis,
respectively. The complete sequencing of these trypanosomatid genomes represented a breakthrough in the
understanding of these organisms. Genome sequencing is a step towards solving the parasite biology puzzle, as
there are a high percentage of genes encoding proteins without functional annotation. Also, technical limitations
in protein expression in heterologous systems reinforce the evident need for the development of a high-
throughput reverse genetics platform. Ideally, such platform would lead to efficient cloning and compatibility with
various approaches. Thus, we aimed to construct a highly efficient cloning platform compatible with plasmid
vectors that are suitable for various approaches.

Results: We constructed a platform with a flexible structure allowing the exchange of various elements, such as
promoters, fusion tags, intergenic regions or resistance markers. This platform is based on Gateway® technology, to
ensure a fast and efficient cloning system. We obtained plasmid vectors carrying genes for fluorescent proteins
(green, cyan or yellow), and sequences for the c-myc epitope, and tandem affinity purification or polyhistidine tags.
The vectors were verified by successful subcellular localization of two previously characterized proteins (TcRab7 and
PAR 2) and a putative centrin. For the tandem affinity purification tag, the purification of two protein complexes
(ribosome and proteasome) was performed.

Conclusions: We constructed plasmids with an efficient cloning system and suitable for use across various
applications, such as protein localization and co-localization, protein partner identification and protein expression.
This platform also allows vector customization, as the vectors were constructed to enable easy exchange of its
elements. The development of this high-throughput platform is a step closer towards large-scale trypanosome
applications and initiatives.

Background
Currently, reverse genetics-based tools have been largely
employed to obtain biological information on genes of
unknown function. Nowadays genomic sequence data
are easily obtained, but gene function is not always
obviously extracted from these data. These tools have
been used for many purposes, such as protein subcellu-
lar localization [1], protein interaction identification [2],
protein overexpression [3], gene knockout [4] and gene
silencing [5]. These techniques are particularly

important in the study of trypanosomatid protozoa. Sex-
ual reproduction, although not frequent, may play a role
in the heterogeneity of several trypanosomatid species.
However, these parasites mostly have a clonal popula-
tion structure [6,7]. This characteristic precludes the use
of forward genetics to study gene function in these para-
sites. In addition, their protein-coding genes are tran-
scribed in polycistronic mRNAs, not related to bacterial
operons, which are further processed to mature mono-
cistronic mRNAs by a trans-splicing mechanism [8].
This process results in a short nucleotide sequence
(miniexon) being added to the 5’ end of trypanosomatid
mRNAs [9]. The same machinery probably scans the
intergenic region (IR) to process the upstream transcript
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and add the poly-A tail [10]. However, no consensus
sequence for poly-A tail addition has been found in try-
panosomes. Furthermore, gene expression in these
microorganisms is mostly controlled by post-transcrip-
tional events involving RNA processing and stability [8].
Hence, to be expressed in trypanosomatids, transgenes
need to be flanked by intergenic regions that contain
sequence elements promoting miniexon and poly-A tail
addition.
Generally, IRs in trypanosomatid plasmid vectors are

derived from constitutively expressed genes, such as
those encoding glyceraldehyde 3-phosphate dehydrogen-
ase [11,12], actin, aldolase [5,13,14], a-tubulin [15] or
ubiquitin [16]. Gene expression in trypanosomatids
appears to be ubiquitous and is not dependent on the
presence of a typical RNA polymerase II (pol II) promo-
ter [17]. Although typical pol II promoters have not
been found in trypanosomatids, it has been shown that
pol II transcription of an entire polycistronic unit initi-
ates upstream of the first gene of the polycistron (in
strand-switch regions) [18]. To enhance gene expression,
vectors for use in trypanosomatids were constructed to
ensure that transcription is directed by strong promoters
like RNA polymerase I (pol I) promoters [3,14,19-21].
Some vectors were also designed to control gene expres-
sion, by combining T7 or pol I promoters with tetracy-
cline-inducible systems [5,12,14,16,22-26]. These
features require the development of reverse genetics
strategies to deal with trypanosomatid biology.
There are a few examples of vectors designed for use

in T. cruzi, mostly having conventional multiple cloning
sites. Traditional molecular cloning methods, based on
digestion by restriction enzymes and ligation by T4
DNA ligase, present various difficulties, such as low effi-
ciency, limited number of sites for digestion and low
adaptability for subcloning. Furthermore, other limita-
tions have been observed in these plasmids, such as low
flexibility to the exchange of elements like promoters,
antibiotic resistance markers, fusion tags and IRs. These
limitations become more evident during high-through-
put procedures, where there is a need to adapt vectors,
such that newly developed tags, alternate IRs and differ-
ent resistance markers can be used. Taken together,
these features reinforce the importance of producing
reverse genetics tools, allowing quick and flexible strate-
gies to better understand the biology of T. cruzi.
Recently, more efficient systems have been developed

to circumvent some of the traditional cloning
limitations. Two homologous recombination cloning
systems, gap repair and the In-Fusion™ PCR Cloning Kit
(Clontech, Mountain View, USA), have been used in
high-throughput projects [27,28]. Other systems using
site-specific recombination instead of homologous
recombination, like the Creator™ DNA Cloning Kit

(Clontech), Gateway® technology (Invitrogen, Carlsbad,
USA) and the Univector Plasmid-Fusion System [29],
are other options. The use of cloning systems based on
recombination instead of classic cloning techniques has
improved the cloning process, making high-throughput
projects less laborious.
The Creator and Univector cloning systems use Cre-

loxP recombination [30], based on the recombination
properties of bacteriophage P1. Gateway® technology
uses a distinct strategy, which is based on the recombi-
national properties of bacteriophage lambda [31]. Such
site-specific recombination-based systems increase clon-
ing efficiency and significantly decrease time spent on
the work-bench. All site-specific recombination cloning
systems present high cloning efficiencies, and the choice
of system must take into account the features of each
project.
Gateway(r) technology has been recently employed to

create vectors for gene knockout [4] and protein subcel-
lular localization [32] in T. cruzi. We developed a set of
destination vectors employing Gateway(r) technology for
use in reverse genetics. We validated our strategy using
genes previously characterized in the literature through
protein complex purification, and protein subcellular
localization and co-localization techniques in T. cruzi.

Results and Discussion
Validation of vectors
We constructed a high throughput reverse genetics
platform that can be easily modified for use in various
trypanosomatid species. The platform represents a set of
vectors based on Gateway(r) technology-associated site-
specific recombination cloning. The expression vectors
were initially prepared for use in Trypanosoma cruzi,
due to particular characteristics of this parasite, such as
RNAi absence. We used a general designation, pTcGW,
to describe the vectors; the specific designation of each
vector was based on the tag and the resistance marker
they carry (N for neomycin, and H for hygromycin B).
Accordingly, the vectors pTcGFPN, pTcCFPN and
pTcYFPN, carry the tags for green, cyan and yellow
fluorescent protein, respectively. The plasmids pTc6HN,
pTcMYCN and pTcTAPN carry the tags for hexahisti-
dine, c-myc epitope and tandem affinity purification,
respectively. All of these plasmids contain the gene
encoding neomycin resistance (N). Correspondingly,
pTcGFPH carries the gene for GFP and for hygromycin
B resistance. All constructs contained intergenic regions
from the T. cruzi ubiquitin locus (TcUIR) [33]. The
choice of TcUIR was based on: (i) its short size (278
bp); (ii) its use in another plasmid vector for T. cruzi
[16]; and (iii) due to the participation of ubiquitin in
many cellular processes, possibly during all the life cycle
stages of T. cruzi, TcUIR may enable the use of vectors
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in different life cycle stages of T. cruzi (although this
was not addressed here). Vector constructs were verified
using five T. cruzi genes, including those encoding the
ribosomal protein L27 (TcrL27), the a6 20S proteasome
subunit (Tcpr29A), the paraflagellar component PAR 2,
a putative centrin and the small GTPase Rab7 (TcRab7).
The genes were inserted into pTcGFPN, pTcGFPH,
pTcCFPN, pTcMYCN, pTc6HN, and pTcTAPN. The
clones obtained were named TAPneo-TcrL27 (TcrL27
inserted into pTcTAPN), TAPneo-Tcpr29A (Tcpr29A
inserted into pTcTAPN), GFPneo-PAR2 (PAR 2 inserted
into pTcGFPN), MYCneo-centrin (centrin inserted
into pTcMYCN), 6Hneo-centrin (centrin inserted into
pTc6HN), GFPhyg-PAR2 (PAR 2 inserted into
pTcGFPH), GFPneo-Rab7 (TcRab7 inserted
into pTcGFPN), and CFPneo-Rab7 (TcRab7 inserted
into pTcCFPN). As a control, we used pTcGFPN and
pTcTAPN vectors, in which a previously inserted gene
(a hypothetical protein - Tc00.1047053510877.30) was
removed while preserving the attB recombination sites
present in all clones. These controls were named
GFPneo-CTRL and TAPneo-CTRL.
All constructs and clones obtained in this study were

verified by DNA sequencing and no mutations were
observed. The sequences were submitted to GenBank
(the accession numbers are present in the methods
section).

DNA analysis of transfected T. cruzi cells
Southern blot assays were performed to analyze whether
plasmid vectors were present as episomal or integrative
forms after T. cruzi transfection. Genomic DNA from
wild type T. cruzi and from cells transfected with TAP-
neo-Tcpr29A were digested with HindIII endonuclease,
which rendered the linear plasmid. The neomycin resis-
tance marker (NEO) and the tandem affinity purification
tag (TAP) were amplified by PCR and used as probes to
detect the presence of the vector. No band representing
the linear plasmid (6.7 kb) was observed (Figure 1).
Instead, the pattern obtained in Figure 1 shows the pre-
sence of one band, which is greater in size than the lin-
ear plasmid, suggesting that the regions represented by
the probes were integrated into the T. cruzi genome.
This result was not surprising, as plasmid integration

into the ribosomal locus has previously been shown in
other constructs in which a ribosomal promoter was used
[3,34]. Besides, there is also the possibility that the vectors
were integrated into other areas of the T. cruzi genome,
such as the ubiquitin locus, as the IRs (TcUIR) for this
locus were present in three copies in our constructs.

Analysis of mRNA levels
To analyze mRNA levels for the GFP-fused recombinant
protein in T. cruzi transfected with GFPneo-CTRL,

GFPneo-Rab7 or GFPneo-PAR2, we performed real-time
RT-PCR using oligonucleotides to amplify GFP.
GFPneo-CTRL mRNA levels were approximately nine-
fold higher than those of GFPneo-Rab7 and were six-
fold higher than those of GFPneo-PAR2 (Figure 2). To
better understand cell resistance without fluorescence,
we quantified NEO mRNA levels in the same popula-
tions for which GFP mRNA levels were analyzed. Levels
of NEO mRNA were greater than GFP mRNA in
GFPneo-Rab7-transfected T. cruzi (Figure 2). Differences
occurred despite all vectors containing a similar struc-
ture (i.e., IR sequences, resistance marker, protein tag
and promoter). Also, although GFP-fused mRNAs are
distinct, this is not the case for NEO mRNAs. This is an
interesting point that still needs to be addressed.

Figure 1 Southern blot analysis of transfected T. cruzi cells.
Lanes represent HindIII-digested: genomic DNA from T. cruzi wild
type (WT), from T. cruzi transfected with the TAPneo-Tcpr29A
plasmid (29A) and TAPneo-Tcpr29A isolated plasmid (Control). The
neomycin resistance marker (NEO) and the tandem affinity
purification tag (TAP) were used as probes. 1 Kb Plus DNA Ladder
(Invitrogen) was used as the molecular weight marker.

Figure 2 Levels of GFP-fused and NEO recombinant mRNAs in
T. cruzi. The Y-axis indicates the level of GFP and NEO mRNA
quantified by real-time RT-PCR using populations of cells transfected
with GFPneo-Rab7, GFPneo-PAR2 and GFPneo-CTRL.
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Detection of recombinant proteins and FACS analysis of
transfected T. cruzi
To confirm the presence of recombinant proteins in
transfected T. cruzi, western blot assays were performed
using antibodies against the tags. The bands in Figure
3B correspond to the expected molecular weight of the
PAR 2 and TcRab7 with addition of the GFP tag and
the sequence for the attB1 site. Detection of TcrL27 and
Tcpr29A recombinant proteins (using anti-calmodulin
binding peptide antibody) is shown in the “Tandem affi-
nity purification” section, while the centrin recombinant
protein used with c-myc and polyhistidine tags (using
anti-c-myc and anti-histidine antibodies) are shown in
Additional file 1 - Figure S1. Predicted molecular weight
of native proteins TcrL27, Tcpr29A, PAR 2, centrin and
TcRab7, including the protein tags are described in
Additional file 2 - Table S1.
T. cruzi transfected with GFP constructs were ana-

lyzed by cytometry, to verify the level of fluorescence in
cells transfected with GFPneo-CTRL, GFPneo-Rab7 and
GFPneo-PAR2 (Figure 3C). Cells transfected with
GFPneo-CTRL had the highest percentage of fluorescent
cells (96%), followed by GFPneo-Rab7 (19.7%) and
GFPneo-PAR2 (2.6%). Fluorescence levels were corre-
lated with protein intensity in western blots (Figure 3B).
To verify whether the amount of DNA used for trans-

fection influenced the percentage of fluorescent cells, we
analysed fluorescence in three cultures transfected with
15, 50 and 100 μg of the GFPneo-Rab7 clone. No fluor-
escence was detected by cytometry in any culture 48 h
after transfection (data not shown). The fact that no
fluorescence was detected in any of the transient assays
may be explained by the integrative nature of our vec-
tors. Episomal forms of an integrative vector are rapidly
degraded after transfection [34]. However, after selecting
for antibiotic-resistance in cells transfected with 15, 50
and 100 μg of the GFPneo-Rab7 plasmids, fluorescent
cells were detected, but there was no correlation
between the amount of DNA and fluorescence levels
(data not shown). Thus, 15 μg of DNA appeared to be
enough for transfections using the system described
here.

Subcellular localization of recombinant proteins
We selected genes whose subcellular localization is well
known in epimastigotes. The small GTPase TcRab7
located in the anterior region of epimastigote cells at
the Golgi cisternae, which appear in close proximity to
the kinetoplast, basal bodies and flagellar pocket [35].
PAR 2 is a component of the T. cruzi paraflagellar rod
located at the epimastigote flagellum [36]. We obtained
identical localizations to those previously reported for

Figure 3 Detection of GFP-fused recombinant proteins and
FACS analysis. Lanes in A and B represent protein extracts from
T. cruzi wild type (WT) cells and cells transfected with GFPneo-CTRL,
GFPneo-Rab7 and GFPneo-PAR2. In A is represented the load
control gel. In B, these extracts were incubated with antibodies
against GFP. BenchMark (Invitrogen) was used as the molecular
weight marker. In C, T. cruzi wild type epimastigotes (WT) were used
as a negative control. For each culture, 20,000 cells were counted.
The Y- and X-axis represent the number of cells counted (events)
and GFP fluorescence (FL1-H) in arbitrary fluorescence units (AFU),
respectively.
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both TcRab7 and PAR 2, using GFP and CFP fusions
(Figure 4). GFPneo-CTRL was used as a control and
showed a distribution pattern which was different from
that for GFP-fused recombinant proteins. Although
GFPneo-Rab7 was mostly located in the Golgi region,
there was a signal in the cytoplasm, next to the nucleus.
This may have been due to the overproduction of
GFPneo-Rab7. T. cruzi transfected with both TcRab7
and PAR 2 in the same group of cells were also analyzed
by fluorescence microscope. In this experiment, TcRab7
and PAR 2 were expressed from pTcCFPN and
pTcGFPH, respectively. The results demonstrated the
feasibility of protein co-localization in T. cruzi cells dur-
ing a single transfection experiment using pTcGW vec-
tors (Figure 4). There was also no correlation between
fluorescence intensity (Figure 4) and cytometry analysis
data (Figure 3C). This absence of correlation was possi-
bly caused by differences in exposure times and contrast
(Figure 4). Indeed, we obtained the subcellular localiza-
tion of a putative centrin of T. cruzi using the vector
pTcMYCN (Additional file 3 - Figure S2). This protein
is related to centrosome and was located in epimasti-
gotes near to kinetoplast in agreement with personal
communication (Preti, H.).
Fluorescent proteins have been employed for subcellu-

lar localization in several types of organisms. This
approach has some advantages: it is rapid and avoids
the use of antibodies. However, in some cases, this tech-
nique may result in protein misallocation, due to at
least two factors: (i) overexpression of recombinant pro-
teins [37]; and (ii) interference of N- or C-terminal
fusions with the localization signals [38,39]. To circum-
vent these problems, the platform described here was
conceived for use with various strategies. First, recombi-
nant vectors can be used without the pol I promoter,
which may diminish expression of recombinant proteins.
Moreover, the IRs might be promoting different gene

expression levels with the constructs in this study; thus,
each IR could then be replaced by a non regulated or
regulated IR, enabling standardized levels of expression
or life cycle-specific expression, respectively.
Our group is currently employing deep sequence and

proteomic analysis to select specific intergenic regions
for use in pTcGW vectors. Also, the analysis of gene
sequences to detect particular localization signals may
help to choose between N- or C-terminal fusions. The
constructs in this study were designed for N-terminal
fusions, but they can be modified quickly to generate
C-terminal tags.

Tandem affinity purification
The tandem affinity purification (TAP) tag [40] com-
prises two repeated B domain of protein A (able to
bind IgG), plus the site for TEV protease and the

calmodulin binding peptide (CBP). The main reason for
using a tandem purification approach is to avoid false
positives. Two genes already described in the literature,
Tcpr29A [41] and TcrL27 [42] were inserted into
pTcTAPN. TcrL27 encodes the L27 protein, a member
of the larger ribosomal subunit, and Tcpr29A (29A) is a
gene encoding the a6 20S proteasome subunit. The
TAP tag-fused L27, 29A and the control TAPneo-CTRL
(CTRL) were detected by western blot with anti-CBP
antibody (Figure 5A).
A standard TAP procedure was followed to check the

efficiency of both purification steps. The L27 resulting
fractions were probed with anti-CBP antibody revealing
an inefficient binding of the protein complex to the cal-
modulin column (second TAP step), as the TAP tag
fused L27 protein was neither detected after the calmo-
dulin column elution nor at the calmodulin beads
(Additional file 4 - Figure S3). The low efficiency of pro-
tein recovery using CBP tag has been reported by other
groups working with trypanosomatids [2].
Based on the partial success of the tags, all further

tests were only performed up to the TEV digestion step
(IgG column elution). The protein complex purification
of T. cruzi transfected with TAPneo-TcrL27, TAPneo-
Tcpr29A and TAPneo-CTRL was performed using only
the IgG column. To better evaluate this technique we
used antibodies against other members of protein com-
plexes probed. For the L27 ribosome enriched fraction
we used antibody against L26 protein. The 29A protea-
some-enriched fraction was probed with anti-a2 protein
antibody. Antibodies against L26 and a2 were used in
the same membrane for L27, 29A and CTRL complexes
purification to make clear that the enrichment of the
respective partners occurred just as a result of a pro-
tein-protein interaction and not as non-specific binding.
L26 was only enriched during the L27 complex purifica-
tion (Figure 5B). The same specificity was observed in
the 29A purification, where a2 was exclusively detected
(Figure 5B). Moreover, an absence of L26 and a2 during
TAPneo-CTRL (vector expressing tags only) purification
indicated that the newly expressed sequences were not
generating nonspecific binding sites to L26 and a2 pro-
teins (Figure 5B). Due to inefficiency of CBP tag col-
umn, we are currently testing other affinity tags, as a
second step for tandem affinity purifications.

General features of pTcGW vectors
We constructed destination plasmid vectors with several
N-terminal tags. The TAP, c-myc, polyhistidine, cyan
and green fluorescent protein tags were successfully vali-
dated earlier in this study. These vectors have attach-
ment sites for Gateway(r) recombination, providing
several advantages over classic cloning, such as increases
in speed and efficiency during the cloning step.
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Moreover, this platform allows ORF transference to des-
tination vectors with distinct applications, providing dif-
ferent insights into protein function. The Gateway(r)
platform has also had a significant impact on gene char-
acterization in large-scale projects; for example: when a

collection of ORFs has been available in compatible
plasmids [37,43].
Another interesting feature was achieved during the

design of vectors; we selected several one-cut restriction
endonuclease sites to insert the elements, with the

Figure 4 Subcellular localization of TcRab7 and PAR 2 in T. cruzi using pTcGW vectors. Fluorescence microscopy of epimastigotes
transfected with GFPneo-CTRL, GFPneo-PAR2, GFPneo-Rab7, GFPhyg-PAR2 and CFPneo-Rab7. The merged frame was composed by “GFP” and
“DAPI” images overlap. The DAPI frame in the last row was replaced by a frame containing the cyan fluorescence-Rab7 construct (*), in which a
red signal was used. The “#” frame contains a merger of DAPI/GFPhyg-PAR2/CFPneo-Rab7.
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exception of XhoI whose sites flank the antibiotic resis-
tance marker. This provides the flexibility to exchange
all the elements in these vectors, such as promoter,
intergenic regions (IRs), tags and antibiotic resistance
genes. A good example of this flexibility was the set of
experiments performed with the co-localization vector.
This flexibility is important for further developments of
this platform. Some of these developments have already
been defined: First, there is evidence of intra-species
ribosomal promoter specificity in T. cruzi [44]. Hence,
we designed constructs allowing the exchange of the
T. cruzi I ribosomal promoter with other promoters,
such as the T. cruzi II ribosomal promoter, seeking to
expand the use of pTcGW vectors in other T. cruzi
strains. Second, IRs are the other exchangeable elements
in pTcGW vectors. Several studies have shown that
untranslated regions affect the level of expression of
reporter genes in trypanosomatids [45-48]. The vectors
described here allow IR exchange, thus modifying
mRNA stability in attempts to modify the gene expres-
sion profiles in specific situations, for example during
specific stages of the T. cruzi life cycle.
Finally, we followed a protocol for transfection that

minimizes the amount of DNA and medium used. Thus,
we obtained transfectants using DNA from a unique
plasmid minipreparation. Moreover, our protocol also
minimizes the amount of media and antibiotics used for
cell cultivation, thus decreasing the cost and time-scale
of large projects. Our procedure can be improved
further, increasing its efficiency for use in high-through-
put projects. Taken together, these observations demon-
strate that our vector platform represents a powerful
system for gene characterization in T. cruzi.

Conclusions
Due to an absence of vectors combining a high-through-
put cloning system and flexibility for exchanging its ele-
ments in T. cruzi, we developed and constructed
destination vectors incorporating these features. Our
pTcGW vectors can be used for protein subcellular loca-
lization, co-localization and complex purification. These
constructs can also be customized. In addition, we stan-
dardized some of our protocols, simplifying the use of
our platform in large-scale projects. This is a very
important step towards improving available methodolo-
gies for the characterization of thousands of genes
whose functions remain unknown in T. cruzi.

Methods
Plasmid construction
Three cassettes were inserted into the pBluescript(r) II
plasmid (Stratagene, San Diego, USA) following the
strategy shown in Figure 6. The cassette containing the
neomycin resistance gene (NEO - 800 bp) flanked by a
T. cruzi ubiquitin intergenic region (TcUIR - 278 bp)
and the cassette containing the T. cruzi Dm28c pol I
promoter (617 bp) followed by a TcUIR and a hexahisti-
dine tag were synthesized in vitro (GenScript, Piscat-
away, USA) (Figure 6). The third DNA segment,
represented by the RfA cassette (Invitrogen) (1711 bp),
was PCR-amplified from pCR-Blunt and was inserted
into pBluescript(r) II KS+. Restriction sites were placed
in specific positions of the sequence, to insert the var-
ious cassettes or remove some segments of DNA, such
that new segments could be inserted for the construc-
tion of new vectors.
The plasmid containing the three cassettes was named

pTc6HN. We constructed some derivative vectors from
pTc6HN, by replacing the polyhistidine tag with a TAP
tag, the sequence of the c-myc epitope or with genes
coding for fluorescent proteins (EGFP, CFP and YFP).
All tags were amplified from plasmid vectors with the
exception of c-myc, which was synthesized as two sin-
gle-strand oligonucleotides (Additional file 5 - Table
S2). For c-myc strands hybridization, 1.3 μg of each
strand was used. The single strands were incubated in
10 mM NaCl buffer at 95°C for 10 min. The tempera-
ture was then slowly lowered to allow hybridization.
After N-terminal tag insertion, the original vectors were
identified as pTcTAPN, pTcGFPN, pTcCFPN, pTcYFPN,
pTcMYCN and pTcGFPH (neomycin resistance was
replaced with hygromycin resistance in pTcGFPN). All
of the constructs were sequenced by the commercial
Macrogen facility (Macrogen, Seoul, Korea). The analy-
sis of ab1 files was performed on SeqMan software
(DNASTAR, Inc., Madison, USA). The sequences are
available in GenBank under accession numbers

Figure 5 Efficiency of L27 and 29A complexes purification with
the original TAP tag tested in T. cruzi cells. In A, the TAP tag-
fused TcrL27 (L27), Tcpr29A (29A) and the control TAPneo-CTRL
(CTRL) was detected by western blot with anti-CBP antibody. In B,
the fractions from TAP purification were probed with anti-L26 and
anti-a2 in immunoblots. Lanes represent total protein (T) or eluted
product after digestion (E). BenchMark (Invitrogen) was used as the
molecular weight marker.
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HM162840 (pTcYFPN), HM162841 (pTcMYCN),
HM162842 (pTcTAPN), HM162843 (pTcGFPN),
HM162844 (pTcGFPH), HM162845 (pTcCFPN) and
HM162846 (pTc6HN). Oligonucleotides used for the
construction and sequencing of vectors are listed in
Additional file 5 - Table S2 and Additional file 6 - Table
S3, respectively.

Validation of vectors
Five T. cruzi genes were used in the validation process:
TcRab7 (Tc00.1047053508461.270), PAR 2 (Tc00.10
47053511215.119), a putative centrin (Tc00.10470
53506559.380), Tcpr29A (Tc00.1047053506167.40), and
TcrL27 (Tc00.1047053506817.30). First, genes were

amplified by PCR using oligonucleotides containing
Gateway(r) attB sites (listed in Additional file 7 - Table
S4). All genes had the stop codon inserted in the reverse
oligonucleotide, with exception of centrin that uses the
stop codon of vector. The PCR products were then
inserted into pDONR 221 (Invitrogen) by BP recombi-
nation and then transferred to pTcGW vectors by LR
recombination. The TcRab7 gene was inserted into
pTcGFPN (for localization experiments) and pTcCFPN
(for co-localization experiments). The PAR 2 gene was
inserted into pTcGFPN (for localization experiments)
and pTcGFPH (for co-localization), while Tcpr29A and
TcrL27 were inserted into pTcTAPN. The putative cen-
trin was inserted into pTcMYCN (for localization

Figure 6 Schematic drawing showing the vector construction steps. The elements shown are the neomycin (NEO) and hygromycin
(HYGRO) resistance genes, the T. cruzi intergenic region from ubiquitin locus (TcUIR), the attachment sites for Gateway(r) recombination (attB1,
attB2, attR1 and attR2), the chloramphenicol resistance gene (CmR), the gene for negative selection during cloning (ccdB), the fusion tags (6xhis,
GFP, YFP, CFP, TAP and c-myc) and the ribosomal promoter (PR). In A, the steps for vectors construction are represented. In B, the vector reading
frame with start and stop codons are shown.
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experiments), and into pTc6HN. For construction of
GFPneo-CTRL and TAPneo-CTRL, first, a hypothetical
T. cruzi gene (Tc00.1047053510877.30) was inserted in
these vectors. Then, this genetic element was removed
by restriction endonuclease digestion (SmaI), preserving
the attB recombination sites.

Transfection of the parasites
Epimastigote forms of T. cruzi Dm28c were grown at
28°C in liver infusion tryptose (LIT) medium, supple-
mented with 10% fetal calf serum (FCS), to a density of
approximately 3 × 107 cells ml-1. Parasites were then
harvested by centrifugation at 4,000 × g for 5 min at
room temperature, washed once in phosphate-buffered-
saline (PBS) and resuspended in 0.4 ml of electropora-
tion buffer pH 7.5 (140 mM NaCl, 25 mM HEPES, 0.74
mM Na2HPO4) to a density of 1 × 108 cells ml-1. Cells
were then transferred to a 0.2 cm gap cuvette and 15 to
100 μg of DNA was added. For co-localization assays,
15 μg of each plasmid was used in the same cuvette.
The mixture was placed on ice for 10 min and then sub-
jected to 2 pulses of 450 V and 500 μF using the Gene
Pulser II (Bio-Rad, Hercules, USA). After electropora-
tion, cells were maintained on ice until being transferred
into 4-10 ml of LIT medium containing 10% FCS, where
they were incubated at 28°C. After 24 h of incubation,
the antibiotic (hygromycin or G418) was added to an
initial concentration of 125 μg ml-1. Then, 72 to 96 h
after electroporation, cultures were diluted 1:10 and
antibiotic concentrations were doubled. Stable resistant
cells were obtained approximately 18 days after
transfection.

Southern blot analysis
DNA extraction was performed according to Medina-
Acosta & Cross [49], with some modifications. Briefly,
1 × 108 cells were pelleted, washed once with PBS and
lysed with 1.5 ml of TELT buffer (50 mM Tris-HCl, pH
8.0, 62.5 mM EDTA, pH 8.0, 2.5 M LiCl and 4% Triton
X-100). DNA was purified three times using phenol/
chloroform/isoamilic alcohol (v/v). After that, DNA was
precipitated by adding 100% ethanol (1:1, v/v), then
washed three times with 1 ml of 70% ethanol, dried at
25°C and resuspended in 100 μl of TE containing 10 μg
ml-1 RNase A.
T. cruzi DNA (10 μg) was restriction digested with

HindIII (Amersham Biosciences, Piscataway, USA) and
was resolved on a 0.8% agarose gel in TBE buffer. The
DNA was transferred to nylon membranes (Amersham
Biosciences) according to standard protocols [50].
Probes (NEO and TAP) were amplified (oligonucleotides
listed in Additional file 8 - Table S5) and radioactively
labeled with a-[P32]-dCTP (10 μCi/μl; 3,000 Ci/mmol)
(Amersham Biosciences) using the Nick Translation

System (Invitrogen), according to the manufacturer’s
instructions.

Real-time RT-PCR
Total RNA was extracted from 1 × 108 cells by RNeasy
Kit (Qiagen, Hilden, Germany) according to manufac-
turer’s instructions. Single strand cDNA was obtained as
follows: 1 μg of RNA and 1 μM oligo dT were mixed
and incubated for 10 min at 70°C. Then, 4 μl of
Improm-II buffer (Promega, Madison, USA), 3 mM
MgCl2, 0.5 mM each dNTP, 40 U RNaseOUT (Invitro-
gen) and 2 μl Improm-II Reverse Transcriptase (Pro-
mega) were mixed in a final volume of 20 μl and
incubated for 2 h at 42°C. The product was then puri-
fied with Microcon(r) YM-30 (Millipore, Massachusetts,
USA) and resuspended with water at the concentration
of 2 ng μl-1. PCR reactions included 10 ng or 0.4-50 ng
(standard curve) of single strand cDNA samples as tem-
plate, 0.25 μmol of each oligonucleotide, H2B histone
oligonucleotides for normalization (listed in Additional
file 8 - Table S5) and SYBR(r) Green PCR Master Mix
(Applied Biosystems, Foster City, USA). A sample from
T. cruzi wild type was used as a negative control. The
reactions were performed and the standard curve was
determined in triplicate and all PCR runs were carried
out in an Applied Biosystems 7500 Real-Time PCR Sys-
tem. Data was acquired with the Real-Time PCR System
Detection Software v1.4 (Applied Biosystems). Analysis
was performed using an average of three quantifications
for each sample.

Western blot analysis
For immunoblotting analysis, cell lysates (from 5 × 106

parasites or, for TAP procedures, 5 to 15 μg of total
protein and 25-50% of the digestion) were separated by
SDS-PAGE using 13% polyacrylamide gels. Protein
bands were transferred onto a nitrocellulose membrane
(Hybond C, Amersham Biosciences) according to stan-
dard protocols [50]. Nonspecific binding sites were
blocked by incubating the membrane for 1 h in 5% non-
fat milk powder and 0.1% Tween-20 in TBS, pH 8.0.
The membrane was then incubated for 1 h with either
the monoclonal antibody anti-GFP (3.3 μg ml-1) (Mole-
cular Probes(r) - Invitrogen), monoclonal anti-histidine
(1.4 - 2.8 μg ml-1) (Amersham Biosciences), monoclonal
anti-c-myc clone 9E10 (10 μg ml-1) (Clontech) or poly-
clonal serum anti-CBP (1:1,000) (Upstate(r)-Millipore)
antibodies. For TAP procedures, polyclonal serum anti-
L26 ribosomal protein [51] (1:250) and anti-a2 20S pro-
teasome subunit (1:600) were used. The membrane was
washed three times in TBS and was then incubated for
45 min with the secondary antibodies diluted in block-
ing solution. Secondary antibodies used included goat
anti-mouse IgG conjugated with alkaline phosphatase
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(1:10,000) from Sigma, sheep anti-mouse IgG horserad-
ish peroxidase-linked (1:7,500) or donkey anti-rabbit
IgG horseradish peroxidase-linked (1:7,500) (GE Health-
care, Piscataway, USA). Bound antibodies were detected
either with BCIP/NBT substrates for alkaline-phospha-
tase conjugated antibodies or the ECL Western blotting
analysis system for horseadish peroxidase-linked antibo-
dies (Amersham Biosciences), according to the manufac-
turer’s instructions.

Fluorescence Microscopy and FACS analysis of GFP
expression
Epimastigote forms of transfected parasites were washed
twice with PBS and resuspended to a final density of
5 × 107 cells ml-1. Cells were then added to the poly-L-
lysine-coated cover slips, which were incubated at room
temperature for 10 min. Cells were fixed with 4% paraf-
ormaldehyde for 15 min and in the last 5 min of this
incubation, a solution of 2 μg ml-1 DAPI, 0.1% triton
X-100 was added to cells, which were then washed with
PBS. For immunofluorescence assay, cells were pro-
cessed as described up to the fixation. After this proce-
dure, cells were incubated overnight with 25% goat
serum diluted in PBS. Then, cells were incubated with
monoclonal anti-c-myc antibody (40 μg ml-1 in 25% goat
serum diluted in PBS) (Clontech) for 1 h, washed three
times with PBS and incubated with goat anti-mouse IgG
antibody conjugated with Alexa Fluor(r) 488 (5 μg ml-1)
(Invitrogen) for 1 h. After this, cells were incubated with
2 μg ml-1 DAPI for 10 min and washed six times with
PBS. Slides were mounted with 0.1% N-propyl-galacto
and examined with a Nikon E600 microscope. For
FACS analysis, epimastigote forms at growth log phase
were counted on FacsCalibur (Becton Dickinson, San
Jose, USA) until 20,000 events had been collected. Data
was analyzed with WinMDI 2.9 (The Scripps Research
Institute, San Diego, USA).

TAP procedures
Total protein of epimastigote forms of T. cruzi cells
transfected with TAPneo-TcrL27, TAPneo-Tcpr29A and
TAPneo-CTRL clones were used to check the efficiency
of the TAP construct. For each culture, 4 × 109 cells
were washed twice with ice-cold PBS and lysed at 4°C
for 1 h with gentle agitation in lysis buffer (10 mM
Tris-HCl, pH 8.0, 0.5 mM MgCl2, 50 mM NaCl, 0.5%
NP-40, 10% glycerol, 0.5 mM DTT, 1 mM PMSF and
10 μM E64). All of the following steps were also carried
out at 4°C. The lysate was centrifuged for 15 min at
10,800 × g to remove cell debris. The supernatant (total
proteins) was transferred to a microcentrifuge tube (1.5
ml) and incubated with 50 μl of IgG Sepharose™ 6 Fast
Flow bead suspension (GE Healthcare). After 2 h of liga-
tion with gentle rotation, beads were washed three times

with 1 ml of lysis buffer and once with the same volume
of TEV buffer (50 mM Tris-HCl, pH 8.0, 0.5 mM
EDTA, 1 mM DTT). Seventy units of AcTEV™ protease
(Invitrogen) and 800 μl of TEV buffer were added to the
beads and the tubes were left to rotate overnight to
release the protein complex. Following digestion, the
supernatant was transferred and the beads were washed
two times with 200 μl of TEV buffer for maximum
recovery. An aliquot of this digestion product (25%) was
separated for western blot analysis.
The remaining digestion product was adjusted to a

final concentration of 3 mM of CaCl2 and diluted with
3 volumes of calmodulin binding buffer (10 mM Tris-
HCl, pH 8.0, 150 mM NaCl and 2 mM of CaCl2). The
mix was incubated for 2 h at 4°C with 30 μl of a Calmo-
dulin Sepharose™ 4B bead suspension (GE Healthcare).
Following incubation, the flow through was saved and
calmodulin beads were washed three times with 1 ml of
calmodulin binding buffer. Proteins were eluted with
calmodulin elution buffer (10 mM Tris-HCl, pH 8.0,
150 mM NaCl and 2 mM of EGTA) and the remaining
beads were boiled with SDS-PAGE sample buffer. All
fractions were TCA concentrated before analysis.

Additional material

Additional file 1: Figure S1 - Detection of polyhistidine and c-myc-
fused recombinant centrin. Lanes represent protein extracts from T.
cruzi wild type cells (WT), T. cruzi cells transfected with MYCneo-centrin
and 6Hneo-centrin. These extracts were incubated with antibodies
against (A) c-myc and (B) histidine. BenchMark (Invitrogen) was used as
the molecular weight marker.

Additional file 2: Table S1 - Molecular weight of native and
recombinant proteins.

Additional file 3: Figure S2 - Subcellular localization of centrin
using c-myc epitope tag. Fluorescence microscopy of epimastigotes
transfected with MYCneo-centrin. The merged frame was composed by
“Anti-c-myc“ and “DAPI” images overlap.

Additional file 4: Figure S3 - Tandem affinity purification efficiency.
Fractions of a complete L27 TAP purification were probed with anti-CBP
antibody to follow the fusion protein and characterize the tags efficiency.
1 - wild type cells extract; 2 - transfected cells extract; 3 and 6 - flow
through from IgG and Calmodulin columns, respectively; 4 and 7 - first
and second washes from IgG and Calmodulin columns, respectively; 5
and 8 - third wash from IgG and Calmodulin columns, respectively; 9 -
calmodulin beads; 10 - EGTA eluted. Fifteen micrograms of protein were
loaded in lanes 1, 2 and 3; remaining fractions were TCA concentrated
and 100% loaded. BenchMark (Invitrogen) was used as the molecular
weight marker.

Additional file 5: Table S2 - Oligonucleotides for plasmid
construction.

Additional file 6: Table S3 - Oligonucleotides for sequencing of
constructs and clones.

Additional file 7: Table S4 - Oligonucleotides for Gateway(r)
recombination.

Additional file 8: Table S5 - Oligonucleotides for real-time RT-PCR
and probe amplification (Southern blot).
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