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In Latin America, zoonotic visceral leishmaniasis (ZVL) arising from infection by

L. infantum is primarily transmitted by Lutzomyia longipalpis sand flies. Dogs, which are

chronic reservoirs of L. infantum, are considered a significant risk factor for acquisition

of ZVL due to their close proximity to humans. In addition, as a vector-borne disease

the intensity of exposure to vector sand flies can also enhance the risk of developing

ZVL. Traditionally, IFN-γ and IL-10 are considered as the two main cytokines which

determine the outcome of visceral leishmaniasis. However, more recently, the literature

has demonstrated that different mediators, such as lipid mediators (PGE-2, PGF-2 alfa,

LTB-4, resolvins) and other important inflammatory and anti-inflammatory cytokines are

also involved in the pathogenicity of ZVL. Analysis of a greater number of mediators allows

for a more complete view of disease immunopathogenesis. Additionally, our knowledge

has expanded to encompass different biomarkers associated to disease severity and

healing after specific treatments. These parameters can also be used to better define

new potential targets for vaccines and chemotherapy for ZVL. Here, we will provide an

overview of ZVL biomarkers identified for both humans and dogs and discuss their merits

and shortcomings. We will also discuss biomarkers of vector exposure as an additional

tool in our arsenal to combat ZVL.

Keywords: zoonotic visceral leishmaniasis, Leishmania infantum, biomarkers, cytokines/chemokines, canine

visceral leishmaniasis, human visceral leishmaniasis

INTRODUCTION

Leishmaniasis is considered a neglected tropical disease with approximately 350 million people at
risk of infection, and with 2million new cases reported annually, mainly in extremely impoverished
communities (WHO/Leishmaniasis, 2014). The clinical manifestations of leishmaniasis range from
cutaneous ulcers to the visceral form, one of the most severe which can be fatal if left untreated
(Desjeux, 2004). Over 90% of visceral leishmaniasis (VL) cases worldwide are concentrated in six
countries: India, Bangladesh, Sudan, South Sudan, Ethiopia, and Brazil. VL arises from either L.
donovani in the Indian subcontinent and East Africa, or L. infantum in Europe and Latin America,
and kills 20,000–40,000 people annually throughout the world (Alvar et al., 2012).

Dogs are considered the main reservoirs of L. infantum parasites and the presence of these
animals in endemic areas represents a risk factor for human disease. The disease in dogs shares
characterisitcs with human VL, providing a good model to study the immunopathogenesis of
L. infantum infections. Canine visceral leishmaniasis (CVL) is also of veterinary interest since the
disease is spreading to big cities in Latin America including Belo Horizonte, São Paulo, Natal, and
Camaçari (Alves and Bevilacqua, 2004), threatening public health.
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L. infantummultiplies inside macrophages in the liver, spleen
and bone marrow. In human VL, 90% of infected individuals
remain asymptomatic or subclinical, showing an intense cellular
immune response characterized by a positive delayed-type
hypersensitivity reaction to Leishmania antigens. However, in
patients who progress to clinical disease, an enlargement of the
spleen and liver may be observed, accompanied by hematological
disorders, notably anemia, thrombocytopenia, which may result
in hemorrhaging, and neutropenia. These disorders can increase
host susceptibility to bacterial infection and patients with VL
often suffer weight loss or fever (Werneck et al., 2003).

The search for biomarkers for prognosis of human and canine
VL and measurement of the success of treatment has intensified
in the last few years. This led to a better knowledge of disease
immunopathogenesis and favored therapeutic and prophylactic
strategies for ZVL. As L. infantum is transmitted by the bite
of phlebotomine sand flies, several markers of vector exposure
have also been identified and used as tools to assess success of
interventions. Used in combination, biomarkers of disease and
vector exposure can provide powerful tools to support efforts to
control ZVL.

HUMAN ZVL

The progression of ZVL is associated with immunosuppression,
characterized by lack of a cell-mediated immune response to
Leishmania antigens. Accordingly, the absence of lymphocyte
blastogenesis and IFN-γ production have been associated
with progression to VL (Carvalho et al., 1992). Interestingly,
patients become responsive to Leishmania antigens after
successful therapy (Carvalho et al., 1989). Biomarkers were
evaluated in a group of ZVL patients given standard antimonial
treatment (Schriefer et al., 1995). Soluble CD4 (sCD4),
sCD8, and sIL-2R levels were higher in sera of patients
compared to healthy controls. After treatment, levels of the
above-mentioned biomarkers exhibited a significant decrease
in patients who responded to therapy. Importantly, when
comparing pretreatment levels of these markers among
those who responded to antimonial therapy and refractory
patients, the serum concentrations of sCD8, sIL-2R as well
as neopterin were significantly elevated in refractory patients.
Therefore, these markers represent promising indicators of
a patient′s response to antimonial therapy (Schriefer et al.,
1995).

The cure for human ZVL is associated to induction of a
Th1 immune response characterized by IFN–γ production. IFN–
γ has an essential role in controlling the parasite load and
in the development of a long-lasting immunity. Asymptomatic
patients also exhibit a Th1 response, suggesting that IFN-γ
activates macrophages, increasing their leishmanicidal ability
and maintaining the infection under control (Kaye and Scott,
2011). In contrast, anti-inflammatory cytokines, mainly IL-10,
lead to proliferation of parasites and interfere with infection
control (Nylen and Sacks, 2007; Gautam et al., 2011). In a
study of patients with active ZVL, in vitro stimulation of PBMC
with Leishmania antigens showed an inverse pattern with low

levels of IFN-γ during active disease that augmented steadily
after treatment (Caldas et al., 2005). Interestingly, these patients
showed elevated plasma levels of IFN-γ, IL-12p40, and IL-10
during active disease that sharply decreased after treatment
(Caldas et al., 2005). Therefore, IFN-γ and IL-10 are the
main hallmarks of infection by L. infantum, and the balance
between these cytokines seems to be essential for control of the
infection.

IL-17, a cytokine produced mainly by Th17 cells, is known for
inducing the production of chemokines that recruit neutrophils
to inflammatory sites. A cohort of individuals with VL caused
by L. donovani showed that IL-17 seems to be protective (Pitta
et al., 2009). However, in ZVL patients caused by L. infantum,
high levels of this cytokine did not induce IFNγ/NO in enough
concentrations to lead to a recovery from disease (Nascimento
et al., 2015).

In severe forms of ZVL, there is an exaggerated inflammatory
response that leads to disseminated intravascular coagulation and
other manifestations such as hemorrhage (Costa et al., 2013).
Children displaying an intense production of cytokines have a
higher risk of death. IL-6 seems to be one of the main cytokines
associated with fatal disease, but IFN-γ, IL-1β, IL-8, and TNF-α
have also been associated to ZVL severity (Costa et al., 2013). In
fact, L. infantum may activate inflammatory reactions via CD14,
leading to a production of several cytokines such as IFN-γ, IL-
27, IL-10, IL-6 as well as sCD14 (Dos Santos et al., 2016). These
data reinforce previous results and denote the interdependent
relationship between pro-inflammatory (IFN-γ, IL-6 and TNF-α)
and anti-inflammatory (IL-10 and IL27) cytokines. The authors
also showed that higher levels of IL-6 (>200 pg/ml) are associated
to death (Dos Santos et al., 2016). Collectively, this highlights
the complexity of finding a good biomarker for ZVL since
induction of a cytokine such as IFN-γ may be associated to
protection or severe disease, depending on its levels and the
overall inflammatory environment.

Other biomarkers, including lipid mediators, have been
associated with ZVL and could also be used to monitor the
efficacy of specific therapies. Araujo-Santos et al. (2017) reported
a distinct biosignature of active ZVL through increased serum
levels of Prostaglandin F 2 alfa (PGF2α), Leukotrine B4 (LTB4),
Resolvin D1 (RvD1), TNF-α, IL-1β, IL-6 and IL-8, IL-10,
and IL-12p70, as well as decreased concentrations of TGF-
β1 in comparison to healthy endemic controls, regardless of
patient age or gender. Following the onset of leishmanicidal
treatment, the inflammatory cytokine profile, as well as the
relationships between these markers and several hematological
and biochemical parameters, gradually reverted, which suggested
that the observed cytokine expression profile was induced by
active disease or infection (Araujo-Santos et al., 2017). Of the
quantified markers, TGF-β1 concentrations were significantly
elevated, while IL-6, IL-8, IL-10, and RvD1 levels substantially
decreased, after 30 days of therapy in comparison to their levels
during active ZVL infection.

It is worthwhile noting that common immunological
signatures were observed in sera of VL patients from Brazil
and Bangladesh infected with L. infantum and L. donovani,
respectively. Inflammatory and regulatory cytokines (IFNγ,
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TNFα, IL-10, IL-17), as well as levels of growth factors (FGF-
fibroblast growth factor; VEGF, vascular endothelial growth
factor), were elevated in the serum of VL patients from both
regions (Duthie et al., 2014). Serological assays from Brazilian
patients obtained during and after meglumine antimoniate
treatment demonstrated that multiple parameters reverted to
concentrations similar to healthy endemic controls. The authors
suggested that a multi-parameter signature of the response to
treatment could be useful in clinical trials to evaluate the success
of therapeutic interventions (Duthie et al., 2014).

Macrophages infected by L. infantum present an M2b-like
phenotype as well as a C-type lectin receptor (CLR) signature,
characterized by Dectin-1, mannose receptor and DC-SIGN
homolog SIGNR3 expression (Lefevre et al., 2013). Expression
of Dectin-1 and the mannose receptor are essential to the
leishmanicidal effect of macrophages, leading to the production
of ROS and also the induction of IL-1β secretion. On the
other hand, SIGNR3 was shown to favor parasite survival
via the inhibition of the LTB-4-IL1β axis (Lefevre et al.,
2013).

More recently, MCP-1 was shown to be a good biomarker
to identify asymptomatic individuals infected by L. infantum
(Ibarra-Meneses et al., 2017). This chemokine is expressed 110
times more strongly than IL-2 in cultures of whole blood
stimulated with Leishmania antigens, identifying 87.5% of
asymptomatic subjects; it is also significantly increased in all
patients cured of ZVL (Ibarra-Meneses et al., 2017). Table 1
summarizes the main findings about biomarkers in human
ZVL.

In summary, biomarkers other than IFN-γ and IL-10 have
been described more recently that reveal the complexity of
ZVL. These molecules have demonstrated both their value
as biomarkers of disease progression and their usefulness

in monitoring the efficacy of treatment. In the future, such
biomarkers may also be of value in assessing the level of
protection induced by prophylactic strategies.

CANINE VL

Dogs are one of the main urban reservoirs of L. infantum
parasites and their presence in endemic areas is a risk factor
for the development of human disease, due to their role
in propagating infection in phlebotomine sand flies. Clinical
manifestations of CVL present a wide spectrum of clinical signs
that are non-specific. However, a high proportion of animals
do not progress to disease, control the parasites and live for
years or their entire life without any clinical signs (Foglia
Manzillo et al., 2013). The presence of these dogs in the endemic
area contributes to maintenance of the parasites, since they
can transmit L. infantum to the sand flies. The resistance or
susceptibility to CVL is directly correlated with the induction
of either a Th1 response characterized by IFN- γ, IL-2, and
TNF-α production, or a Th2 response with the production
of IL-4, IL-5, IL-10, IL-13, and TGF-β, respectively, and the
level of immune activation is considered to directly influence
disease severity (Reis et al., 2010; Barbosa et al., 2011). In
fact, a reduction in the burden of L. infantum was related to
elevated expression of IFN-γ and TNF-α, whereas increased
IL-10 and iron regulatory protein 2 (IRP2) expression and an
increase in plasma albumin levels were associated with a higher
parasite burden (do Nascimento et al., 2013). Accordingly, the
dynamics between different aspects of the immune response
and intracellular iron availability could play some role in
the evolution of Leishmania infection (do Nascimento et al.,
2013).

TABLE 1 | Biomarkers for human visceral leishmaniasis.

Cytokines Chemokine Lipid mediators Mixed molecules Signature References

IFN-γ, IL-12, and

IL- 10 TNFα, IL-17

sCD4, sCD8,

and sIL2R

↑ Active disease Schriefer et al., 1995;

Gautam et al., 2011

↓ Post-treatment Nylen and Sacks, 2007;

Duthie et al., 2014;

Araujo-Santos et al., 2017

sCD8, sIL-2R,

neopterin

↑ Patients refractory to

treatment

Caldas et al., 2005

MCP-1 ↑ Asymptomatic VL

↑ Cured patients

Kaye and Scott, 2011;

Ibarra-Meneses et al., 2017

IL-6 ↑ Fatal Disease (higher risk

of death)

Costa et al., 2013; Dos

Santos et al., 2016

IL-1β, IL-8, and

TNF-α, IFN-γ,

IL-27, IL-10

Severity of disease Dos Santos et al., 2016

sCD14 ↑ Severe disease Dos Santos et al., 2016

IL-1β, IL-6 IL-8

TGF-β1

PGF2α, LTB4,

RvD1

↓ Active ZVL Post-treatment

↓ Active ZVL

↓ Post-treatment

Araujo-Santos et al., 2017

– FGF, VEGF ↑ Active VL

↓ Post-treatment

Duthie et al., 2014
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The predominance of a Th2 response in infected dogs leads
to the appearance of M2 macrophages, identified by CD163
immunostaining, mainly in the spleen, muzzle, ear and popliteal
and pre-capsular lymph nodes (Moreira et al., 2016). The highest
proportion of M2 macrophages coincided with the highest
parasite loads and were found in more susceptible organs of
infected dogs such as the spleen and lymph nodes, as well
as skin, considered a more resistant organ. In contrast, the
liver showed low parasitism and weak immunostaining for M2
macrophages that was not significantly different between infected
and negative groups of dogs. Therefore, M2 macrophages
may contribute to parasite proliferation in organs (Moreira
et al., 2016). Another important point that contributes to
the gravity of CVL is associated with the disorganization of
splenic tissue. Dogs that presented positive spleen cultures
also showed more disrupted spleen architecture, with a lower
concentration of serum albumin and creatinine and higher levels
of aspartate aminotransferase. Together, these data suggest that
the disorganization of lymphoid tissue in the spleen is linked
to more severe clinical presentations of CVL (Lima et al.,
2014).

The immunosuppression observed during CVL is also
correlated to the occurrence of CD4+ and CD8+ T cell
exhaustion and could be responsible for the absence of specific
antigen blastogenesis and IFN-γ secretion. Moreover, there was
a significant increase in the surface expression of programmed
death 1 (PD-1) on T cell populations, mainly in CD8T cells
of symptomatic dogs in comparison to control animals. Using
monoclonal antibodies able to inhibit the PD-1 ligand B7.H1
restored CD4+ and CD8+ T cell function and raised the levels of
reactive oxygen species in cocultures of phagocytes and T cells.
Consequently, these macrophages showed a reduction in the
number of intracellular parasites. The T cell exhaustion resulting
from symptomatic CVL may affect the response to vaccination
and the efficacy of treatments used to control L. infantum (Esch
et al., 2013).

Different reports in the literature have associated the parasite
burden in different tissues with the host immune response,
evaluating pro- and anti-inflammatory cytokines. Generally,
there is a consensus that a mixed Th1/ Th2 response is
observed at the time of detection of a Leishmania infection,
despite the prevalence of a Th2 profile. Later in the infection,
when the parasite load decreases, e.g., as a result of treatment,
the Th1 profile becomes predominant. However, this is not
always the case. In a study of 20 infected dogs treated with
miltefosine and allopurinol, 80% of animals showed expansion
of the parasite load in blood and lymph nodes and low IFN-
γ levels at the end of the 9–12 months study period (Manna
et al., 2008). This response signals a failure to induce a
Th1 response in the majority of treated dogs. Nevertheless,
these animals did not show any sign of disease, suggesting
they are in an asymptomatic state (Manna et al., 2008). The
above highlights the complexity of CVL and the absence of
reliable markers of recovery of infected dogs. In another study,
quantifying TNF-α, IL-4, and IL-10 in the spleen and liver of
dogs naturally infected with L. infantum, with or without clinical
signs, showed that the animals exhibited higher levels of these

cytokines compared to control non-infected dogs (DE FMichelin
et al., 2011). Interestingly, the authors found that the liver is
the main organ responsible for the production of cytokines
during infection. Moreover, TNF-α was positively correlated
with parasite burden and could represent a marker for disease
infection, with the participation of IL-10 (DE F Michelin et al.,
2011).

More recently, the parasite burden and levels of IFN-γ,
TNF-α, IL-10, and TGF-β were evaluated in 5 target tissues
at 6 and 16 months after infection with L. infantum in an
experimental canine model (Rodriguez-Cortes et al., 2016). The
data showed that the spleen and liver of infected animals
exhibited a high parasite density at both time points and
produced pro- and anti-inflammatory responses (Rodriguez-
Cortes et al., 2016). The popliteal lymph nodes produced IFN-
γ both at the beginning of the infection and in the chronic
phase. In contrast, an increase in IL-10 and TGF-β expression
in these organs was only observed in the chronic phase. Of
note, cytokines were absent in the skin, although parasites
were detected at 6 months post-infection. Therefore, in the
above-mentioned study, the spleen and liver of infected dogs
produced diverse cytokines at early times of infection, whereas
an anti-inflammatory profile was observed in peripheral tissues
at later periods, considered as the chronic phase of infection
(Rodriguez-Cortes et al., 2016). Another study of experimentally
infected dogs, considered asymptomatic due to the few clinical
signs presented, animals were maintained for six years after
intradermal infection (Abbehusen et al., 2017). Although few
clinical signs were noticed in these animals, most presented
parasites in the lymph nodes, spleen and skin and exhibited an
increase in IFN-γ, GM-CSF, IL-6, and IL-18 levels and a decrease
in TNF, IL-2, and CXCL1 serum concentrations. These results
seem to suggest that a persistent activation of the immune system
in subclinical infections with L. infantum may possibly control
parasite growth and limit disease severity (Abbehusen et al.,
2017).

Our group studied 70 naturally infected dogs from an endemic
area in Bahia, Brazil, grouping the animals according to a clinical
score previously described by Manna et al (Manna et al., 2009)
with slight modifications. In the group of dogs with severe disease
(clinical score>7), we observed a reduction in the levels of serum
LTB-4 and PGE-2 and an elevation in chemokine concentrations
such as CXCL1 and CCL2 (Solca et al., 2016). Performing ROC
curves, we observed that a combination of LTB-4, PGE-2, and
CXCL-1 differentiated best among distinct groups of dogs with
different clinical scores. Besides that, analysis of the interactome
of the different mediators evaluated showed that LTB-4, a lipid
mediator, had the highest number of interactions with other
cytokines and chemokines in the group of dogs with severe
disease. Although IFN-γ and IL-10 were also evaluated, we did
not find an important role for these cytokines as markers of
disease progression in infected dogs (Solca et al., 2016). Table 2
summarizes the main findings about biomarkers in canine
ZVL.

In CVL, the complexity of the immune response and the role
played by different mediators during infection by L. infantum is
clear. Although IFN-γ and IL-10 seem to be important cytokines
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TABLE 2 | Biomarkers in canine visceral leishmaniasis.

Cytokines Chemokines Lipid

mediators

Mixed molecules Signature References

IFN- γ, IL-2

and TNF-α

↑ Resistance to infection Reis et al., 2010; Barbosa

et al., 2011; do Nascimento

et al., 2013

↑ Beginning of infection Rodriguez-Cortes et al.,

2016

IL-4, IL-5, IL-13

and IL- 10

TGF-β

↑ Susceptibility to infection

↑ Chronic phase

Reis et al., 2010; Barbosa

et al., 2011; DE F Michelin

et al., 2011

Rodriguez-Cortes et al.,

2016

IRP2 (iron

regulatory

protein 2)

↑ Susceptible dogs do Nascimento et al., 2013

CD163 (M2

macrophages)

↑ In macrophages from

spleen and lymph nodes

with ↑ parasite load

Moreira et al., 2016

PD-1-PDL-1 ↑ Symptomatic

dog-exhaustion of CD4

AND CD8 T cells

Esch et al., 2013

IFN-γ, GM-CSF,

IL-6, and IL-18

↑ Dogs infected by 6 years

without clinical signs

Abbehusen et al., 2017

TNF, IL-2 CXCL1 ↓ Dogs infected by 6 years

without clinical signs

LTB-4 and

PGE-2

↓

Dogs with severe disease Solca et al., 2016

CCL2,

CCXL1

↑

and are induced during infection, other mediators could be more
useful as markers of disease progression or in the assessment
of the response to treatment. An important point that deserves
consideration is the presence of parasites in different organs of
infected dogs, including skin. As such, asymptomatic dogs could
represent a good source of parasites to uninfected sand flies
contributing to their persistence in endemic areas. These findings
indicate that the search for markers of exposure to sand flies is
essential for surveillance of endemic areas.

BIOMARKERS OF VECTOR EXPOSURE

In large part, “biomarkers” is a term mostly used to describe
characteristics of a disease. However, for vector-borne diseases
they can also reference exposure to the arthropod vectors that
transmit them. This relatively new discipline of research has
gained momentum in recent years and is proving to be of
value to various approaches aiming at disease treatment or
control (Andrade and Teixeira, 2012; Doucoure and Drame,
2015; Lestinova et al., 2017). In contrast to disease biomarkers,
good vector exposure biomarkers may be used as preventative
tools that can identify a heightened risk for contracting disease
(Carvalho et al., 2015; Ya-Umphan et al., 2017). Further,
good biomarkers of exposure may also be used to monitor
the expansion or contraction of vector ranges over time, an

important tool in light of climate change and its effect on
changing the global distribution of disease vectors (Parham et al.,
2015; Purse et al., 2015).

The basic requirements that define a good disease biomarker
also apply to biomarkers of vector exposure. A reliable biomarker
should be specific to a particular vector species (Poinsignon et al.,
2008; Teixeira et al., 2010; Ali et al., 2012; Doucoure et al., 2012;
Zhao et al., 2015), and recognized by the majority of the exposed
or target host population (Souza et al., 2010;Marzouki et al., 2012;
Doucoure and Drame, 2015; Mukbel et al., 2016). Additionally,
an ideal vector biomarker should be relatively short-lived in the
absence of exposure, a desired feature for use in biomonitoring
(Clements et al., 2010; Gidwani et al., 2011; Noukpo et al., 2016).
For arthropods that transmit pathogens by bite, which represents
the majority of disease vectors including phlebotomine sand
flies, saliva has been the primary target for biomarkers of vector
exposure (Andrade and Teixeira, 2012; Courtin et al., 2015;
Doucoure and Drame, 2015).

Most vectors bite mammalian hosts to acquire blood. As such,
saliva of vectors has evolved to facilitate blood feeding (Ribeiro
and Francischetti, 2003; Lestinova et al., 2017) However, in
addition to their physiological effects, several salivary molecules
of major disease vectors are immunogenic in humans as
well as animal reservoirs and have the potential to become
biomarkers of exposure. (Andrade and Teixeira, 2012; Dama
et al., 2013a; Abdeladhim et al., 2014; Doucoure and Drame,
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2015). Considering that vector control continues to be considered
one of the most effective methods to inhibit the transmission of
vector-borne diseases, developing immunogenic salivary proteins
as biomarkers of vector exposure represent a powerful tool in our
arsenal toward their control.

Measuring the antibody response to total saliva, though
useful, has serious limitations, mostly due to cross-reactivity
of some antigens in various sympatric vectors or host-biting
non-vectors (Andrade and Teixeira, 2012; Dama et al., 2013a,b;
Doucoure and Drame, 2015; Simo et al., 2017). There are
also technical limitations to the use of total saliva preparations
as marker of vector exposure including reproducibility and
scale-up. This prohibits its consideration for use in large-
scale epidemiological surveys. To overcome such obstacles,
well-defined salivary antigens or peptides that are specific to
a particular vector species, while maintaining a measurable
immunogenicity in the target population, are being pursued
(Rohousova et al., 2005; Poinsignon et al., 2008; Teixeira
et al., 2010; Ali et al., 2012; Zhao et al., 2015; Sima et al.,
2016).

Biomarkers of Exposure to Vector Sand
Flies
Sand fly saliva consists of a relatively small number of secreted
proteins that are injected into the skin in small quantities
(Abdeladhim et al., 2014). Nevertheless, sand fly saliva is
highly immunogenic and induces a potent cellular and humoral
immune response in humans and animals including dogs,
known reservoirs of L. infantum (Andrade and Teixeira, 2012;
Abdeladhim et al., 2014; Lestinova et al., 2017). Though it
has been well established that induction of a saliva-specific
Th1-biased cellular immunity protects from disease, saliva-
specific antibodies have been associated to both protection, for
vectors of visceral leishmaniasis (Barral et al., 2000; Gomes
et al., 2002; Aquino et al., 2010; Vlkova et al., 2011), as well
as an enhanced risk of infection, for vectors of cutaneous
leishmaniasis (Mondragon-Shem et al., 2015). To date, we have
no clear understanding of the reason behind these contrasting
associations.

Whether antibodies to saliva are associated to protection
or risk, they remain a good indicator of the rate of exposure
to bites of vector sand flies. However, as for other vector-
borne diseases, there are more than one man-biting species of
sand flies in endemic areas, and sympatric vectors transmitting
different types of leishmaniasis are not uncommon (Rohousova
et al., 2005; Clements et al., 2010; Teixeira et al., 2010;
Marzouki et al., 2012). This increases the risk of cross-reactive
antigens between different species of sand flies and decreases
from the efficacy of total saliva as reliable biomarkers of
vector exposure. For this reason, defined salivary antigens
specific to a particular vector species are being developed
as markers of exposure in humans and reservoirs (Andrade
and Teixeira, 2012; Lestinova et al., 2017). One of the most
promising markers of human exposure to vector sand flies is
PpSP32, a salivary protein from Phlebotomus papatasi. PpSP32
was identified as an immunodominant antigen in a naturally

exposed population in Tunisia and was later validated in large-
scale studies of endemic populations in Tunisia and Saudi
Arabia (Marzouki et al., 2012, 2015; Mondragon-Shem et al.,
2015).

Biomarkers of Exposure to Bites of
Lutzomyia longipalpis, the Principal Vector
of ZVL in Latin America
Lutzomyia longipalpis, the main vector of ZVL in Latin America,
has a wide distribution range extending fromMexico to Uruguay
(Lainson and Rangel, 2005; Brazil, 2013). The domestic dog
is considered a main reservoir host and is a major source of
sand fly infection and human disease (Lainson and Rangel,
2005; Roque and Jansen, 2014). As such, it is clear that
developing reliable biomarkers of exposure to L. longipalpis
for humans and dogs would provide a useful epidemiological
tool for monitoring ZVL in Latin America. Two studies
have demonstrated the immunogenicity of L. longipalpis saliva
in endemic populations, associating a positive saliva-specific
antibody response to protection against ZVL (Barral et al., 2000;
Aquino et al., 2010). The screening of recombinant proteins
representing major secreted salivary molecules in L. longipalpis
saliva revealed LJM11 and LJM17 as potential markers of
vector exposure for both humans and dogs (Teixeira et al.,
2010). Both LJM11 and LJM17 belong to the yellow family
of salivary proteins that bind biogenic amines blocking their
hemostatic-restoring activity during feeding (Abdeladhim et al.,
2014). Relevant to their function as biomarkers of exposure,
LJM11 and LJM17 are abundant in sand fly saliva and absent
from saliva of other common insects such as mosquitoes
(Abdeladhim et al., 2014). However, for use as specific markers
of exposure to L. longipalpis saliva, absence of cross-reactivity
with their homologs in saliva of other sympatric sand fly
species needs to be demonstrated. Both LJM11 and LJM17 are
not recognized by sera of humans bitten by L. intermedia, a
vector of cutaneous leishmaniasis in Brazil whose distribution
commonly overlaps with L. longipalpis (Teixeira et al., 2010).
Further, only one of two human sera that are strongly reactive
to L. longipalpis saliva weakly recognized two antigens in L.
intermedia saliva (Teixeira et al., 2010). A large-scale study
further validated the immunogenicity and specificity of LJM11
and LJM17 as markers of exposure to L. longipalpis saliva
(Souza et al., 2010). Moreover, sensitivity of the assay was
enhanced to a level comparable to that against total saliva by
using a combination of both LJM11 and LJM17 (Souza et al.,
2010).

In contrast to other zoonotic Leishmania infections, canids
are considered the only reservoir of L. infantum infection. As
such, developing a marker of vector exposure to L. longipalpis
for dogs is indicated. LJM11 and LJM17 and two other salivary
proteins from L. longipalpis saliva, LJL143 and LJL23, were
highly immunogenic in dogs (Collin et al., 2009; Teixeira et al.,
2010). LJL143, also called Lufaxin, has dual anticoagulant and
anti-complement activities (Collin et al., 2012; Mendes-Sousa
et al., 2017), while LJL23 is an Apyrase, an inhibitor of platelet
aggregation (Teixeira et al., 2010; Abdeladhim et al., 2014).
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Interestingly, SP01B and SP01, Apyrase homologs from saliva
of P. perniciosus, one of the primary vectors of L. infantum in
Europe, were also recognized as markers capable of detecting
vector exposure in dogs (Abdeladhim et al., 2014; Lestinova et al.,
2017) Moreover, SP03B, a yellow protein from P. perniciosus
saliva was also identified as a good marker of vector exposure
in dogs (Kostalova et al., 2017). However, to our knowledge, the
specificity of SP01B, SP01, and SP03B to saliva of P. perniciosus
have not been tested in areas where other dog-biting sand
fly species are prevalent. Though geographically separated, it
is interesting to note that molecules belonging to the yellow
family of proteins and Apyrases of both L. longipalpis and P.
pernicious were identified as promising candidates for vector
exposure to ZVL in both humans and dogs (Teixeira et al.,
2010; Lestinova et al., 2017). In addition to their use to assess
human and dog exposure to sand fly bites, biomarkers can also
be developed for use in sentinel animals that are common around
humans, such as chicken or domestic ungulates, as indicators
of vector prevalence (Soares et al., 2013; Rohousova et al.,
2015).

The above-mentioned defined biomarkers of L. longipalpis
bites are highly promising, however, considering the richness
of the sand fly fauna in Latin America, they require further
validation of their specificity against salivary homologs from
other dominant man- or dog-biting sand fly species. Having said
that, the level of specificity of a biomarker should be primarily
indicated by its intended use and by the nature of the endemic
area. A biomarker can target a particular vector, several vectors,
or simply sand fly bites.

Another significant utility for biomarkers of vector exposure
is biomonitoring. For this, knowledge of the kinetics of antibody
induction and decay is necessary. Previous studies in humans and
dogs have demonstrated that saliva-specific antibodies correlate
to biting intensity, fluctuate with the sand fly season and
are of relatively short duration, declining significantly after
bite cessation caused by sand fly seasonality, use of nets or
removal from endemic areas, thus demonstrating their usefulness
as tools to measure efficacy of vector control interventions
(Hostomska et al., 2008; Clements et al., 2010; Gidwani et al.,
2011; Vlkova et al., 2011; Marzouki et al., 2012; Kostalova
et al., 2015; Quinnell et al., 2018). Nevertheless, the antibody
response to saliva may be species-specific and may change in
response to a defined antigen. Therefore, kinetics and duration
of antibodies should be investigated for the sand fly vector
species/biomarker in question. For L. longipalpis, two studies
investigated the kinetics of antibody response to total saliva
in dogs experimentally (Hostomska et al., 2008) or naturally
(Quinnell et al., 2018) exposed to bites. In experimentally-
exposed dogs, the level of saliva-specific total IgG antibodies
correlated positively to the intensity of bites, increasing rapidly
with each weekly exposure and declining significantly within 2
weeks of the last exposure, despite maintaining a low titer up
to 6 months post-exposure (Hostomska et al., 2008). In dogs
naturally exposed to L. longipalpis bites, dogs developed saliva-
specific antibodies in 2 months, with antibody levels increasing
during high transmission/biting intensity and declining rapidly

during low transmission/biting intensity (Quinnell et al.,
2018).

To date, we have developed the methodologies that identified
several promising makers of exposure to L. longipalpis bites.
Further studies of the utility of these defined antigens, as
biomarkers of exposure to L. longipalpis need to be undertaken
in natural foci to thoroughly investigate their specificity.
Additionally, longitudinal studies to establish the kinetics
of antibody development and decline to promising defined
biomarkers will establish their value in biomonitoring and may
even reveal important associations with risk of, or protection
from, ZVL.

OVERALL CONCLUSION

The complexity of ZVL and CVL challenges the reliability of
a single biomarker to assess disease progression in humans
and dogs, respectively. More likely, a combination of distinct
inflammatory mediators will be needed to provide a tool that can
distinguish relevant states of disease, also defining the role played
by these different molecules in the pathogenesis of ZVL.

Despite the considerable progress made in defining important
biomarkers for both ZVL and CVL, more studies are indicated,
as well as an open dialogue by the scientific community, to
reach a consensus for a reliable signature of distinct disease
states. Another important point to consider evaluating the
different biomarkers in ZVL is the possibility to find new
targets to improve the treatment of the disease, increasing the
chances of cure and avoiding the fatal outcome of infection.
The combination of different drugs directed to several molecules
would contribute to obtain an effective treatment for patients.
In addition, in the future, such biomarkers may also be of
value in assessing the level of protection induced by prophylactic
strategies.

Together with well-defined markers of exposure to vector
sand flies, such tools could become invaluable to evaluate
response to treatment, and success of interventions among
others.
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