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Abstract. We use the Box-Jenkins approach to fit an autoregressive integrated moving average (ARIMA) model to
dengue incidence in Rio de Janeiro, Brazil, from 1997 to 2004. We find that the number of dengue cases in a month can
be estimated by the number of dengue cases occurring one, two, and twelve months prior. We use our fitted model to
predict dengue incidence for the year 2005 when two alternative approaches are used: 12-steps ahead versus 1-step
ahead. Our calculations show that the 1-step ahead approach for predicting dengue incidence provides significantly more
accurate predictions (P value � 0.002, Wilcoxon signed-ranks test) than the 12-steps ahead approach. We also explore
the predictive power of alternative ARIMA models incorporating climate variables as external regressors. Our findings
indicate that ARIMA models are useful tools for monitoring dengue incidence in Rio de Janeiro. Furthermore, these
models can be applied to surveillance data for predicting trends in dengue incidence.

INTRODUCTION

Dengue fever adversely impacts the health, social, and eco-
nomic status of many tropical countries of the world.1–3 In the
past three decades, dengue has expanded throughout the
Americas with increasing incidence.4,5 The Southeast region
of Brazil and, in particular, the city of Rio de Janeiro, have
been most affected by dengue.6,7 In Rio de Janeiro, dengue
epidemics of increasing magnitude and severity occur every
three to four years beyond the endemic levels.8,9 Although
dengue occurs throughout the year, cases peak from January
to May7,10 during the hot-wet season. Field studies of the
city’s Aedes aegypti population show that the vector peaks
concurrently.11

Public health surveillance oversees the ongoing collection,
analysis, and interpretation of disease data. The goal is to
monitor and predict trends in infectious disease incidence to
facilitate early public health responses to minimize morbidity
and mortality. Accordingly, dengue surveillance seeks to de-
tect rising trends early enough to reduce further transmission
and/or to prepare for increased hospital demand.12 Dengue
surveillance is usually based on a passive system, that is, the
reporting of dengue cases by health professionals to the
health authorities is mandatory by law. This system, however,
does not perceive changes in incidence early enough for ad-
equate response.12 Aside from monitoring trends in disease
incidence; dengue surveillance can also focus on measures of
mosquito abundance, which are based on the many life-stages
of the mosquito. However, these latter measures are labori-
ous and have not consistently been correlated with dengue
incidence.12

It has been proposed that climate variables can increase the
predictive power of dengue models.13 The relationship be-
tween climate and dengue has been assessed in multiple set-
tings using different statistical methods.14–25 Increased tem-
perature has been associated with dengue in Thailand,21,23

Indonesia,14,19,25 Singapore,16 Mexico,18 and Puerto Rico.22

Rainfall has been found to correlate with dengue in Indone-
sia,19 Trinidad,17 Venezuela,15 Barbados,20 and Thailand.23

Furthermore, mosquito population dynamics vary for differ-

ent geographic regions where dengue is transmitted sug-
gesting that the influence of climate on dengue may be site–
specific.26 Statistical tools used to measure the association
of climate and dengue in these studies have included graph-
ic assessments,19,25 correlation coefficients,14,15,17,20,21 lin-
ear univariate regression,16,20 linear multivariate regres-
sion,14,18,22,23 and time series analysis.24

Autoregressive integrated moving average (ARIMA) mod-
els, which use time series analyses, are particularly useful in
modeling the temporal dependence structure of a time series
as they explicitly assume temporal dependence between ob-
servations.27 Through the modeling of the temporal structure,
particularly for seasonal diseases, predictions made with
ARIMA models have been shown to be more accurate than
those obtained by other statistical methods.28–31 Predictions
can be made for a certain number of steps ahead, with this
number being given by the highest order of the parameters of
the model.27 The ARIMA models have been used success-
fully in epidemiology to monitor and predict infectious dis-
eases, such as malaria and hepatitis A incidence,31 influenza
and pneumonia deaths,28 as well as other infectious diseases
incidences,32–36 and the use of health facilities,37 or isolation
beds.38

In this study, we used ARIMA models to monitor and
predict dengue incidence in Rio de Janeiro. Specifically, we
used the Box-Jenkins approach39 to fit an ARIMA model to
dengue incidence from 1997 to 2004. The fitted model was
then used to predict dengue incidence for the year 2005. We
used two approaches to estimate the year 2005 predicted val-
ues: 12-steps ahead and 1-step ahead. The predictive power of
the two approaches was assessed by calculating the root mean
squared error (RMSE),13 and the statistical difference of the
errors of the two approaches was tested by Wilcoxon signed-
ranks test.40 Furthermore, we evaluated whether alternative
models incorporating climate variables as external regressors
have greater predictive power. We estimated the correlation
coefficients between dengue incidence and climate variables,
and incorporated climate variables that significantly correlate
with dengue incidence in alternative ARIMA models. Our
ARIMA model closely fits dengue incidence in Rio de Janei-
ro. The 1-step ahead approach for predicting dengue inci-
dence provides significantly more accurate predictions (P �
0.002) than the 12-steps ahead approach. In addition,
ARIMA models in which lag-0 maximum temperature and
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lag-1 number of rainy days were independently incorporated
as external regressors have improved predictive power, al-
though the improvement is not statistically significant.

MATERIALS AND METHODS

Rio de Janeiro occupies an area of 1182 km2, is located at
22°54�S and 43°14�W, and has a population of over 6 million
people. The year-round climate, which is classified as tropical
humid, can be divided into two seasons: the hot-wet season,
from approximately December to May, and the cool-dry sea-
son, from approximately June to November. In the hot-wet
season, the maximum and minimum temperatures range be-
tween 30 and 21°C, respectively, and accumulated rainfall per
month averages 145 mm (10-year averages). In the cool-dry
season, the maximum and minimum temperatures range be-
tween 26 and 17°C, respectively, and accumulated rainfall per
month averages 117 mm (10-year averages). Several meteo-
rologic stations are located within the city where temperature
and rainfall are recorded daily. For our analyses, we gathered
available monthly data on maximum and minimum tempera-
tures (in degrees Celsius), accumulated rainfall (in millime-
ters), and number of rainy days for the years 1997–2005.41 We
calculated an average time series for each climate variable to
represent the city-level climate and used this aggregate mea-
sure in our analyses. In addition to the climate data, we gath-
ered monthly dengue incidence data, that is, the number of
dengue cases reported to the Department of Health of Rio de
Janeiro per month for the period 1997–2005.42 Dengue re-
porting is compulsory in Brazil, and reported dengue cases
include those fulfilling a clinical classification or confirmed by
laboratorial tests.

Using the dengue incidence data from 1997 to 2004, we fit
an ARIMA model to dengue incidence, and then used the
fitted model to out-of-sample predict dengue incidence for
the year 2005. We used the Box-Jenkins approach to ARIMA
modeling of time series, which consists of a four-step pro-
cess.27,31,32,34,39,40,43,44 First, we evaluated the need for vari-
ance-stabilizing transformations using the mean-range plot.
Second, we determined the order of non-seasonal (p,d,q) and
seasonal (P,D,Q)12 autoregressive (AR) parameters (p and P)
and moving average (MA) parameters (q and Q), and the
need for non-seasonal and seasonal differencing (d and D),
using the following five tools: 1) The plot of dengue incidence,
which assists in the need for non-seasonal and seasonal dif-
ferencing; 2) The autocorrelation (ACF) and partial autocor-
relation (PACF) functions, which indicate the temporal de-
pendence structure in the stationary time series; 3) The
Akaike Information Criterion (AIC), which assists in the
goodness-of-fit of the model, whereas penalizing for the num-
ber of parameters; 4) The Ljung-Box test, which measures the
ACF of the residuals; and, 5) the significance of the param-
eters, which should be statistically different from zero (that is,
the t statistic should exceed 2 in absolute value). Third, we
estimated the parameters of the ARIMA model by maximum
likelihood. Finally, we graphically compared the model’s fit-
ted values with the observed data to check if it indeed models
dengue incidence.

We used the identified ARIMA model to calculate one-
year, out-of-sample predicted values and 95% prediction in-
tervals, employing two approaches to estimate the year 2005

predicted values. The first, straightforward approach uses the
fitted ARIMA model to predict the subsequent 12-steps
ahead, that is, the 12 out-of-sample observations that consti-
tute the year 2005. This approach could be adopted for den-
gue surveillance. However, to our view, this approach does
not reflect the on-going nature of surveillance. Health depart-
ments in charge of disease monitoring continuously work with
new information as it arrives. Thus, the newly collected data
could easily be incorporated possibly leading to increased
predictive power. Accordingly, our second approach was it-
erative. It entails using the ARIMA model to predict 1-step
ahead, that is, the next month predicted value, January 2005.
Then, as the observed value for January 2005 was obtained,
we updated the data to January 2005, re-estimated the pa-
rameters of the ARIMA model, and computed the next
1-step ahead predicted value, February 2005. This process was
continued until the end of the year 2005.

We assessed the out-of-sample predictive power of the two
approaches by calculating the RMSE, which measures the
amount by which the fitted values differ from the observed
values.13 A lower RMSE indicates increased predictive
power. Moreover, we also applied the Wilcoxon signed-ranks
test to statistically assess the difference in the errors between
the two approaches.31,40 This test evaluates if the median of
the distribution of the difference of the errors (that is, fitted
minus observed value) of the two approaches is statistically
different from zero at the 5% significance level.

We further evaluated whether alternative ARIMA models
incorporating climate variables as external regressors have
greater predictive power.13 To facilitate selection of climate
variables to be used as external regressors, we computed
Pearson’s correlation coefficient between dengue incidence
and climate variables after “pre-whitening” of the time se-
ries.27,33 That is, we first removed the trend and seasonal
components of the time series using ARIMA modeling, and
the iterative steps described above. After fitting the best
ARIMA model to each time series individually, we obtained
the residuals of each time series, i.e., the difference between
an observation and its fitted value according to the model. We
then computed the correlation coefficients between the re-
siduals of dengue incidence and the residuals of each climate
time series over a range of lags. The climate variables found
to correlate with dengue cases under this analysis were tested
as additional regressors in alternative ARIMA models. We fit
ARIMA models with external regressors to dengue incidence
from 1997 to 2004, and then used the fitted models to out-of-
sample predict the year 2005 using the two approaches. To
measure the predictive power of models, the RMSE was cal-
culated. To test the significance of the difference in the errors
of the predictions, the Wilcoxon signed-ranks test was used.

The statistical software R was used for all statistical analy-
ses (version 2.5.045), and graphic displays and automatic al-
gorithms were used to aid in the selection of the ARIMA
models.40,43,46,47

RESULTS

We found it necessary to stabilize the variance of dengue
incidence by computing its natural logarithm.34 The trans-
formed dengue incidence shows far less dispersion (Figure 1).
All further statistical procedures, descriptive or analytic, were
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performed on the logarithmically transformed dengue inci-
dence. The plot of dengue incidence shows no significant
trend (Figure 2). The plots of the sample ACF and PACF
describe the temporal dependence structure in dengue inci-
dence and suggest that non-seasonal and seasonal parameters
are needed in the model (Figure 2). The slow decay in the
ACF at lags 1–3, associated with a PACF cutoff at lag 2
suggests a non-seasonal AR (P � 2). Also, the slow decay in
the ACF at lags 12 and 24, associated with a PACF cutoff at
lag 12, suggests a seasonal AR (P � 1). Indeed, the best
model was the multiplicative ARIMA (2,0,0) × (1,0,0)12

(AIC � 211.97, Table 1) on the non-differenced dengue in-
cidence (or, more precisely, the multiplicative ARMA[2,0] ×
[1,0]12, because no differencing is needed). The plots of the
ACF and PACF of the residuals show no remaining temporal
correlation (Figure 3). We calculated the Ljung–Box test sta-
tistic and did not reject the null hypothesis of independence in
the residuals time series (P value � 0.373). The model’s fitted
(1997–2004) and predicted values (year 2005) follow the ob-
served dengue incidence (Figure 4). Graphically, predicted
values estimated using the 1-step ahead approach show less

dispersion from observed values (RMSE � 0.5176) when
compared with the 12-step ahead approach (RMSE �
0.6789) (Figure 4). Furthermore, predictions estimated using
the 1-step ahead approach are significantly better than those
estimated using the 12-steps ahead approach (P value �
0.002).

We subsequently assessed whether alternative ARIMA
models incorporating climate variables as external regressors
have greater predictive power. As highlighted in the Methods
section, we first removed trend and seasonal components of
each time series through ARIMA modeling. Then, on the
basis of the correlation coefficients of the residuals of the time
series over a range of lags, we identified the following as
potential external regressors: lag-0 maximum temperature
(Pearson correlation � 0.263, P value � 0.011); lag-0 mini-
mum temperature (Pearson correlation � 0.225, P value �
0.030); lag-1 accumulated rainfall (Pearson correlation �
0.313, P value � 0.002); and lag-1 number of rainy days
(Pearson correlation � 0.283, P value � 0.006) (Figure 5).
Alternative ARIMA models incorporating, independently,
lag-0 maximum temperature and lag-1 number of rainy days
are statistically supported. These models have improved pre-
dictive power as measured by the RMSE (Table 2). However,
the predictions calculated with either model were not statis-
tically better than those estimated with the ARIMA model
without external regressors (irrespective of the approach used
to generate predictions), indicating that climate variables did

FIGURE 1. Natural logarithm of dengue incidence in the city of
Rio de Janeiro, Brazil, for the period 1997–2004.

FIGURE 2. Left panel: Natural logarithm of dengue incidence in the city of Rio de Janeiro, Brazil, for the period 1997–2004. Right panels:
Sample autocorrelation (acf, top) and partial autocorrelation (pacf, bottom) functions of dengue incidence; x-axis gives the number of lags in
months. Dotted line indicates 95% confidence interval.

TABLE 1
Coefficient, standard error, and t statistic of the parameters of the

ARIMA (2,0,0) × (1,0,0)12 model*
Parameters Coefficient Standard error t statistic

Intercept 5.0132 0.6287 7.9242
Non-seasonal AR (1) 1.2956 0.0930 13.9382
Non-seasonal AR (2) −0.4592 0.0936 −4.9040
Seasonal AR (1) 0.3721 0.1010 3.6842

* Parameters estimated by maximum likelihood.
ARIMA � autoregressive integrated moving average.
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not provide any predictive information beyond that already
given by dengue incidence.

DISCUSSION

We have reached an ARIMA model that closely fits den-
gue incidence in Rio de Janeiro. The autoregressor and mov-
ing average parameters of our model imply the number of
dengue cases in a month can be estimated by the number of
dengue cases occurring one, two, and twelve months prior.
Furthermore, our model predicts dengue incidence for a sub-
sequent year. We found that the ARIMA model’s 12-steps
ahead predictions agree with the observed dengue incidence.
Moreover, we have explored the improvement in predictive
power when applying a more realistic use of the data. Disease
monitoring by public health departments entails ongoing data
handling, processing, and updating. The Health Department
of Rio de Janeiro is the authority to which reporting first
occurs, and thus it is an appropriate level of organization for
the implementation of an ARIMA predictive model, where
data updating is possible. We found that model predictions

are further improved in the context of the likely data avail-
ability of the Health Department. The ARIMA model’s
1-step ahead predictions were significantly closer to the ob-
served dengue incidence than the 12-steps ahead predictions.

Temperature and rainfall affect the dengue transmission
cycle in multiple ways. Temperature indirectly influences the
biting frequency of A. aegypti both by increasing the rates of
development and digestion and by decreasing the duration of
the gonotrophic cycle and female size.48,49 Increased tem-
perature accelerates viral dissemination within the mosquito,
reducing the extrinsic incubation period in the vector.50

Higher temperatures increase the ratio of the standing crop of
pupae to the number of adult females.51 Eggs need water to
hatch, and larvae and pupae are aquatic.

Several studies have assessed the correlation between den-
gue and climate variables.18,21,24 In Thailand, dengue was
found to correlate with lags 3–4 average temperature.21 In
Taiwan, dengue was found to significantly correlate with lags
1–4 maximum temperature, lags 1–3 minimum temperature,
lags 1– relative humidity, and lag-2 rainfall.24 For Mexico and
Barbados, high correlations between dengue and climate are
smeared over a range of lags.18,20

Pre-whitening facilitates the evaluation of correlation be-
tween time series.27,33 When pre-whitening is not performed,
significant correlation coefficients are smeared over a range
of lags because of the autocorrelation present in seasonal time
series.27 Furthermore, statistics used to compute correlation
coefficients, such as Pearson or Spearman correlation coeffi-
cients, assume that observations are independent and identi-
cally distributed. Thus, the use of such statistics to measure
correlation between temporally dependent data will produce
false results.

We computed correlation coefficients between dengue in-
cidence and climate variables over a range of lags after pre-
whitening. Pre-whitening was performed by modeling each
time series individually using the ARIMA model. We found
that dengue incidence significantly correlated with lag-0 maxi-
mum and minimum temperatures, lag-1 accumulated rainfall,
and lag-1 number of rainy days. Conversely, if pre-whitening
was not performed, dengue incidence was found to correlate
with lags 0–2 maximum and minimum temperatures, although

FIGURE 3. Autocorrelation (acf, top) and partial autocorrelation
(pacf, bottom) of the residuals of the autoregressive integrated mov-
ing average (ARIMA) (2,0,0) × (1,0,0)12 model fitted to the natural
logarithm of dengue incidence. The x-axis gives the number of lags in
months. Dotted line indicates 95% confidence interval.

FIGURE 4. Columns: natural logarithm of dengue incidence in the city of Rio de Janeiro, Brazil, for the period 1997–2005. Solid lines:
autoregressive integrated moving average (ARIMA) (2,0,0) × (1,0,0)12 model’s fitted values (1997–2004) and 1-step ahead predicted values (year
2005) with their 95% prediction intervals. Dashed line: ARIMA (2,0,0) × (1,0,0)12 model’s 12-steps ahead predicted values. Vertical line separates
model’s fitted from predicted values.
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no significant correlation was detected for accumulated rain-
fall or number of rainy days at any lag.

The identification of climate variables that significantly cor-
related with dengue incidence allowed us to test alternative
ARIMA models incorporating these variables as external re-
gressors. We found that ARIMA models incorporating, inde-
pendently, lag-0 maximum temperature and lag-1 accumu-
lated rainfall were statistically supported. Although these
models have improved predictive power, the difference was

FIGURE 5. Left column: Seasonal pattern of maximum and minimum temperatures, accumulated rainfall, and number of rainy days in the city
of Rio de Janeiro, Brazil, for the period of 1997–2004. Right column: Scatter plot of the residuals of dengue incidence against the residuals of lag-0
maximum temperature (1st), lag-0 minimum temperature (2nd), lag-1 accumulated rainfall (3rd), and lag-1 number of rainy days (4th).

TABLE 2
External regressors’ coefficient, standard error, and t statistic of three

ARIMA (2,0,0) × (1,0,0)12 models*
ARIMA models Coefficient Standard error t statistic RMSE

None 0.5176
Lag-0 max. temperature 0.0867 0.0344 2.5190 0.5107
Lag-1 rainy days 0.0242 0.0110 2.2030 0.4253

* Last column gives the predictive power as measured by the root mean squared error
(RMSE) of the three autoregressive integrated moving average (ARIMA) models using the
1-step ahead approach. Parameters estimated by maximum likelihood.

TIME SERIES ANALYSIS OF DENGUE 937



not significant when compared with the ARIMA model with
no external regressors. It is arguable that because these vari-
ables are readily available, the slight increased predictive
power might justify their inclusion in predictive models. In
Taiwan, for example, time series models incorporating cli-
mate variables as external regressors showed improved fit to
data.24

Our study is the first to assess the temporal dependence
structure of dengue incidence for Rio de Janeiro. Previous
studies have followed the subsequent viral introductions,6 as-
sessed the sero-epidemiologic profile of the population,52,53

and examined the ecology of A. aegypti population.54–57 Fur-
thermore, descriptive analyses of the temporal characteristics
of dengue occurrence have shown both that dengue is en-
demic with epidemics of increasing magnitude occurring ev-
ery three-to-four years, and that epidemics occur during the
hot-wet season, from January to May.7,10 Thus, our study
complements the understanding of dengue incidence in this
setting through a characterization of the temporal depen-
dence structure of the disease.

There is an urgent need for improved approaches for moni-
toring and predicting dengue incidence to reduce the substan-
tial morbidity and mortality caused by this disease.58 Addi-
tionally, dengue incidence is increasing and spreading geo-
graphically,6,59 such as in Brazil. Nonetheless, adequate
dengue surveillance methods are still lacking. Dengue surveil-
lance through the monitoring of the vector has been shown to
correlate poorly with dengue incidence.7,60 Our modeling ap-
proach can be used to monitor and predict dengue incidence
in Rio de Janeiro. The ARIMA model could be used to op-
timize dengue prevention by providing estimates on dengue
incidence trends. Accurate predictions for even a few months
ahead provide an invaluable opportunity to mount a vector
control intervention or to prepare for hospital demand. Ex-
tensions of this model can also be envisioned for monitoring
and predicting other infectious diseases in other geographic
areas.
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