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Abstract

Objective
To study the effect of prenatal Zika virus (ZV) infection on brainstem function reflected in
brainstem auditory evoked potentials (BAEPs).

Methods

In a cross-sectional study in 19 children (12 girls) with microcephaly related to ZV infection,
aged between 12 and 62 weeks, the brainstem function was examined through BAEPs. The
latencies of wave peaks I, III, and V of the left and right ears (n = 37) were standardized
according to normative data, and compared between them by 2-tailed ¢ test. The confounding
variables (cephalic perimeter at the born and chronological age) were correlated with the
normalized latencies using Pearson test.

Results

All patients showed, in general, clear waveforms, with latencies within 3 SDs of the normative
values. However, statistically increased latencies of waves I and III (I > III, p = 0.031) were
observed, relative to wave V (p < 0.001), the latter being closer to respective normative value.
The latency of wave I was observed to increase with age (r = 0.45, p = 0.005). The waves, in turn,
did not depend on cephalic perimeter.

Conclusions

These results are consistent with the functional normality of the brainstem structure and its lack
of correlation with microcephaly, suggesting that the disruption produced by the ZV infection
does not act in the cell proliferation phase, but mostly in the processes of neuronal migration
and differentiation in the telencephalon.
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Glossary

ANOVA = analysis of variance; BAEP = brainstem auditory evoked potential; CMV = cytomegalovirus; TORCH-S =
toxoplasmosis, other agents, rubella, cytomegalovirus, herpes simplex; ZV = Zika virus.

The most devastating consequence of vertical infection by
Zika virus (ZV) is microcephaly, with cephalic perimeter
lower than 3 SDs from the normative mean,"” resembling

other types of microcephaly.”™

Prenatal microcephaly is likely to be caused by primary reduction
of neuronal populations®” or dendritic atrophy, when the brain
does not develop in the postnatal period.5 Various forms of
microcephaly are associated with brainstem hypoplasiaf*’sflo

Pathophysiology of microcephaly associated with ZV and other
related viruses is not yet fully understood. The cytomegalovirus
(CMV) may have high tropism for progenitor and radial glia
cells,'" with inflammation in the inner ear affecting hearing."
Similar to CMV, ZV has shown high tropism for neuronal pro-
genitor cells in vitro'*'* and in in vivo,"* "’ producing changes in
the mitotic cycle, cell death, and defects in neuronal migration,
probably causing interruption of brain development.'*"

In spite of the numerous reports on brainstem hypoplasia in

children with ZV-associated>** >
1

and other cases of
microcephaly,**'* information on brainstem neurophysiology
is lacking. Short-latency brainstem auditory evoked potentials
(BAEPs) allow an assessment of brainstem changes by conti-
guity, extrapolating to the auditory systern.23 Brainstem evoked
response audiometry has allowed observing alterations com-
patible with brainstem dysfunction in children with micro-
cephaly.”* Another study assessed auditory function in
microcephaly with high risk for sensorineural hearing loss.>’
Data reported in the literature regarding ZV-associated mi-
crocephaly in children are restricted to postnatal hearing loss.*®

The objective of this research was to analyze the BAEPs in
children with ZV-associated microcephaly, thus studying the
brainstem function and its dependence on chronological age
and cephalic perimeter.

Methods
Study design

A cross-sectional study from the Vertical Exposure to Zika
Virus and Its Consequences for Child Neurodevelopment
cohort was performed to evaluate the brainstem function of
microcephalic children with gestational ZV infection through
BAEPs.

Standard protocol approvals, registrations,
and patient consents

The study was carried out in the cohort of children followed
by the multidisciplinary study of the National Institute of
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Women, Children and Adolescents Health Fernandes Fig-
ueira, called Vertical Exposure to Zika Virus and Its Con-
sequences for Child Neurodevelopment (NCT 03255369).
These children underwent BAEP examination as part of their
assessment. The project was duly approved by the research
ethics committee of this institution under number CAAE
52675616.0.0000.5269 and the children’s guardians gave
written informed consent for participation in the study,
according to the local and international standards.

Setting

All participants were recruited from Ambulatory Child Neu-
rology of the National Institute of Women, Children and
Adolescents Health Fernandes Figueira from August 2016 to
February 2017 among those referred to the Laboratory of
Neurobiology and Clinical Neurophysiology of the same in-
stitute for examination of auditory function.

Participants
Twenty-three children with microcephaly related to ZV in-
fection were included in the study. Microcephaly was classi-

fied according to cephalic perimeter values as established by
the Child Growth Standards.””

Children with hydrocephalus or associated hydranencephaly and
children with clinical diagnosis for other toxoplasmosis, other
agents, rubella, cytomegalovirus, herpes simplex (TORCH-S)
infections were excluded from the study. The children’s ears that
presented signals of conductive deficit or absence of recognizable
evoked waves were also excluded from the data analysis.

Variables

We observed as principal outcome the latencies of the wave
peaks I, III, and V, interpeak latency I-V of the ears of the
microcephalic children, and their dependence on the con-
founder variables (chronological age at the examination and
cephalic perimeter at birth, obtained from medical records).

Evoked potential examination procedures
Children were examined during spontaneous sleep or wake-
fulness, comfortably stabilized in the caregiver’s lap and under

low light.

A Viking Quest Nicolet and Audiometric Headphones TDH-
39P 296D000-4 (Telephonics, Farmingdale, NY), with 2
channels for capture, were used. The electrodes were posi-
tioned on the right and left mastoid (channels Al and A2,
respectively), the reference electrode at the vertex (Cz), and
the circuit was grounded at frontopolar midline position Fpz.
The impedance values were below 10.0 kQ and the low-pass
(3 kHz), high pass (30 Hz), and notch (60 Hz) online filters

were employed, with a rejection interval of £10 V.
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The brainstem evoked potentials were obtained under click
stimuli (nominal square waves with 100 ps period generating
biphasic electromagnetic pulse for headphones membranes)
in the rarefaction and condensation polarities, under a stimu-
lation rate of 11.1 Hz and intensity of 70 dB nHL, with
contralateral mask (at 30 dB nHL), according to the meth-
odology to obtain the normative values adopted in this study
for the analysis of latencies.”® Up to 4,000 sweeps were
obtained for each polarity according to the cooperation of the
patient, wave acquisition signal quality, and amplitude.

Bias control

Peaks I, III, and V were manually detected by 2 experienced
professional examiners independently of each other in order
to reduce the bias associated with interpretation subjectivity.
When detection was not coincident, we considered the
arithmetic average of the 2 estimated latencies. Further, when
any of the examiners declared a latency to be undetectable,
that found by the other examiner was used (table 1).

Study sample
The patients included in the study came from the main co-
hort, which currently has 291 children, of whom 83 were

diagnosed with microcephaly (38 with a diagnosis confirmed
by PCR and 44 with a clinical diagnostic). Of the 23 patients
with microcephaly referred for BAEP examination, 19 were
included in the study (see Results).

Data analysis

The clinical normality assessment for each component and for
the latency difference (time interval) between waves I and V
was evaluated within the range delimited by the mean (3 SDs)
of the normative data obtained by Picton et al**® corre-
sponding to the ages of 6, 12, 26, 52, and 108 weeks. These
normative values, linearly interpolated for 1-week intervals
(table e-1, http:// links.lww.com/WNL/A149), were used in
the normality evaluation as well as in the statistical analysis,
resulting in 103 different values for the mean (SD). Table 1
lists the latency and age data for all 19 children, with the
altered latencies highlighted according to the adopted evalu-

ation criterion.

Since the sample was heterogeneous with respect to age and,
therefore, the mean (SD) normative values varied, the num-
ber of SDs relative to the mean (D) exhibited by each in-
dividual for each latency value were used. D was calculated as

Table 1 Descriptive data of patients and latencies of waves |, lll, and V, and difference between waves | and V (ms)
Trimester of Cephalic Left ear Right ear
Age, maternal Form of perimeter

Code wk Sex infection diagnosis at birth, cm 1 1 Vv I-v 1 1 Vv -V
1 62 F 1 Clinical 26.00 205 409 575 370 225 410 585 361
2 13 M 1 PCR 29.00 199 445 660 436 196 450 6.20 424
3 28 F 1 PCR 25.00 1.80 489 670 490 180 498 705 525
4 18 M — Serology (IgG+) 29.00 190 415 6.50 4.60 194 450 6.60 4.67
5 19 F 1 PCR 31.50 195 450 6.10 4.15 1.80 440 590 4.10
6 59 M 1 Clinical 30.00 2.01 430 6.05 4.04 200 420 580 3.80
7 12 F 1 Serology (IgG+) 28.00 195 468 6.65 470 190 455 6.70 4.80
8 61 M — PCR 26.00 205 423 578 373 213 440 580 3.67
9 14 M — Inconclusive 25.00 190 450 6.15 4.25 1.79 434 630 452
10 34 F 3 PCR 27.00 1.80 420 585 4.05 1.77 402 590 4.13
1 27 F — Inconclusive — 1.74 477 683 513 1.80 450 6.20 440
12 59 M 1 Clinical 28.00 225 430 625 400 222 430 642 420
13 13 F 1 PCR 30.50 — — — — 1.85 444 623 438
14 36 F 1 Clinical 30.00 200 440 6.25 425 175 420 580 4.15
15 24 M 1 Clinical 27.00 1.85 453 6.20 435 190 440 6.05 4.15
16 16 F 1 Clinical — 195 384 6.00 420 195 420 630 435
17 17 F 2 Clinical 27.00 225 438 610 385 219 435 6.10 391
18 17 F 1 PCR — 270 555 743 473 1.60 453 6.67 5.05
19 33 F 1 PCR 30.00 230 414 630 4.01 200 410 630 430

Abbreviation: IgG = immunoglobulin G.
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D; = (Li —Xi)/Su

where L is the latency of a given peak or time interval between
peaks of patient i, and x and s are the normative mean and SD,
respectively, for the age of individual i in weeks.

Statistical methods

We performed preliminary analysis with the nonparametric
Mann-Whitney U test (due to small sample size of 19, and
the presence of missing values) to infer on a possible sig-
nificant binaural difference. In case a statistically significant
difference between ears was not observed (see Results),
these could be analyzed together by comparing the in-
dividual deviations, D, of waves I, III, and V, through
parametric analysis of variance (ANOVA) tests, for re-
peated measurements with post hoc analysis with the
2-tailed t test, provided homogeneity of the variances was
not rejected (Levene test) and assuming the normality of
the distributions (36 ears). In this case, we performed the
Pearson correlation of the wave latencies of ears with age at
the time of examination. It is noted that in the case of
nonhomogeneous variances or rejection of normality,
nonparametric tests (Friedman, Wilcoxon for repeated
measurements, and Spearman test) would have to be used.

Results

Descriptive data

Of the 23 patients recruited, 19 were included in the study and
4 were excluded according to the exclusion criteria (2 pre-
sented hydranencephaly and 2 evidenced TORCH-S syn-
drome). In 2 children, the diagnosis of ZV infection was not
conclusive, but they were included in the sample, since any
other cause of microcephaly was excluded (TORCH-S
inclusive).

There were 7 boys and 12 girls, aged 29.57 (17.84) weeks
(mean [SD], between 12 and 62 weeks), 28.06 (2.02) cm
cephalic perimeter at birth (3 missing values). With regard to
gestational period at infection, 13 children were infected in
the first trimester, 1 in the second trimester, 1 in the third
trimester, and 4 mothers were unaware of the probable date of
infection, as they were asymptomatic. Among the children
included in this study, the PCR results of 11 were positive, the
serology (immunoglobulin G+) results of 2 were positive, and
the clinical status of S were compatible with Zika syndrome
during gestation, according to PAHO/WHO guidelines.29 All
children were from the metropolitan region of Rio de Janeiro,
of different socioeconomic status.

The waves in the BAEPs exhibited clear definition and ampli-
tude, from a qualitative perspective (figure 1, examples of waves
obtained). In general, only 1 girl (patient 13, examined at age
13 weeks) among the patients in the group showed substantial
abnormality in the left ear, with isoelectric tracings up to the
intensity of 90 dB nHL stimulation, consistent with complete
deafness (figure 1 and table 1). Measurements of this ear were
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excluded from the analysis. Patient 18 (a girl, examined at 17
weeks of age, table 1) showed conductive alteration in the left
ear (increase of the latency of peak I relative to the normalized
data, followed by increase of latencies of peaks III and V
without change of the time interval between peaks I and V,
which matched that of the contralateral ear, whose measure-
ments were within the normative standards). Measurements of
this ear were also excluded from the analysis.

Main results

Based on the criterion of the 3 SDs of the normative values,*®
the only observed abnormality was that between peaks Iand V
of the right ear of patient 1 (girl, examined at age 62 weeks) at
the expense of peak I and V latencies being higher and lower,
respectively, than the corresponding normative values, al-
though both within the range of 3 SDs.

Comparison of the latencies of the right and left ears of the
sample showed no significant differences (p > 0.21 for all
comparisons between right and left ears). Therefore, meas-
urements of the remaining ears were taken together in the

analysis (figure 2).

Results showed that almost all latencies were higher than the
normative value for wave I, in both ears (1.27 [0.84] of the
normative data), and nearly all latencies for wave III followed
the behavior of wave I (0.80 [0.79]). Latencies of wave V, in
turn, were around the normative value (0.09 [1.00]). Thus,
nearly all latencies between peaks I and V were lower than the
normative value (—1.05 [1.30]). The values of D (in latency
SDs) were statistically different (ANOVA-R F value = 18.90, p
> 0.0001); namely, all waves I and 111, I and V, and III and V
were significantly different (respectively, p = 0.031, p < 0.001,
and p < 0.001, 2-tailed ¢ test).

The correlation analysis between the deviations of waves I, II,
and V showed that the latencies of wave I do not correlate
with latencies IIl and V (r = —0.18, p = 0.289, and r = —0.09,
p =0.595, respectively). However, latencies of waves IIl and V
exhibited a significant correlation (r = 0.64, p < 0.0001). The
greater distance between peaks I and V was accompanied by
the greater absolute latencies of wave III and especially wave V
(r=0.53,p=0.001, and r = 0.82, p < 0.0001, respectively) and
smaller wave I (r = —0.59, p > 0.001).

In contrast to the other absolute latencies and distances be-
tween peaks I and V, the latencies of wave peak I increased
with age at the time of examination (r = 045, p = 0.005,
figure 3).

The latencies did not depend on cephalic perimeter (n = 32
ears, due to 3 missing measures).

Discussion

In this research, the neurophysiologic study of the brainstem
in children with microcephaly, through BAEPs, showed

Neurology.org/N
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Figure 1 Averaged brainstem auditory evoked potential waveforms in 4 patients

A. Patient 4

B. patient 6

C. patient 13

| 0.2mcv
1.5ms .

(A) Patient 4: male, 18 weeks, at left 1,326 epochs (rarefaction [Rf]), at right 7,798 epochs (Rf, condensation [Cn]); (B) patient 6: male, 59 weeks, at left 2,215
epochs (Rf, Cn), atright 2,114 epochs (Rf, Cn); (C) patient 13: female, 13 weeks, at left 5,042 epochs (Rf, Cn), at right 4,618 epochs (Rf, Cn); (D) patient 16: male, 24
weeks, at left 2,128 epochs (Rf, Cn); at right 2,067 epochs (Rf, Cn). I-V = wave numbers; L = left auricular channel; R = right auricular channel.

evidence of normality, with no dependence between micro-
cephaly and brainstem function related to the auditory sys-
tem, reinforced by the lack of significance in the correlation
coeflicients between cephalic perimeter and the latency of the
waves.

A limitation of this study was the unviability of the amplitude
analysis, both absolute and relative. Large amplitude vari-
ability was observed, even when the latencies were stable.
Opposite to latencies, various authors have argued that ab-
solute amplitudes have an interindividual variation too large
to be clinically useful”** Nevertheless, the ratio of ampli-
tudes is commonly used, although large interindividual vari-
ability is still present.”® Furthermore, the amplitudes’ ratio is
sensitive to the electrodes’ position.”’ The overall structure of
the brain and the morphology of the head in these children are
profoundly altered in a heterogeneous way between patients,
which can easily distort the wave amplitudes in unpredictable
ways, through both source displacement and reference elec-
trode. Thus, in light of the aforementioned observations, we
chose to focus exclusively on the latencies, which are in-
sensitive to changes in the vector axis of the recording
derivations.

The sample size was considered another restriction of the
study. However, the study was conducted in a reference

Neurology.org/N

center for children born with microcephaly related to ZV.
Thus, as the sample size continues to increase, it allows for the
continuity of the study and the comparison with the results
already obtained. Many recruited children showed comor-
bidities that could interfere with the outcome of the study,
compatible with other infections of the TORCH-S group (1
case of congenital toxoplasmosis and 2 cases of congenital
syphilis were excluded), while others showed an inconclusive
clinical or laboratory diagnosis for ZV infection, preventing
their inclusion. Four children whose mothers were not aware
of any infection were included in the sample, as the laboratory
and clinical evaluation was conclusive in establishing a re-
lationship with ZV. Nevertheless, significant information was
already obtained through this sample, especially regarding the
increase of the latency of wave I with age, which deserves
further investigation.

Our results about brainstem functional normality are chal-
lenging, considering the substantial disruption of brain de-
velopment as well as evidence suggesting the action of ZV on
progenitor cells, from the cell proliferation phase."*™"” Al-
though the brainstem develops in parallel with the telen-
cephalon in the early stages of embryogenesis, the
development of the brainstem does not exhibit the same
neuronal migration processes observed in the telencephalon,
suggesting that the ZV primarily acts on specific mechanisms
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Figure 2 Individual deviations from the respective normative values (SD) for 19 patients

Left

Wave |
SDs from normative mean

Right

Wave Il
SDs from normative mean

Wave V
SDs from normative mean

Interval I-V
SDs from normative mean

Patients

Patients

Asterisk points to the only abnormal latency exceeding normative criterion of 3 SDs. Interval |-V = latency difference between waves | and V.

of cerebral cortex formation extending from the first to the

third trimester.>>**

The development of the neural centers of the sensory systems
(including the auditory system), from the brainstem to the

Neurology | Volume 90, Number 7 | February 13,2018

neocortex, depends on the stimulation of the afferents, trig-
gering complex biomolecular plasticity processes.” > The
functional organization of the brainstem, as observed in this
study, indicates an adequate centripetal development process
in children with microcephaly, with a neuronal and synaptic

Neurology.org/N


http://neurology.org/n

Figure 3 Scatterplots and linear regression models for correlation between age and latencies of waves |, lll, and V
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organization comparable to typical development, restricting
the disorder produced by the ZV to more specific processes of
CNS development, probably limited to the telencephalon.
Perhaps more subtle changes in subcortical auditory pathway
development may be assessed using specific frequency stimuli
that could detect likely disorders in the formation of the
tonotopic maps in the brainstem.*

The brainstem function evidenced by the BAEPs in this
study can be explained by the normality in the neuronal
populations of the pons and midbrain. Thus, the brainstem
hypoplasia reported in the literature on microcephaly™®'°
should be associated with the reduction of fibers in the

: . 37
corticospinal tracts.

The abnormality found in the left ear of patient 13
exhibited a pattern suggestive of peripheral alteration, since

Neurology.org/N

wave I was absent and in the contralateral side, any brain-
stem response was normal, which is an unusual picture for
encephalic pathologies.””*"** Similarly, the change ob-
served in the left ear of patient 18 showed a pattern of
conductive alteration.”

The magnitude of the latency variations of waves I, III, and
V were dissimilar, suggesting the existence of a functional
variation in the auditory circuit of these children, relative
to the normative values. The systematic increase of the
latency of wave I, coupled with the dissociation of its be-
havior with the latencies of waves III and V, which showed
a direct correlation with each other, support the idea of
a peripheral subnormality. This increase of latency seems
to be compensated by the neural nuclei of the brainstem,
which produce wave III (although latencies are also in-
creased) and wave V. The increase of the latency of wave 1,
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without major repercussions in the latency of wave V,
suggests sensorineural peripheral alteration,”® which
manifests in other syndromes acquired through prenatal
infections.>*’

The increase of the deviation of the normality of latencies of
wave I with the age at the time of examination suggests that
the ZV infection leads to a progressive process in peripheral
auditory nerve or sensorineural structures. However, this
hypothesis could not be confirmed in this study. Larger
samples, and the inclusion of children without microcephaly,
are currently being investigated to improve the evaluation of
this preliminary observation and to confirm the possible
subnormality of the latency of wave L

Thus, this study showed evidence that brainstem physiology is
not affected by this congenital infection, even when occurring
in the first trimester of pregnancy. This information may
contribute to a better understanding of the pathophysiologic
mechanism of neuropathies related to ZV.
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