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Abstract
The taeniasis/cysticercosis complex is a zoonosis caused by the presence of the parasite Taenia solium in humans. It is
considered a neglected disease that causes serious public health and economic problems in developing countries. In
humans, the most common locations for the larval form are the skeletal muscles, ocular system, and the central nervous
system, which is the most clinically important. Several glycoproteins of T. solium and Taenia crassiceps cysticerci have
been characterized and studied for their use in the immunodiagnosis of neurocysticercosis and/or the development of
synthetic or recombinant vaccines against cysticercosis. The aim of this study was to perform a gel-free shotgun proteomic
analysis to identify saline vesicular extract (SVE) proteins of T. solium and T. crassiceps cysticerci. After solubilization of
the SVE with and without surfactant reagent and in-solution digestion, the proteins were analyzed by LC–MS/MS. Use of
a surfactant resulted in a significantly higher number of proteins that were able to be identified by LC–MS/MS. Novel
proteins were identified in T. solium and T. crassiceps SVE. The qualitative analysis revealed a total of 79 proteins in the
Taenia species: 29 in T. solium alone, 11 in T. crassiceps alone, and 39 in both. These results are an important contribution
to support future investigations and for establishing a Taenia proteomic profile to study candidate biomarkers involved in
the diagnosis or pathogenesis of neurocysticercosis.
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Introduction

The taeniasis/cysticercosis complex is a zoonosis caused by
the presence of the parasite Taenia solium in humans and is
considered to be a neglected disease that results in a serious
public health and economic burden to developing countries in
Africa, Asia, and Latin America (Flisser and Correa 2010;
Esquivel-Velazquez et al. 2011b; Del Brutto and García
2015). The adult stage of T. solium develops in the small
intestine of humans (taeniasis), producing eggs that are re-
leased in the feces. Human cysticercosis is caused by the pres-
ence of the larvae of T. solium, which can be acquired by
Taenia egg-contaminated water, food, and surfaces (including
soil and hands). The most common locations for the larval
form are the skeletal muscles, ocular system, and central ner-
vous system (CNS). Neurocysticercosis (NCC) is a public
health problem in Brazil, with a total of 1829 NCC deaths in
12,491,280 reported deaths between 2000 and 2011 (Martins-
Melo et al. 2016). It is very important that the disease is diag-
nosed before the stage of evolution to calcification. Computed
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tomography and magnetic resonance imaging are currently
the techniques that assist in the diagnosis of this disease (Del
Del Brutto et al. 2017). Antibody detection in serum by im-
munological methods and its correlation with cerebrospinal
fluid (CSF) are key factors in tracking the progression of the
disease. Some glycoproteins of the larval form of T. solium
and Taenia crassiceps have been characterized and studied for
their use in the immunodiagnosis of NCC and/or the develop-
ment of synthetic or recombinant vaccines (Tsang et al. 1989;
Vaz et al. 1997; Peralta et al. 2002; Peralta et al. 2010; Lee
et al. 2011; Ferrer et al. 2012; Salazar-Anton and Lindh 2011;
Salazar-Anton et al. 2012). The VF of cysticerci is mainly
composed of water but also contains calcium, glycoproteins,
cholinesterase, and coproporphyrin. This composition confers
antigenicity, among other properties, to this fluid (Martinez-
Zedillo and Rebolledo-Camacho 1987; Sciutto et al. 2007).
Consequently, VF antigens of T. crassiceps are used with high
sensitivity for immunodiagnosis in both active and inactive
forms of NCC (Bueno et al. 2000; Pardini et al. 2002;
Peralta et al. 2002; Espindola et al. 2005). In addition, the
cysticerci molecules have been used in vaccines and in immu-
nological studies of the host–parasite interaction (Almeida
et al. 2009; Manhani et al. 2011; Parra-Unda et al. 2012;
Marzano et al. 2017).

In recent years, proteomic tools have shown great impor-
tance and applicability in different biological areas, including
parasitology (Verissimo da Costa et al. 2013; Ray et al. 2014).
Although a transcriptomic study was performed comparing
T. solium and T. crassiceps (García-Montoya et al. 2016), an
extensive shotgun proteomics study with comparative analy-
sis has not yet been performed, except for some preliminary
work using two-dimensional gel electrophoresis analyses of
different stages of the parasite, such as the oncosphere, excre-
tion–secretion proteins, and VF of the cysticerci (Santivanez
et al. 2010; Esquivel-Velazquez et al. 2011a; Victor et al.
2012; Navarrete-Perea et al. 2014; Nativel et al. 2016).

The aim of this study was to develop a gel-free strategy to
establish a comparative protein and peptide profile of SVE
from both T. solium and T. crassiceps by liquid chromatogra-
phy coupled to mass spectrometry. We also performed a
BLAST search and an antigenic prediction analysis of the
peptides identified by mass spectrometry that could be candi-
dates for further use as a target in laboratory diagnosis assays
and vaccine development.

Materials and methods

T. solium and T. crassiceps saline vesicular protein
extraction

SVE was obtained from the larval form of T. crassiceps
ORF strain (Freeman 1962) (SVE-Tcra) and of T. solium

(SVE-Tso), as described previously by Vaz et al. (1997)
and Peralta et al. (2002). Briefly, intact parasites were rup-
tured (PYREX® Ten Broeck Homogenizer, Thomas
Scientific) in five volumes of phosphate buffered saline
(PBS, 0.075-M Na2HPO4, 0.0025-M NaH2PO4, 0.14-M
NaCl, pH 7.2) and centrifuged at 15,000×g for 60 min at
4 °C. The supernatant was sonicated at 20 kHz, 1 mA for
four periods of 60 s each in an ice bath. After an additional
centrifugation step, a pool of protease inhibitors
(phenylmethylsulfonylfluoride and iodoacetamide; Sigma
Chemical Company, St. Louis, MO, USA) was added to
the supernatant to reach a final concentration of 0.25 mM.
The protein concentration of the extracts was determined
using a commercial BCA protein assay reagent (Pierce,
Rockford, Illinois, USA), according to the manufacturer’s
instructions.

Saline vesicular extract: protein solubilization
and digestion protocols

Initially, 200 μg of each crude SVE protein was precipitat-
ed with trichloroacetic acid (TCA), as described by Elliott
et al. (1993). To evaluate the best solubilization conditions
for gel-free proteomic analysis, 100 μg of precipitated pro-
tein was resuspended in 50 μL of 50-mM ammonium bi-
carbonate buffer pH 8.0. One vial with 25 μL of protein
solution was supplemented with 25 μL of surfactant
RapiGest™ reagent 0.2% (w/v) (Waters Co., Williford,
USA), and the mixture was heated at 80 °C for 15 min.
The other 25 μL of protein solution was mixed with only
25 μL of ammonium bicarbonate buffer. The protein was
reduced by the addition of dithiothreitol solution (Sigma–
Aldrich, USA) to a final concentration of 5 mM and was
incubated for 30 min at 60 °C. The alkylation was carried
out with the addition of iodoacetamide solution (Sigma–
Aldrich, USA) to a final concentration of 14 mM and in-
cubated at room temperature for 30 min in the dark.
Proteins were digested with the addition of 10 μL of tryp-
sin solution (Promega, Wisconsin, USA) at a ratio of 1:50
(enzyme: substrate) and incubated for 14 h at 37 °C. To
remove the surfactant, the RapiGest™ was cleaved by the
addition of 20 μL of 5% (v/v) trifluoroacetic acid and in-
cubating for 90 min at 37 °C. The sample was then centri-
fuged at 16,873×g for 30 min at 6 °C. The supernatant was
removed and dried in a speed vac (Savant SPD111V,
Thermo Scientific, USA) and purified by an OASYS sys-
tem (Waters Corporation, UK) using methanol as the or-
ganic solvent, following the manufacturer’s instructions.
The peptides were resuspended with formic acid to a final
concentration of 0.1% in 3% acetonitrile for mass spec-
trometry analysis or were stored at − 70 °C. This same
procedure was performed on the sample without surfactant.
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LC–MS/MS analysis

Preliminary evaluation of solubilization and digestion
protocols

Two microliters of peptide solutions (500 ng of digested pro-
tein with and without the surfactant) was used for the nano-
LC-based separation combined with mass spectrometry anal-
ysis on an LC-ESI-Q-TOFmicromass instrument (Waters Co.,
Williford, USA) with data-dependent acquisition (DDA). The
peptide separation was performed in a nano-ACQUITY sys-
tem equipped with a Symmetry C18 5-μm diameter, 5 × 300
precolumn and an Atlantis 100 × 100, 1.7-μm diameter ana-
lytical reversed-phase C18 column with a solution gradient of
5–50% mobile phase (acetonitrile) over 50 min at flow rate of
350 nL/min. The column temperature was maintained at
35 °C. The lock mass used was phosphoric acid, delivered
by an auxiliary pump at a flow rate of 600 nL/min. The
conditions for peptide ionization included a source temper-
ature of 80 °C, capillary voltage of 3500 V, positive polar-
ity, and a sample cone voltage of 35 V. Mass spectra were
acquired with the TOF mass analyzer operating in the V-
mode, and spectra were integrated over 1 s of scanning and
with 0.1-s interscan intervals. The MS/MS mass spectra
were acquired at a m/z range of 50 to 1700 using the ref-
erence mass acquired and the continuous fragmentation
mode at a 10-eV collision energy.

The DDA raw data were processed and searched by the
Peaks 7.5 software server search engine (Bioinformatics
Solutions, Inc., Waterloo Canada), Mascot Distiller (http://
www.matrixscience.com/) and ProteinLynx Global Server
(PLGS) 2.5.1 (Waters, Inc., Williford, USA) using a tolerance
up to ± 0.1 Da for both precursor and fragment ions. A max-
imum of one missed trypsin cleavage site was chosen.
Cysteine carbamide methylation and methionine oxidation
were selected as fixed and variable modifications, respective-
ly. Protein identification was performed by searching the mass
spectrometric data against the Taenia genus (released in April
2016) UniProt protein database containing reversed sequences
with a false discovery rate (FDR) < 1%. Only proteins that
were identified by three proteomic software programs were
considered to be valid hits. To evaluate the best protocol for
the preparation of VF, samples (with and without surfactant)
were analyzed using three biological replicates.

Comparative proteomic analyses of saline vesicular extracts
of Taenia solium and Taenia crassiceps

Peptide extracts from the sample preparation protocol using
RapiGest™ were dried using a speed vac centrifuge and were
resuspended in 100 μL of ion exchange loading buffer (5-mM
ammonium formate and 5% acetonitrile, pH 3.2) to a final
peptide concentration of 1.0 μg/μL. The peptides were

analyzed by 2D-LC–MS/MS on a Waters nano-ACQUITY
UPLC system coupled to a Synapt G1 HDMS system
(Waters Co., Williford, USA).

The 2D-LC–MS was performed using a 180-μm× 20-mm
strong cation exchange (SCX) column (nano-ACQUITY
UPLC SCX trap column, Waters, Milford, MA, USA) for
the first dimension and a trap column (180 μm× 20 mm).
The auxiliary pump allowed the SCX column to be equilibrat-
ed with loading buffer and the step to be performed. Two
fractions (50 and 200-mM ammonium formate, containing
5% acetonitrile) and one fraction (containing 200-mM ammo-
nium formate buffer with 30% acetonitrile) were used to es-
tablish a step gradient for cationic exchange. The second di-
mension of the procedure was performed using a 5-μm
Symmetry C18 material trap column (Waters Co., Williford,
USA) and a BEH130 C18 reversed-phase analytical column
(1.7 μm, 75 μm× 150 mm) (Waters Co., Williford, USA).
The peptides were eluted using a linear gradient of 0.1%
formic acid in water (mobile phase A) and 0.1% formic acid
in acetonitrile (mobile phase B) for 60 min, performed by the
BSM at a flow rate of 300 nL/min.

[Glu1]–fibrinopeptide B (GFP) (Sigma–Aldrich, Co.,
LLC, USA) was used as lock mass correction (100 fmol/μL
in 50:50:1, methanol:H2O:acetic acid) for accurate MS post-
acquisition measurements, with an injection once every 30 s.
The high/low collision energy acquisition mode was
established by alternating using 0.8 s with a 0.02-s interscan
delay time. In the low-energy MS, data were collected at con-
stant collision energy of 4 eV. In the high-energy MS mode,
the collision energy was ramped from 15 to 50 eV. Four bio-
logical replicates were used in the comparative analysis of the
VF of T. solium and T. crassiceps.

Data processing and analysis

The data analysis of the comparative proteomics of
T. crassiceps and T. solium SVE was conducted qualitatively
by determining all ions of the two species to identify unique
peptides and corresponding proteins that could further be used
as antigen candidates. The MSE raw data were processed and
analyzed using ProteinLynx 2.5.1 (Waters Corp., Manchester,
U.K.) and the IDENTITYE algorithm. The basic search pa-
rameters for protein identification were as follows: Taenia
UniProtKB databank (released in April 2016), one missed
cleavage by trypsin, carbamidomethyl (C), and methionine
oxidation as fixed and variable modifications, respectively.
The precursor and fragment ion mass error tolerances were
10 and 20 ppm, respectively. The criteria used for a positive
protein match were at least three fragment ions per peptide,
five fragment ions per protein, and at least one peptide per
protein hit. A false-positive discovery rate (FDR) was allowed
up to 1%. All identified peptide sequences were analyzed
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using UniProt-BLAST to verify the total identity and exclu-
sivity to the Taenia genus.

To verify the antigenicity prediction, the peptides se-
quenced by mass spectrometry containing 100% identity with
proteins of the Taenia genus were submitted to the IEDB web
server (http://tools.immuneepitope.org/bcell/), which includes
the amino acid propensity scales of Hopp–Woods
(hydrophilicity), Emini (surface probability), Jameson–Wolf
(antigenic index), and Karplus–Schulz (flexibility). We also
used the Protean application of DNASTAR Lasergene version
7.2 (DNASTAR, Inc., Madison, WI, USA). Default settings
were applied to all of the peptide sequence analysis tools that
were used. Only antigenic prediction regions that were found
as a positive match by both software programs were selected
and annotated.

Gene ontology consortium (http://www.geneontology.org/)
analysis was performed to assess the holistic biological role and
molecular function of the identified proteins in both species.

Results

Comparison of the use of surfactant and preliminary
analysis by DDA mass spectrometry

Overall, the strategy that yielded a higher number of identified
proteins and peptide hits was the in-solution digestion using
the surfactant buffer protocol, as shown in Fig. 1a, b. It is
likely that the surfactant method allowed for the identification
of a larger number of proteins in T. solium (41 proteins and
179 total corresponding peptides) compared to the samples

extracted in the absence of the surfactant (22 proteins and 92
total corresponding peptides). Likewise, we identified 52 pro-
teins (210 total corresponding peptides) in T. crassiceps
surfactant-containing samples, while only 39 proteins (81 total
corresponding peptides) were found in T. crassiceps samples
without surfactant (Fig. 1a). Finally, the preliminary analysis
by DDA acquisition mode resulted in the identification of 144
accumulated protein hits, which are listed and depicted in
supplementary Tables 1, 2, 3, and 4.

The number of peptides per protein found in each condition
and species was also evaluated. In T. crassiceps, 34 proteins
were identified with two or more peptides in the protocol that
used RapiGest™ (Fig. 1b), while only 14 proteins were iden-
tified when RapiGest™ was not added (Fig. 1c). This same
positive effect was observed in the improvement of the extrac-
tion technique and, consequently, in the number of proteins
identified with more than three peptides. When the surfactant
was used, this number increased to 16 proteins (Fig. 1b),
whereas the non-surfactant protocol allowed the identification
of only five proteins (Fig. 1c).

Comparative profiles of proteins and peptides
of T. solium and T. crassiceps by MSE high/low
acquisition mass spectrometry

Once the best protocol for sample digestion was established,
the analysis was expanded by MSE (high/low) acquisition
using LC-2D/ESI–MS/MS, allowing identification of the pro-
teins and peptides found in SVE of cysticerci from each spe-
cies. The cyst of T. solium consists of a scolex of the future
tapeworm surrounded by a vesicle formed by the extension of
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the parasite’s tegument. In the interior, the liquid is composed
of mineral salts, proteins, uric acid, urea, creatinine, traces of
glucose, and cholesterol, similar to cerebrospinal fluid (CSF).
These proteins are synthesized by cysticerci cells and repre-
sent, in addition to the excretion/secretion proteins, the pro-
teins involved in metabolism, which will also be present in the
adult worm (Gomez et al. 2015). In the SVE of T. crassiceps,
no protoscolex proteins are found because the ORF strain does
not have this structure, but in T. solium, these proteins may be
present in small amounts. The number of proteins found only
in the SVE of T. solium was slightly higher than that of
T. crassiceps. However, proteins that were defined as secreted
proteins were found in both SVEs (Victor et al. 2012;
Marzano et al. 2017).

The qualitative analysis byMSE high/lowmode acquisition
showed 79 proteins in Taenia species; 29 proteins only in
T. solium, 11 proteins only in T. crassiceps, and 39 proteins
in both (Fig. 2a; supplementary Table 5). Based on a Gene
Ontology search, the proteins were located in different com-
partments, such as the cytoplasm, cytoskeleton, membrane,
and nucleus. The biological function analysis showed that
the proteins exhibited widespread functions that involved pro-
tein folding, cell-movement regulation, cell–cell interactions,
cell division, antioxidant regulation, gluconeogenesis, and cell
cycle division step regulation (Fig. 2b).

BLAST search and B cell linear epitope prediction

To predict the epitope in each identified protein, all peptide
sequences from the MSE analyses were searched against

UniProt Knowledge Base (UniProtKB) using BLAST to ver-
ify the identity and exclusivity to the Taenia genus. A total of
726 peptides were found only in the T. crassiceps sample.
However, only 58 (7.7%) unique peptides were found, as is
shown in supplementary Table 6. Some proteins from the
related Echinococcus genus exhibited cross-reactivity to
Taenia sp. antigens; 258 peptides of T. crassiceps (35.0%)
presented 100% identity to Echinococcus genus proteins,
whereas 137 peptides (18.6%) showed over 90% identity.

For T. solium SVE, BLAST analysis from 825 peptide
queries resulted in 56 (7%) unique identifications, whereas
291 (35.0%) pept ides showed 100% ident i ty to
Echinococcus genus proteins. Thirty-three peptides were
identified in samples of SVE from both Taenia species, and
there were a total of 147 unique peptides (supplementary
Table 6).

The epitope prediction analysis of those peptides showed
that 47 peptides presented at least 80% identity to the amino
acid residues and were thus indicated as potentially antigenic
(Table 1). The remaining peptides from both SVE samples,
which did not match at 100% identity to the Taenia genus
sequence database, were not considered for further epitope
prediction analysis.

Discussion

Neurocysticercosis diagnosis requires proper interpretation of
clinical, neuroimaging and serological data in the correct ep-
idemiological context (Ito et al. 2016; Rajshekhar 2016). Early
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Table 1 List of peptides identified by mass spectrometry MSE high/low mode acquisition with high number (> 80%) of epitope residues predicted by
IEDB and Protean softwares

Unique peptides Only
T. crassiceps

Only
T. solium

T. crassiceps
+ T. solium

Total number
of residues

Number of antigenic
predicted residues

Protein name access
(UNIPROT database)

AEKVQAETEIR x 11 11 Myosin-like protein A3F4U8

EAEKVQAETEIR x 12 12 Myosin-like protein A3F4U8

REETEASVEER x 11 11 Myosin-like protein A3F4U8

EKVQAETEIR x 10 10 Myosin-like protein A3F4U8

MEAEKVQAETEIR x 13 13 Myosin-like protein A3F4U8

SREETEASVEER x 12 12 Myosin-like protein A3F4U8

FAPGSELDFK x 10 8 Myosin A3F4W6

IQAGQVDCEK x 10 8 Myosin regulatory light chain
A3F4V0

PIQAGQVDCEK x 11 11 Myosin regulatory light chain
A3F4V0

MADANSAKSR x 10 10 Paramyosin Q68J63

RQMADANSAK x 10 10 Paramyosin Q68J63

TSSQTHDAIR x 10 8 Paramyosin Q68J63

ESLQRSQDK x 9 8 Myosin A3F4X2

TVERATVHK x 9 2 Filamin A3F4U1

GSDYLSGKTR x 10 10 Filamin Q14QP9

KDSPEPIATTSTR x 13 13 Filamin Q14QP9

NFEGNCAKR x 9 8 Filamin Q14QP9

QFATSDRVGHER x 12 12 Filamin Q14QP9

TMSSPYVSGNER x 12 12 Filamin Q14QP9

TGEHYGAPK x 9 9 Malate dehydrogenase F1C7I4

DTDLGSIKEK x 10 9 Annexin Q9NGU7

CSKDDIPQLK x 10 9 Annexin Q9NGU7

NATNEAYNR x 9 9 Annexin Q9NGU7

NPGLAETDAK x 10 10 Annexin Q9NGU7

GAGTKDSTLQR x 11 10 Annexin Q9NGU7

LNATNEAYNR x 10 10 Annexin Q9NGU7

KEGGVQGMK x 9 9 2-cys-Peroxiredoxin C0KM14

GRPAPGFTCK x 10 9 2-cys-Peroxiredoxin C0KM15

GSDAFKPNAGDLK x 13 13 2-cys-Peroxiredoxin C0KM15

SDAFKPNAGDLK x 12 12 2-cys-Peroxiredoxin C0KM15

KDGGVQGMR x 9 8 2-cys-Peroxiredoxin C0KM15

EPLDDSHVK x 9 9 Immunogenic protein D5MRS9

NPAAVASSIVPGSK x 14 12 Enolase V5T827

SAEPLDESHVK x 11 11 Cysteine proteinase Q7M469

SYSAEPLDESHVK x 13 13 Cysteine proteinase Q7M469

EPLDESHVK x 9 9 Cysteine proteinase Q7M469

VQREVETQK x 9 8 Ezrin-radixin-moesin-like protein
D2U5P2

ETEASVEER x 9 9 Ezrin-radixin-moesin-like protein
D2U5P2

GGNIGSQSYGNQNQK x 15 15 Neuronal nitric oxide synthase
protein inhibitor Q1HFN2

IGSQSYGNQNQK x 12 12 Neuronal nitric oxide synthase
protein inhibitor Q1HFN2

MSSQGGNIGSQSYG
NQNQKAVVK

x 23 20 Neuronal nitric oxide synthase
protein inhibitor Q1HFN2
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studies on the cross-reactivity between SVE of T. crassiceps
and total extracts of T. solium antigens confirmed that both
parasites share epitopes that are present in amounts sufficient
to be used as antigen sources in immunological tests. These
antigens have been used for the detection of antibodies in the
CSF and serum of NCC patients (Peralta et al. 2002, 2010).

The proteomics of T. solium and T. crassiceps are not yet
well characterized, with few papers in the literature addressing
protein identification in the different forms and structures of
the parasite, such as the oncosphere, the cytoskeleton, and
excretion-secretion and VF proteins of the cysticerci
(Santivanez et al. 2010; Victor et al. 2012; Diaz-Masmela
et al. 2013; Navarrete-Perea et al. 2014; Reynoso-Ducoing
et al. 2014). Different strategies in the preparation of the pro-
tein extracts or even in the analysis procedures, used in the few
publication available, may explain the qualitative and quanti-
tative differences of the proteins found in our study. Most of
the proteomic analysis studies for this parasite were carried
out using an in-gel methodology, but this approach fails to
visualize all of the proteins in a complex sample. A typical
1D- or 2D-GE gel can visualize only 30–50% of the entire
proteome. In particular, those proteins present in extremely
low concentrations or proteins that cannot be separated in-
gel due to their physicochemical properties (PI, hydrophobic-
ity, molecular weight) will not be detected. To overcome some
of these challenges, several gel-free high-throughput technol-
ogies for proteome analysis have been developed (Baggerman
et al. 2005; Verissimo da Costa et al. 2013). In the proteomic
approach used in this work, the multistep separation strategies
have been able to detect a number of low-abundance proteins
using single-step gel-free analysis of the SVE of Taenia spe-
cies with on-line 2D-liquid chromatography. In the first LC
cationic exchange step, we fractionated each sample into eight
fractions that were then separated by a reversed-phase C8
column. Therefore, we reduced the complexity of the samples
while also identifying low-abundance proteins.

By GeneOntology/UniProt analysis, 24.6% (19/76) of pro-
teins were identified as those described by Victor et al. (2012)
as excretory/secretory proteins when SignalP and SecretomeP
softwares were used. These approaches were not used in our
study because to predict these proteins was not the focus of the
study, but were also found as expected, since we worked with
a soluble extract of cysticerci. Thus, only Gene Ontology/
UniProt analysis was performed by observing the biological
function and cellular/subcellular location of all proteins found
when the information was available.

The present work compared two sample preparation proto-
cols—with and without adding the surfactant reagent
RapiGest SF™. Surfactants are routinely used with consider-
able efficiency in the preparation and digestion of sample
proteins for SDS-PAGE and for in-solution procedures be-
cause they can improve the solubility of hydrophobic com-
pounds and increase the number of identified proteins in com-
plex mixtures (Wu et al. 2011). The results showed that the
number and coverage of identified proteins were increased
when a surfactant was included in the sample preparation.

Proteomic data have contributed significantly to the vali-
dation and annotation of proteins and/or genes in a genome
project database. However, when a proteome or genome
databank is not yet available, such as in the case of
T. crassiceps, protein identification can be accomplished by
de novo sequencing or through a search against a phylogenet-
ically related species databank. Therefore, we selected the
Taenia genus databank to search for and identify peptides
and proteins from SVE in both species. This approach allowed
for the identification of common and unique T. solium and
T. crassiceps peptides, which were compared by a label-free
MSE methodology. Some of the identified proteins presented
carbohydrate moieties, which are also found in the larval form
of T. solium and T. crassiceps. These proteins are used as
antigens in the immunodiagnosis of NCC and/or in the devel-
opment of synthetic or recombinant vaccines against human

Table 1 (continued)

Unique peptides Only
T. crassiceps

Only
T. solium

T. crassiceps
+ T. solium

Total number
of residues

Number of antigenic
predicted residues

Protein name access
(UNIPROT database)

SSQGGNIGSQSYG
NQNQK

x 18 18 Neuronal nitric oxide synthase
protein inhibitor Q1HFN2

FGVAPGTTHK x 10 9 Phosphoenolpyruvate
carboxykinase
D2U5C9

NVAETDDGR x 9 9 Phosphoenolpyruvate
carboxykinase J9EW18

DLDESLKDR x 9 9 Phosphoenolpyruvate
carboxykinase G0LXZ5

GSYPEIDQMK x 10 9 p27 F6M8L6

RQAVQGDMK x 9 9 Heat shock protein 70 A3F4T0
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cysticercosis (Greene et al. 2000; Hancock et al. 2003; Peralta
et al. 2010; Atluri et al. 2011; Lee et al. 2011; Salazar-Anton
and Lindh 2011; Ferrer et al. 2012; Salazar-Anton et al. 2012).

The BLAST analysis of the peptides sequenced by mass
spectrometry resulted in a high identity of proteins and anti-
gens between both genera, which not only are related phylo-
genetically but also show cross-antigenicity (Ishida et al.
2003; da Silva Ribeiro et al. 2010). It was also observed that
the BLAST outcome identified 35% of the total peptides
found in the Echinococcus genus. This fact reinforces the
difficulty of finding novel specific antigens to improve the
immunodiagnostic assay for cysticercosis.

Antigenicity or epitope prediction approaches can be clas-
sified into the following categories: prediction of proteasomal
cleavage sites, prediction of TAP binders, prediction of MHC-
binding regions, and prediction of T and B cell epitopes (Yang
and Yu 2009). Computational algorithms offer a fairly accu-
rate and rapid determination of epitope location on an allergen
molecule. This approach was used to identify predicted anti-
gens from Taenia. Some of these proteins have been described
in T. crassiceps and T. solium parasites as potential targets for
immunodiagnostic assay development, whereas others are in
the development phase. The proteotypic peptides with antigen
prediction were identified in myosin-like protein, paramyosin,
filamin, annexin, P27 protein, and immunogenic proteins. The
P27 protein has been described as an important molecule in
the regulation of intracellular transport and is involved in
clathrin-mediated endocytosis, binding to membrane vesicles
and inducing tubular conformations (Nhancupe et al. 2013).
Recently, several authors have described this protein as a po-
tential target antigen for the serodiagnosis of NCC using west-
ern blot and immunodot blot, with levels of sensitivity and
specificity estimated to range from 95.6–97.8% and 76.4–
86.7%, respectively (Salazar-Anton et al. 2012). Gel-free pro-
teomic analysis enabled the identification of one proteotypic
peptide for P27 protein that showed antigenicity prediction
(80%). Moreover, three peptides identified from paramyosin
with high antigenicity prediction were also experimentally
assayed for B cell receptors by two different research groups
(López-Moreno et al. 2003; Gazarian et al. 2012).

In recent years, some studies have shown that the 14- and
18-kDa protein fractions of T. crassiceps present immunogen-
ic specificity in the serodiagnosis of cysticercosis. These frac-
tions were described as a composite of glycan chains linked to
peptide residues (Peralta et al. 2010). The N-terminal amino
acid sequencing data from the 14- and 18-kDa subunits sug-
gested that both are similar and present partial homology to
the 10-kDa protein from T. solium (Esquivel-Velazquez et al.
2011a). In the present work, an immunogenic protein (UniProt
accession number D5MRS9) was detected through a unique
peptide with 100% antigenicity prediction. Some residues of
D5MRS9 are also in the 14-kDa protein of T. crassiceps SVE
described by Peralta et al. (2010), with a high antigenicity

index. The characterization and amino acid sequencing of
antigen extracts in this work is an effort toward the better
identification of the components shared between
T. crassiceps and T. solium that might be recognized by human
antibodies. The identified peptide spectra (EPLDDSHVK) of
an immunogenic protein (D5MRS9) showed identity similar-
ity (> 88%) with another peptide (EPLDESHVK) identified to
a cysteine proteinase (Q7M469) with a change of only one
amino acid. This protein has been used in immunoassays and
in studies for the development of a vaccine (León et al. 2013).
A similar sequence has been described in T. crassiceps and has
been used as an antigenic synthetic peptide (Lima et al. 2013).
The comparison between the sequences of these three peptides
can reinforce the importance of EPLD residues in antigen-
antibody complex interactions.

Conclusion

The in-solution digestion approach is novel to Taenia proteo-
mics, and it led to the identification of peptides (and proteins)
that have not yet been described. Additionally, there has been
no previously reported proteomic analysis of T. crassiceps of
this scale. In conclusion, these results are an important contri-
bution to the inference and review of new protein sequences in
databases. Furthermore, these findings establish the proteomic
profile for the study of candidate biomarkers involved in the
diagnosis or pathogenesis of cysticercosis.
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