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Abstract

Neglected tropical diseases caused by metazoan parasites are major public health con-

cerns, and therefore, new methods for their control and elimination are needed. Research

over the last 25 years has revealed the vital contribution of cysteine proteases to invasion of

and migration by (larval) helminth parasites through host tissues, in addition to their roles in

embryogenesis, molting, egg hatching, and yolk degradation. Their central function to main-

taining parasite survival in the host has made them prime intervention targets for novel

drugs and vaccines. This review focuses on those helminth cysteine proteases that have

been functionally characterized during the varied early stages of development in the human

host and embryogenesis.

Cathepsin B- and L-like proteases facilitate invasion of host

tissues by larval helminth parasites

The skin and intestinal wall represent physical barriers to pathogen entry into their hosts. In order

to successfully breach these barriers, parasites must effectively degrade an array of host proteins.

At the same time, parasites need to minimize tissue damage and the induction of innate immune

responses in order to quickly and successfully establish infection in the human or animal host.

Cysteine proteases of parasitic organisms are the focus of considerable attention, as they are spe-

cifically adapted to effectively degrade host tissues to aid penetration and migration.

Skin penetration by schistosome larvae—A role fulfilled by

evolutionarily diverse proteases

Invasive larvae (cercariae) of the schistosome blood fluke must penetrate the epidermis and

dermis in order to access the circulatory system and facilitate their establishment in the host.
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For the cercariae of Schistosoma japonicum, a cathepsin B2 cysteine protease is considered the

main penetration tool [1], and cathepsin B (CPB) activity has been identified in the cercarial

secretions, suggesting that this proteolytic enzyme mediates skin invasion [2]. A comparative

study showed that the acetabular gland contents of S. japonicum cercariae have a 40-fold

greater CPB-like activity than those of S.mansoni, suggesting that CPB is far more relevant to

invasion by S. japonicum [1]. A CPB peptidase has also been identified in the cercariae of the

bird schistosome Trichobilharzia regenti; it exhibits 77% sequence similarity to the cathepsin

B2 in S.mansoni [3].

The evidence [1] suggesting that a cysteine protease is deployed by the more evolutionarily

“ancient” or zoonotic schistosome species (S. japonicum and T. regenti) during skin invasion is

in striking contrast to the functionally orthologous but evolutionally divergent cercarial elas-

tases. These degradative enzymes are a closely related group of serine proteases that are

released during skin penetration by the African schistosomes S.mansoni and S. haematobium.

The use of cercarial elastases by the these species was proposed as “an unusual biochemical

product” [1] compared to other schistosomatids and platyhelminths, and may reflect an adap-

tation by these parasites to preferentially infect humans without eliciting a potentially parasiti-

cidal inflammatory response [1].

Interestingly, Dresden and coworkers several decades ago identified the presence of bio-

chemically undefined cysteine proteases in schistosome eggs [4]. Recent findings using a func-

tional degradomics strategy on the excretory–secretory products (ESP) of S.mansoni eggs

identified a clan CA cysteine protease with activity at neutral pH [5]. The possible functions of

these egg proteases include yolk degradation (as found for similar proteases in insect eggs and

in filarial worms, as described above), egg hatching, and/or facilitating the passage of eggs

through host tissues [6].

Fasciola species

CPB and cathepsin L (CPL) proteases are secreted by the infective, newly encysted juvenile

(NEJ) stage of the liver fluke Fasciola hepatica and are crucial to excystation and then penetra-

tion by the parasite of the host intestinal wall and liver capsule [7, 8]. RNA interference-medi-

ated (RNAi) silencing of either the NEJ CPB (FhCB) or L (FhCL) in vitro reduced the parasite’s

ability to transverse the rat intestinal wall using an ex vivo tissue model [7]. As they penetrate

the gut wall, the parasite secretes 3 distinct CPB proteases (FhCB1, FhCB2, and FhCB3), which

are down-regulated as the parasite migrates into the liver tissue [9, 10]. Interestingly, a coinci-

dent up-regulation of FhCL3 expression occurs as the parasite migrates from the intestine and

enters the liver parenchyma [9, 11]. These data suggest a concerted role for the FhCBs and

FhCL3 in the early infection stage. Furthermore, asparaginyl endopeptidases (legumains),

which are found in abundance in the F. hepatica NEJs secretome, are likely employed to rapidly

process and activate FhCB and FhCL zymogens to functionally mature enzymes [12, 13].

FhCL3 is unique in that its active site is modified for efficient degradation of collagen fibers,

a particularly important adaptation to allow the parasite to penetrate the highly collagenous

Glisson’s capsule of the liver [5]. Notably, the collagenolytic activity of FhCL3 favors Gly at the

P3 and Pro at P2 positions in its protein or peptide substrate, consistent with the Gly-Pro-X

repeat motif found in collagen. By contrast, the FheCL1, secreted by the blood-feeding adult,

had a strong preference for P2 Leu, Phe, and Ala that fit into the S2 pocket of its active site;

these amino acids are most predominant in hemoglobin, suggesting a specific adaptation of

FhCL1 to the digestion of this major blood protein [14].

Cathepsins B1 (FgCatB1), B2 (FgCatB2), and B3 (FgCatB3) have been identified in various

F. gigantica life stages [15, 16]. FgCatB2 and FgCatB3 are only expressed in F. gigantica
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metacercariae and NEJs [15, 16]. The abundance of FgCatB3 in metacercariae suggests that the

protein is stored and could also facilitate degradation of the parasite cyst wall once the parasite

reaches the duodenum. Since NEJs are considered a nonfeeding life stage, FgCatB2 and

FgCatB3 may collectively play a role in parasite invasion and migration across the intestinal

wall by degrading connective tissues. Supporting this proposal is the ability of recombinant

FgCatB3 to efficiently degrade gelatin and fibronectin [15]. A cDNA encoding FgCatB1 was

identified in each life stage associated with the mammalian host, suggesting a general role in

proteolytic digestion, although future characterization of functional enzyme is required to elu-

cidate its substrate specificity and biological role [16].

Opisthorchis

Protease activity studies of ESP of Opisthorchis viverrini discovered 1 major cysteine protease

(30kDa). The CPL-like protease had an enzymatic profile similar to other CPL proteases from

related flukes, including optimal activity at pH 6.0 and inhibition by the cysteine protease

inhibitor E-64. Using the fluorogenic peptide substrate Z-Phe-Arg-AMC, most cysteine pro-

teolytic activity was found in the metacercariae, followed by the ESP, egg, and adult worms.

Elevated expression of these CPL-like proteases in the metacercariae suggests that they may

play a role in larval excystation during mammalian infection [17].

Paragonimus

Two cysteine proteases (27 and 28 kDa) were detected in the ESP of newly encysted Paragoni-
mus westermani metacercariae [18]. These enzymes are involved in metacercarial encystment

[18], tissue invasion [19], and immune system evasion [13]. Immunolocalization analysis

revealed that both enzymes are present in the excretory bladders of metacercariae [20]. Four

CPBs (CsCB1, CsB2, CsB3, and Cs4) were characterized in the Clonorchis sinensis life stages

[21]. These enzymes are localized in excretory vesicles, oral suckers, and tegument of metacer-

cariae and cercariae [22, 23]. In addition, a CPL was localized in the tegument of both larval

stages [24].

Cysteine proteases in molting and embryogenesis

Phylogenetic analysis of the nematode CPL-like cysteine proteinases using 3 techniques indi-

cates that they form 4 different clades [25]. In Brugia malayi, 2 clade I subfamilies of the CPL-

like cysteine proteases (Bm-CPL) were identified: clade group Ia includes Bm-CPL-1, -4, and

-5, and clade Ic includes Bm-CPL-2, -3, -6, -7, and -8 [25]. The CPL proteases of group Ia as

well as cathepsin Z-like (CPZ) proteases have been extensively studied in filarial worms [25–

28]. By employing methods to block enzyme function, RNAi, and/or treatment with cysteine

protease inhibitors, these proteases were shown to be essential for embryogenesis in B.malayi
female worms [28], as well as for L3 to L4 molting of Onchocerca volvulus [29], B.malayi [30],

and Dirofilaria immitis [31]. More recently, it was shown that 2 members of the group Ic CPLs

might also have a role during symbiosis [32]. Many filarial species harbor an endosymbiotic

bacterium of the genusWolbachia [33–37]. As the endosymbiont has limited biosynthetic

capabilities, it is plausible that the filarial host supplementsWolbachia with amino acids pro-

duced by protease degradation of host proteins required for their fitness [38]. Reduction of

Bm-CPL-3 and Bm-CPL-6 transcripts using RNAi caused a significant decrease inWolbachia
DNA and a disruption of microfilarial development and release [32].

The functions of filarial CPL-1 and CPZ-1 during embryogenesis are mostly inferred from

studying Ce-CPL-1, a Caenorhabditis elegans CPL-like protease belonging to clade Ib of CPLs

[25]. RNAi targeting B.malayi adult female worms with Bm-CPL-1 or Bm-CPL-5 dsRNA
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established that these enzymes are localized in the same tissues in filarial worms as they are in

C. elegans [28, 39]. RNAi with Ce-CPL-1 activity resulted in embryonic lethality and a tran-

siently delayed growth of larvae to adults, suggesting an essential role for CPL-1 during

embryogenesis and most likely during postembryonic development. Although the precise

function of CPL-1 during embryogenesis in filarial worms is not yet clear, it could be involved

in regulating the processing of yolk proteins and processing of nutrients responsible for syn-

thesis and/or in the degradation of eggshell (as suggested for the cysteine proteases in schisto-

some eggs (see above section “Skin penetration by schistosome larvae—A role fulfilled by

evolutionarily diverse proteases”).

In filarial parasites, the molting of L3 to L4 occurs immediately upon infection of the

human host marking the establishment of infection. In several filarial nematodes, this molt

depends on the activity of CPL-1 and CPZ-1 [40, 41]. Required for both apolysis and ecdysis,

these cathepsins are probably involved in the breakdown of the old cuticle, degradation of cuti-

cle-anchoring proteins, and, potentially, the synthesis of the new cuticle through the process-

ing of proproteins [40]. These proteases are stored in the glandular esophagus of L3 and

released during molting [42]. An analysis of the evolutionary history of the filarial nematodes

using Ensembl Compara revealed an expansion of CPL-like enzymes in the filarial nematodes

as compared to the 3 outgroup species, Ascaris suum, C. elegans, and Trichuris muris [43].

Notably, based on annotation and sequence homology (BioProject accession PRJEB513), there

appears to be an expansion of the 1a group of CPL-like enzymes in O. volvulus as compared to

B.malayi, which has 3 group Ia CPL-like proteases, Bm-CPL-1, Bm-CPL-4, and Bm-CPL-5

[43] (Fig 1A). All 7 annotated CPLs in O. volvulus have the inhibitor domain I29, the presence

of which is characteristic of the extended proregions of the Ia group of cysteine proteases.

Analysis of the O. volvulus transcriptome during the parasite life cycle (PRJEB2965) revealed

significant differences in the expression of the CPL and CPZ proteases, i.e., a marked up-regu-

lation in the vector-derived L2 stage compared to L3 (Fig 1A) [44]. This suggests that CPLs

and CPZs are highly transcribed in the L2s and are then stored in the glandular esophagus of

L3 for their known function in the L3 to L4 molt, while also potentially contributing to the

molting of L2 to L3. Interestingly, RNAi targeting Bm-CPL-1 in B.malayi-infected mosquitos

has verified that CPL-1 is important for the L2 to L3 molt; specifically, it prevented the para-

site’s development within the mosquito and inhibited parasite migration inside the mosquito

vector [30]. Two CPB-like proteases are also highly expressed in O. volvulus L2 and are

grouped together with the CPLs and CPZs based on their expression profiles (Fig 1A).

Fig 1. Expression patterns of genes encoding cysteine proteases and their inhibitors over the life cycle of O. volvulus and B. malayi. A. Expression of CPL-like,

CPZ-like, and CPB-like proteases and their inhibitors over the lifecycle ofO. volvulus. Gene expression in reads per kilobase of transcript per million mapped reads

(RPKMs) is z-score normalized and then used to cluster genes based on expression [43]. B. Expression of CPL-like, CPZ-like, and CPB-like proteases and their

inhibitors over the lifecycle of B.malayi. Gene expression in fragments per kilobase of transcript per million mapped reads (FPKMs) is z-score normalized and then

used to cluster genes based on expression [45]. As these data were collected as part of 2 independent studies, the units of normalization differ, as do some of the

sampled stages. CPL, cathepsin L; CPZ, cathepsin Z; CPB, cathepsin B.

https://doi.org/10.1371/journal.pntd.0005919.g001
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Although different life stages were sampled, expression data from Choi YJ and colleagues [45]

from B.malayi shows a similar pattern of up-regulation of CPL-like and CPB-like proteases

during molting. The orthologues in B.malayi, Bm3618 and Bm2365, to the 2 highly up-regu-

lated CPB-like proteases during molting in O. volvulus, OVOC11881 and OVOC2812, are sim-

ilarly highly up-regulated during molting in B.malayi.
The function(s) of filarial cysteine proteases during molting are likely regulated by their

endogenous cysteine protease inhibitors. In O. volvulus, CPL-2 (or “onchocystatin”) is local-

ized to the hypodermis and cuticle of the larvae during the L3 to L4 molt, specifically to the

region of cuticle separation, where it may regulate the cysteine proteases required for molting

[46]. As a result of a recent detailed analysis of the transcriptome and proteome of filarial

worms over their various life stages, it is clear that the regulation of expression of cysteine pro-

teases is in concert with other serine, aspartic, and metallo proteases. It will be interesting to

determine whether the functions of cysteine proteases during molting, development, embryo-

genesis, and migration in the invertebrate and human hosts as well as symbiosis are associated

with the activities of these other enzymes.

Finally, for comparison, the genome of the dog heartworm Dirofilaria immitis contains 10

CPLs and 2 CPZs, as well as 3 cystatins [47], and based on the transcriptome, the highest CPL

expression is in L3, which correlates with the expression of the inhibitor cystatin. Expression

of CPZ is highest in the microfilaria, suggesting an additional role in the molt within the inter-

mediate vector host [47].

Key learning points

• Cysteine proteases are key contributors to the invasion of host tissues by helminth par-

asites and their various developmental stages.

• The CPL-like (cathepsin L) enzymes are expanded in the genomes of filarial parasites.

• Cysteine proteases in filarial parasites are essential for molting and embryonic

development.

• Cysteine proteases may also be involved in maintaining symbiosis in filarial parasites.

• Possible roles for helminth egg cysteine proteases in yolk, egg hatching, and/or for

facilitating the passage of eggs through host tissues.
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