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Abstract

Background

Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncompli-
cated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria
in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of
resistance to improve therapy and enhance understanding of the mechanisms associated
with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients
with PvCR and chloroquine sensitive parasites before treatment to identify potential molecu-
lar markers of chloroquine resistance.

Methods

An untargeted high-resolution metabolomics analysis was performed on plasma samples
collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium
vivax were included (n = 46); samples were collected before CQ treatment and followed for
28 days to determine PvCR, defined as the recurrence of parasitemia with detectable
plasma concentrations of CQ >100 ng/dL. Differentially expressed metabolic features
between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using par-
tial least squares discriminant analysis and linear regression after adjusting for covariates
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and multiple testing correction. Pathway enrichment analysis was performed using
Mummichog.

Results

Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R
and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a
SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of gly-
cerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine
metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glyceropho-
sphocholines levels were significantly lower in the CQ-R group as compared to CQ-S
patients and also to independent control samples.

Conclusions

The results show differences in lipid, amino acids, and nucleotide metabolism pathways in
the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics
phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is
promising for the development of new tools to understand the biological process and to iden-
tify potential biomarkers of PvCR.

Introduction

Malaria is a global health infectious disease problem with almost half of the world’s population
at risk. Among the Plasmodium species causing malaria, P. vivax is the leading cause of malaria
in extensive areas of the world [1], with more than 8.5 million cases estimated in 2015 [2].
Most common manifestations of severe vivax malaria include severe anemia and respiratory
distress, and these are particularly associated with young age [3-5]. The decline in malaria in
the Americas since the 1990’s continues to fuel hope for its eventual elimination [6]. However,
emerging resistance to antimalarial treatment poses a threat to such efforts. Chloroquine (CQ)
is the main drug used in the treatment of uncomplicated vivax malaria. CQ accumulates in the
digestive vacuole, an acidic compartment, of the parasite [7]. The high intravacuolar concen-
tration of CQ is proposed to inhibit heme biocrystallization, thus leading to heme build up in
toxic levels and inhibition of various processes in the parasite cell [8, 9]. Various proteins and
lipids have been implicated in pigment biocrystallization, but their precise role and the effect
of drugs in the process remains to be elucidated [10]. Furthermore, CQ is active only against
the blood stages of the malaria parasite (namely trophozoites and schizonts), in which the par-
asite is actively degrading hemoglobin, but it is not active against infectious sporozoites, liver-
stage schizonts and hypnozoites [8, 11]. Previous studies have shown the association of mem-
brane proteins, which are involved in transport of drugs, lipids, and peptides with drug resis-
tance [12-14].

There have been many reports on CQ-resistance from different regions of the world [15-
19] including Brazil [20-23]. The widespread emergence and spread of CQ-resistance in P.
vivax (PvCR) represent one of the greatest threats to control and elimination efforts [24].
Moreover, molecular mechanisms of CQ-resistance in P. vivax are poorly understood and cur-
rently there is no validated biomarker for this parasite phenotype, preventing reliable drug
resistance surveillance in endemic regions [25].
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In the western Brazilian Amazon, in an analysis of 135 individuals, a higher initial mean
parasitemia was associated with CQ-resistance in P. vivax (PvCR) in 5.2% of the patients at
day 28. Hemoglobin levels were similar at the beginning of the follow-up period but were sig-
nificantly lower at days 3 and 7 post-treatment in the patients with resistant infections [22].
Parasites from patients with PvCR presented up to 6.1 and 2.4 fold increase in pvcrt-o and
pvmdr-1 expression levels, respectively, compared to the susceptible group [26]. In vivo overex-
pression of both genes, irrespective of the absence of mutations in P. vivax genes for transport-
ers and folate pathway P. falciparum ortholog genes linked to CQ-resistance [22, 26], indicates
that components of epigenetic regulation may be involved in the PvCR phenomenon, includ-
ing the effects of nutritional, metabolic and immune factors, as suggested from longitudinal
drug resistance studies in complicated and non-complicated malaria [26, 27]. Several studies
based on P. vivax isolates from Southeast Asia have shown the involvement of copy number
variation of pvcrt or pvmdr genes with the CQ-resistant phenotype [28, 29]. In the Brazilian
Amazon, copy number amplification of these genes is expected to be very low among P. vivax
strains (0.9%) [30] and below the estimates of CQ-resistance in this area [21]. This suggests an
alternative mechanism for CQ-resistance instead copy number amplification.

Metabolomics in malaria, namely targeted metabolomics, was applied almost exclusively
to identify P. falciparum stage-specific changes in metabolic pathways involved in parasite dif-
ferentiation and invasion in order to better inform drug discovery and design [31-35] or to
predict disease severity [36-39]. In this context, metabolomics has been used to gain under-
standing of the intraerythrocytic development cycle of P. falciparum in cell culture studies,
expanding the knowledge of amino acid and lipid metabolism [40, 41]. Application of untar-
geted high-resolution metabolomics (HRM) [42] using liquid chromatography coupled to
ultra-HRM spectrometry was used with advanced data extraction algorithms [43, 44] and a
metabolome-wide association study (MWAS) to identify metabolites associated with P. falcipa-
rum infection in in vitro culture samples [45]. The study of the P. falciparum intraerythrocytic
development cycle revealed increased 3-methylindole, a mosquito attractant; succinylacetone,
a heme biosynthesis inhibitor; S-methyl-L-thiocitrulline, a nitric oxide synthase inhibitor; and
O-arachidonoyl glycidol, a fatty acid amide hydrolase inhibitor [45]. Each of these could be
mechanistically important in the parasite’s life cycle and disease manifestations. Coupled with
the mechanistic data for metabolic pathways involved in parasite differentiation and invasion,
metabolomics results highlight an important need and opportunity to apply HRM for studies
of drugs on parasite metabolism and resistance to antimalarials.

Metabolomics remains a relatively new field for malaria research and insights are currently
lacking on the metabolic changes that occur during P. vivax development. In the present
study, we examined plasma metabolomics of samples obtained before CQ treatment from
patients infected with P. vivax who were subsequently classified as CQ-R and CQ sensitive
(CQ-S) after a 28-day follow-up period in the Brazilian Amazon. A metabolome-wide associa-
tion study (MW AS) was performed to determine differentially expressed metabolites and
perturbed metabolic pathways between CQ-R and CQ-S patients. Results could facilitate
development of optimal treatment therapies and clinical diagnostic tests for tracking and ther-
apeutically targeting such processes [46].

Methods

Patients with vivax malaria were enrolled in this study from June 2011 to December 2012 at
the Fundacdo de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), an infectious
disease referral center located in Manaus, Western Brazilian Amazon. This study, which
required a 42-day follow-up period, was approved by the FMT-HVD Institutional Review
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Fig 1. Study design for identifying host metabolite factors that are associated with chloroquine resistance.
Schematic depicts timeline of sample collection and processing. Individuals with P. vivax malaria were enrolled at Day 0
and followed for 42 days. At enroliment, plasma was collected and stored for later processing by high-resolution
metabolomics, and parasite strain was determined. Individuals then treated with chloroquine for three consecutive days
and were monitored at Days 0, 1, 2, 3, 7, 14, 28 and 42 with complete blood count (CBC) and parasite count to
determine if parasites recurred following CQ-treatment. CQ-Resistance (CQ-R) was assessed based on presence of the
same strain parasite during the recurrence, along with high levels of CQ and DSQ in the bloodstream, as assessed by
HPLC. Metabolomics analysis was performed to compare differences in host metabolites prior to CQ-treatment,
comparing individuals who developed CQ-R (N = 15) versus CQ-Sensitive (CQ-S) who did not (N = 31).

https://doi.org/10.1371/journal.pone.0182819.9001

Board and the Brazilian National Ethics Committee (CONEP) (IRB approval #: CAAE:
12516713.8.0000.0005). All protocols and documentation were reviewed and sample ship-
ments approved by the Emory IRB. A written informed consent was obtained from study par-
ticipants. In case of children/minors, a written informed consent was obtained from parents
and legal guardians on behalf of their participants. A schematic of the study design is shown in
Fig 1. Male and female patients were eligible for inclusion if aged 6 months to 60 years, body-
weight >5 kg, presenting a blood parasite density from 250 to 100,000 parasites/microliter and
axillary temperature >37.5°C or history of fever in the last 48 hours. Exclusion criteria were:
use of antimalarials in the previous 30 days, refusal to be followed up for 42 days and any clini-
cal complication. Patients received supervised treatment with 25 mg/kg of CQ phosphate over
a 3-day period (10 mg/kg on day 0 and 7.5 mg/kg on days 1 and 2) according to the guidelines
of the Brazilian Ministry of Health. Primaquine (0.5 mg/kg per day for 7 days) was prescribed
at the end of the 42-day follow-up period [47]. Patients who vomited the first dose within 30
minutes after drug ingestion were re-treated with the same dose. Patients were evaluated on
days 0, 1, 2, 3,7, 14, 28 and 42 and, if they felt ill, at any time during the study period. Blood
smear readings, complete blood counts, and diagnostic polymerase chain reaction (PCR)
amplifications were performed at all time points. Three aliquots of 100 pL of whole blood from
the day of a recurrence were spotted onto filter paper for later analysis by high performance
liquid chromatography (HPLC) to estimate the levels of CQ and desethylchloroquine (DCQ)
as previously described [19]. In this study, CQ-resistance with parasitological failure was
defined as parasite recurrence in the presence of plasma concentrations of CQ and DSQ higher
than 100 ng/mL and microsatellite analysis revealing the presence of the same clonal nature at
diagnosis and recurrence [26]. The CQ-sensitive control group consisted of patients with no
parasitemia recurring during follow-up period. A group of 20 healthy individuals from Brazil
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was used as non-malarial control group. All samples were processed after blood collection and
immediately the plasma was separated and further stored at -80°C until metabolomics.

Plasmodium vivax malaria diagnosis

Thick blood smears were prepared as recommended by the Walker technique and evaluated
by an experienced microscopist [48]. Parasite densities (parasites/uL) were calculated by
counting the number of parasites per 500 leukocytes in high magnification fields, and the
number of leukocytes/uL per patient. In addition, differential counting of asexual forms (ring-
stage parasites, mature trophozoites and schizonts) was performed to ensure that there was no
difference between groups of cases and controls. Afterwards, real-time PCR was performed to
confirm P. vivax mono-infection. The extraction of total DNA from whole blood was per-
formed using the QIAamp DNA Blood Mini Kit (Qiagen, USA), according to the manufactur-
er’s protocol. The DNA was amplified in an Applied Biosystems 7500 Fast System using
primers and TagMan fluorescence labeled probes for real time PCR [49].

High-resolution metabolomics

The composition of the metabolites present in plasma samples was determined using liquid
chromatography-HRM spectrometry (LCMS, Accela- LTQ Velos Orbitrap; mass-to-charge,
m/z, range from 85-2000, positive electrospray ionization). Aliquots of 200 ul of plasma were
treated with acetonitrile (2:1) with 14 stable isotope internal standards ([13C6]—D-glucose,
['°N]-indole, [2-'°N]-L-lysine dihydrochloride, ['*Cs]-L-glutamic acid, ['*C,]-benzoic acid,
[3,4-13C,] cholesterol, [lsN]—L—tyrosine, [trimethyl—13 Cs]-caffeine, [*°N,]-uracil, [3,3-°C,]-
cystine, [1,2—13C2]—palmitic acid, [*°N, >Cs]-L-methionine, [*>N]-choline chloride, and 2’-
deoxyguanosine-'°N,,"*C,-5'-monophosphate), centrifuged to remove protein, and analyzed
in triplicate with a 10 uL injection volume on a C18 reverse phase column with a formic acid/
acetonitrile gradient [50]. Several nutrition and health assessment studies and cross-laboratory
comparisons have shown that the C18 chromatography can be used for quantification of sev-
eral endogenous and exogenous metabolites involved in the amino acids metabolism, fatty
acid metabolism, nucleotide metabolism, vitamin coenzymes, and environmental chemicals
[51, 52]. Although the methods use ultra-high resolution mass spectrometry, the 10-minute
gradient used in this study cannot resolve structural isomers and isobaric species [44]. Peak
detection, noise removal, and alignment was performed using apLCMS v6.0.1[53] and xcms
v1.44[54] with xMSanalyzer v2.0.4[43], yielding a data table with accurate mass (m/z), reten-
tion time and intensity for each m/z feature across all samples. An m/z feature is defined as the
unique combination of m/z, retention time, and intensity profile. Batch-effect correction was
performed using ComBat [55].

Bioinformatics and statistics

Descriptive statistics were employed to evaluate patient characteristics to ensure distributional
assumptions for statistical tests were met. A bivariate analysis was performed to identify vari-
ables associated with CQ-R using t-test or Wilcoxon Rank-Sum test for continuous variables
and Chi-square test for categorical variables. Metabolomics data were filtered to remove fea-
tures not present in at least 80% of one group or >50% of all samples. After filtering, missing
values were imputed by one-half of the lowest signal detected for that feature across all samples
[56]. Data were then log, transformed and quantile normalized [57, 58]. Both univariate and
multivariate methods were used to identify differentially expressed m/z features between
CQ-R and CQ-S groups. For univariate analysis, a multiple linear regression model with log,
transformed intensities of m/z features as dependent variable and response to CQ treatment
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(CQ-R versus CQ-S) and potential confounding factors (platelet count, age, and gender) as
independent variables was fitted for each m/z feature. Multiple hypothesis correction was per-
formed using the Benjamini-Hochberg false discovery rate (FDR) correction method [59].
Type 1 (-logyo p vs m/z) and Type 2 (-log; p vs retention time) Manhattan plots were used to
visualize the pattern of differential expression across all features with respect to molecular
mass and chemical properties, respectively. Multivariate analysis was performed using partial
least squares discriminant analysis (PLS-DA) implemented in the R package mixOmics v5.2.0,
and discriminatory features were selected using the variable importance for projection
(VIP>1.5) measure [60]. Fold change of raw intensity values was calculated for each feature as
a ratio of average intensity from CQ-R and CQ-S groups. A consensus feature selection frame-
work was used such that only features selected by both univariate and multivariate methods
with a fold change greater than two between CQ-R and CQ-S groups were considered as dis-
criminatory features. Two-way hierarchical clustering analysis (HCA) was performed to visu-
alize the relationship between subjects and discriminatory features between CQ-R and CQ-S
groups. The classification accuracy of discriminatory features and clinical variables was evalu-
ated using a support vector machine (SVM) classifier and a 10-fold cross-validation procedure,
which was repeated ten times. Permutation testing was performed by randomly shuffling the
class labels of the subjects. The abundance level of top discriminatory metabolites in subjects
with CQ-R and CQ-S parasites was compared to 20 controls from Brazil, pooled plasma from
20 healthy individuals from the United States, and National Institute of Standards and Tech-
nology (NIST) pooled Standard Reference Material SRM1950 [61]. 95% confidence intervals
were used to represent the metabolite levels for controls, CQ-R, and CQ-S groups.

Metabolite annotation, pathway analysis, and MS/MS

Annotation of discriminatory features was performed using xMSannotator v1.2 with the
Human Metabolome Database (HMDB v3.6) [62]. xMSannotator uses adduct/isotope pat-
terns, correlation in intensities across all samples, retention time difference between adducts/
isotopes of a metabolite, and network and pathway associations for associating m/z features
with known metabolites and categorizing database matches into different confidence levels.
This multi-step annotation process reduces the number of false matches as compared to only
m/z based database search [62]. Mummichog v0.10.3 was used to perform pathway enrichment
analysis using m/z features that were significant at p<0.05 and had VIP>1 [63]. Although the
annotation step in mummichog at the individual metabolite level includes false matches, the
software uses statistical tests to compare the enrichment pattern of the real metabolite subsets
with null distribution, thereby allowing prioritization of pathways for further evaluation [44].
MS/MS analysis of the top discriminatory features with high confidence matches in xMSanno-
tator was performed on a Dionex UHPLC system using C18 chromatography (Higgins Analyt-
ical) coupled to a Thermo Fisher Orbitrap Fusion mass spectrometer (HCD—35 eV, 1 AMU
isolation window, 120,000 resolution). Raw MS/MS data was processed using DeconMSn [64]
and the experimental spectra were compared to MS/MS spectra in Metlin and mzCloud [65,
66).

Results

Forty-six patients were included in all analyses, 15 CQ-R and 31 CQ-S. The mean age was 33
+16.4 years and 10 were female (Table 1). The median hemoglobin at the time of enrollment
was 13.75 g/dl (IQR 12.4-14.28 g/dl). The median parasitemia at the time of enrollment was
1.9x10” parasites/pl (IQR 0.8-3.3 x10° parasites/pl). Bivariate analyses were performed to find
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Table 1. Demographic and laboratory characteristics of 46 patients with P. vivax infections assessed for CQ resistance in Manaus, Brazil, 2011-
2012.

Gametocytes

28.2 IQR[0-90.9]

35.8 IQR([4.6-55.6]

Variable Chloroquine resistant (N = 15) Chloroquine sensitive (N = 31) P-value
Age (years) 28.3+15.1 35.6+16.8 0.15
Gender
Male 12 (80%) 24 (77.4%) 1
Female 3 (20%) 7(22.6%)
Hemoglobin (g/dl) 13.6 IQR[12.4-14.1] 13.8 1QR[12.4-14.4] 0.88
Leukocytes (102 cells/ul) 4.91QR [4.7-6.0] 6.4 IQR[5.3-7.4] 0.06
Platelets (10° cells/ul) 86 IQR [54.5-120.5] 130 IQR [98.5-157.5] 0.02
ALT (U/dl) 30 IQR [22.5-54.5] 29 IQR[20.5-38] 0.53
Glucose (mg/dl) 121 IQR [112-130.5] 129 IQR[104.5-161.5] 0.58
Total bilirubin (mg/dl) 0.95 QR [0.7-1.21] 1.27 IQR[0.79-1.54] 0.25
Creatinine (mg/dl) 0.87 £0.32 0.91+0.24 0.68
Parasitemia (10° parasites/pl) 1.31QR[0.7-2.6] 2.6 IQR[1.4-3.5] 0.22

Abbreviations: IQR = Inter-quartile range. ALT: Alanine transaminase.
P-values obtained using t-tests or Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0182819.t001

variables associated with the study outcome and platelet count levels at the time of enrollment
were found to be associated with CQ resistance (p<0.05, Table 1).

To determine whether metabolic differences occurred between patients subsequently classi-
fied as CQ-R and CQ-S, HRM was performed on associated samples collected prior to initiation
of CQ treatment (Metabolomics Workbench ID: ST000578). High-resolution metabolomics
provided data for 21,360 m/z features; after filtering for missing values, 3,049 m/z features were
log, transformed and quantile normalized for downstream statistical analyses using a consensus
feature selection framework (S1 Table). Using the univariate approach, 81 m/z features were
selected as discriminatory features between CQ-R and CQ-S groups at FDR<0.20 (Fig 2A and
2B). The green (higher in CQ-R) and red (lower in CQ-R) circles above the dotted horizontal
line (FDR 0.2 threshold) represent the discriminatory features. The type 1 Manhattan plot
shows discriminatory features with a broad range of m/z, -log;o P versus m/z (Fig 2A). 77% of
the discriminatory features had retention time greater than 4 minutes (Fig 2B). This is consis-
tent with the elution pattern of lipids using reverse-phase chromatography [67]. The less strin-
gent FDR cutoff could facilitate identification of biologically meaningful associations [68]. As
an alternative approach, discriminatory features were selected using the Variable Importance
for Projection (VIP) scores in a PLS-DA model, which is a multivariate method. Sixty nine of
the 81 discriminatory features selected using the univariate approach were also selected at a VIP
threshold of 1.5 and had greater than 2-fold increase or decrease in abundance levels between
the CQ-R and CQ-S groups (S1 and S2 Tables). Less than 12% of the discriminatory features
were associated with the potential confounders (p<0.05) in the linear regression model (S2
Table).

Two-way hierarchical clustering analysis (HCA) was performed using the discriminatory
features to identify clusters of samples and m/z features. Hierarchical clustering analysis
showed that the discriminatory features grouped into 14 clusters that could be combined into
two major clusters comprised of features with differential expression patterns (up-regulated or
down-regulated) between the two groups (Fig 2C). Pathway enrichment analysis using Mum-
michog showed significant enrichment (p<0.05) of several pathways related to lipid and
amino acids metabolism: glycerophospholipid metabolism, glycosphingolipid metabolism,
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Fig 2. Identification of metabolic features associated with CQ resistance. A) Type 1 Manhattan plot,
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https://doi.org/10.1371/journal.pone.0182819.g002

aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics
metabolism (Fig 2D and S3 Table).

Annotation of the top discriminatory features using xMSannotator followed by MS/MS
evaluation showed that a subset of features was glycerophosphocholines (S1 Fig and S2 Table).
The acquired MS/MS spectra for m/z 510.3535 (S1A Fig) matched the spectra for LysoPC
(17:0) (level 2 confidence level based on Schymanski et al. [69]) in Metlin. The MS/MS
included diagnostic fragments m/z 184.0734 (phosphocholine) and m/z 104.1071 (choline) for
LysoPCs [70]. The MS/MS spectra for m/z 516.3058 annotated as M+Na form of LysoPC
(16:1) using xMSannotator had one diagnostic fragment, m/z 104.1071 (choline) consistent
with glycerophosphocholines (S1B Fig; level 2 confidence level based on Schymanski et al.
[69]). However, xMSannotator assigned multiple co-eluting and correlated features to differ-
ent forms (M+H, M+Na, and *C M+H) of LysoPC(16:1). Additionally, we have previously
shown that this feature is significantly correlated with choline and other forms of this metabo-
lite [71].

As an alterative data extraction approach, the data were also processed using XCMS [54].
The glycerophosphocholines were significantly different between CQ-R and CQ-S subjects at
p<0.05 and had VIP>2 using PLS-DA (S2A Fig). Additionally, pathway analysis based on
xcms results also showed enrichment of glycerophospholipid metabolism (S2B Fig), thereby
indicating that association of glycerophosphocholines with CQ-R is likely to be a real biologi-
cal phenomenon and not an analytical artifact.

The abundance levels of the glycerophosphocholines were significantly lower in the CQ-R
group as compared to CQ-S subjects and also to independent control samples NIST SRM1950
pooled plasma samples, plasma samples from 20 healthy controls from Brazil, and plasma sam-
ples from 20 controls from the US, with p<0.05 regarded as significant (Fig 3).

Comparisons of 10-fold cross-validation accuracy using only platelet counts, only glycero-
phosphocholines, top 10 and top 30 discriminatory features ranked based on VIP, and using
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Fig 3. Comparison of glycerophosphocholine abundance levels in NIST, pooled normal plasma (US), healthy
controls (Brazil), CQ-Resistant (P. vivax), and CQ-Sensitive (P. vivax) groups along with 95% confidence
intervals. The glycerophosphocholines were found to be lower in CQ-Resistant group as compared to CQ-Sensitive
and other control samples (p<0.05).

https://doi.org/10.1371/journal.pone.0182819.g003

all 69 discriminatory metabolic features show that the metabolic features allow up to 89.6%
10-fold classification accuracy as compared to 65% using only the platelet counts (Fig 4). Both
clinical variables and metabolic features performed better than the randomly generated

models.
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Fig 4. 10-fold cross-validation analysis using clinical variables and top discriminatory metabolic
features. 10-fold cross-validation classification accuracies varied from 65% to 89.6% using platelet count,
glycerophosphocholines, top 10, top 30, and all 69 discriminatory features. The average permuted accuracies
(N = 1000 permutations) varied from 55-58%.

https://doi.org/10.1371/journal.pone.0182819.g004
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Discussion

Here, by comparing the plasma metabolic profiles before CQ treatment of individuals with P.
vivax infections in Brazil, we have identified metabolic signatures that could allow prediction
of PvCR. Previous studies did not find any associations between clinical response to CQ and
polymorphisms in the pvcrt-o, pvmdrl, pvdhfr, pymrpl, and pvdhps genes in P. vivax subjects
[22, 26, 28, 72-75]. The correlation between ex vivo CQ resistance and sequence polymor-
phisms in PvCR candidate genes is limited and contradictory [15, 76]. In terms of gene tran-
scription, however, parasites from patients with PvCR presented up to 6.1 and 2.4 fold increase
in pvert-o and pvmdr-1 transcription levels, respectively, compared to the susceptible group
[26]. Caution is needed when attempting to extrapolate the ex vivo biomarkers of resistance to
the clinical response, since pvcrt-o transcription was not a primary determinant of ex vivo drug
susceptibility [77]. These previous observations suggest that host-parasite interaction factors,
such as nutritional and immune components and clinical severity grading, rather than parasite
constitutional factors per se, may be involved in PvCR [26, 27, 78]. In this context, coordinated
use of metabolic phenotyping of samples from P. vivax patients presenting with well-defined
clinical resistance to CQ holds much promise for the development of new tools to understand
the biological process of PvCR and to identify potential biomarkers of PvCR.

Chloroquine mechanism(s) of action has been an intense area of research for decades. Evi-
dence supports that the principal target is the heme detoxification pathway in the digestive vacu-
ole, where the parasite degrades erythrocytic hemoglobin and polymerizes the liberated toxic
heme monomers to inert biocrystals of hemozoin [8, 9]. Inhibition of heme polymerization
would lead to a toxic milieu to the parasite with its own excreta. Thus, Plasmodium with a low
hemozoin production phenotype should present as CQ-R [79] as observed for P. falciparum [80].
Catabolism of host hemoglobin in Plasmodium berghei-infected reticulocytes is also down regu-
lated in CQ-resistant parasites [81]. Interestingly, replication of Plasmodium developing inside
reticulocytes, such as P. vivax, can occur without hemozoin formation, resulting also in CQ-resis-
tance [82]. In the current study, lipid (glycerophospholipid and glycosphingolipid metabolism)
and amino acids (aspartate and asparagine metabolism) pathways were dissimilarly expressed in
PvCR carriers. Lipid membranes and proteins are typically involved in biomineralization pro-
cesses in Plasmodium [83-87], suggesting a modulation in terms of quantitative expression of
these groups of metabolites in P. vivax with different degrees of CQ sensitivity.

Here, glycerophospholipids and glycosphingolipids metabolism pathways were differen-
tially expressed in CQ-R and CQ-S subjects before treatment. Glycerophospholipids are the
main Plasmodium membrane constituents, with the predominant phosphatidylcholine and
phosphatidylethanolamine lipids originating from the parasite-encoded enzymatic machinery
for membrane neogenesis, which requires high amounts of phospholipids [88]. Previous stud-
ies have shown alterations in phospholipase A2 (PLA2) activity, which is involved in the gly-
cerophospholipid metabolism, during P. vivax malaria in human studies and in erythrocytes
infected with P. falciparum following CQ treatment [89]. Chloroquine has high affinity for
membrane phospholipids, and inhibition of Plasmodium PLA2 may be important for thera-
peutic action [89, 90]. Furthermore, previous studies have shown the involvement of trans-
porter genes and membrane proteins that involved in the transport of drugs and lipids with
antimalarial drug resistance [14]. Glycosphingolipids are important components of cellular
membranes involved in various biological functions, and their biosynthesis was described in
Plasmodium by an active malarial glucosylceramide synthase [91, 92]. Marked lower levels of
glycerophosphocholines in CQ-R compared to CQ-S and control groups and perturbation of
the glycerophospholipid metabolism based on the pathway analysis indicates that there could
be perturbed PLA2 activity in the CQ-R subjects before treatment. Alternatively, CQ-R parasites
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may have the ability to utilize the host glycerophosphocholines, and therefore be able to survive
even when CQ inhibits the Plasmodium PLA2. There is a well-documented link between hemo-
zoin formation and lipid membrane metabolism [93-96]. Considering that host hemoglobin
catabolism and hemozoin production are reduced in CQ-R infected cells [79], a differential
expression in glycerophospholipids, glycosphingolipids and glycerophosphocholines pathways
are expected from parasites, with further decreased levels of their metabolites. Since glyceropho-
sphocholines levels were decreased in mice presenting severe malaria, especially cerebral
malaria [97, 98], one also speculates that parasite virulence or host-parasite interactions may be
different in CQ-R and CQ-S phenotypes. In addition, a slower hemoglobin digestion process in
patients with CQ-R infected cells may result in a milder inflammatory profile and in a reduced
cell turnover of those metabolites compared to CQ-S carriers [99, 100].

In addition to pathways related to lipid metabolism, metabolomics also suggests perturba-
tions in aspartate and asparagine metabolism and nucleotide metabolism. Plasmodium has a
rudimentary pathway for amino acid biosynthesis, depending mainly on host hemoglobin deg-
radation and extracellular sources to meet its amino acid requirements [101]. Of these amino
acids, asparagine plays a pivotal role in the parasite life cycle by serving as one of the most
abundant amino acids in P. vivax [102]. Consequently, malaria parasites have retained aspara-
gine synthetase, which catalyzes the formation of asparagine from aspartate [101]. In situations
of high parasite load or low-hemozoin producer phenotypes, in which arginine requirements
are expected to be higher [103], depletion of blood asparagine levels and increased transcrip-
tion of parasite asparagine synthetase may occur [104]. Plasmodium parasites are unable to
synthesize purines de novo and have to salvage them from the host through endogenous host
erythrocyte transporters [105]. As observed for amino acids, dissimilar requirements of nucle-
otide by CQ-R and CQ-S phenotypes may explain the higher uptake of purines from the host,
which is consistent with our results. Moreover, purine and pyrimidine metabolism pathways
have previously been associated with inflammation and enhanced immune cell turnovers
[106]. Accordingly, circulating nucleic acids increase in patients with P. vivax [107], pointing
to the involvement of host response leading to differences in nucleotide pathways between
groups. Interestingly, metabolomics demonstrates that Plasmodium can utilize elements of the
reserves of reticulocytes, namely nucleotides, which are absent in mature red blood cells [108].
Phenotype-specific differences in reticulocyte stages tropism or dissimilar trends in differenti-
ation in reticulocyte resident parasites may result in notable differences in the necessity for
parasite intrinsic metabolism. The xenobiotic metabolism pathway included two hydroxy-
naphthalene metabolites (common air pollutants) [109] dependent upon cytochrome P450
activities. Since CQ metabolism is also associated with cytochrome P450 [110], naphthalene
and other environmental chemicals could influence this result.

One of the limitations of the current study is the small number of human plasma samples
available for comparison. Although a consensus feature selection framework was used with
both univariate and multivariate methods to reduce the risk of over-fitting, additional valida-
tion studies will be required to replicate these findings in independent cohorts. Further, the
host inflammatory state was not extensively explored in this study, and may also influence the
results, as plasma metabolic changes are observed during immune responses [111]. More
detailed investigations exploring the host immune response alongside the parasite will enable a
clearer understanding of the respective roles of host and parasite in the altered metabolic state
of the CQ-R individuals. Future work will focus on validating these findings in an independent
set of samples, including samples from different endemic regions. Additionally, future investi-
gations will focus on improving our understanding of the CQ-host-vivax relationship.

Host nutritional status may influence malaria susceptibility and host and parasite metabolo-
mics, but the direct effect of a subject’s nutritional status was not assessed in this work when
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adjusting the analysis. Indeed, evidence of an exacerbating role of malnutrition on malaria can
be seen in longitudinal drug resistance studies. A slower parasite clearance, higher parasitemia
at presentation and more severe drug resistance were seen in malnourished Rwandan refugees
[112]. Likewise, in the Solomon Islands [113, 114] and Malawi [115] malnourished children
were significantly more prone to experience treatment failures than those better nourished.
These findings emphasize the complex metabolic pathways through which nutrients may
influence malaria parasites and host morbidity and bring new insights to explore the previous
associations between CQ-resistance and malaria severity [22, 26] using high-resolution meta-
bolomics to integrate nutrition to host and parasite metabolism in the future.

Conclusion

We present the first report of the use of high-resolution metabolomics to identify metabolites
and metabolic pathways related to PvCR. The results show differences in glycerophospholipid
and glycosphingolipid metabolism, aspartate and asparagine metabolism, and purine and pyrimi-
dine metabolism pathways in CQ-R vs CQ-S subjects prior to antimalarial treatment. Based on
previous studies, low catabolism of host hemoglobin with further lower hemozoin formation in
P. vivax-infected reticulocytes in CQ-resistant parasites could be involved in this sequence of
metabolic alteration. Although the number of samples in this study was small, the results demon-
strate the future potential of HRM in identifying P. vivax infected individuals that are likely to
show CR, and thus facilitate the design of optimal treatment plans. We present differentially
expressed metabolites and perturbed pathways that will require further validation in clinical
human cohorts and animal studies. Components of host metabolism regulation may be involved
in the PvCR phenomenon, including the effects of nutritional, metabolic and immune factors.
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S1 Fig. MS/MS evaluation of m/z features matching LysoPCs, A) Comparison of experimental
MS/MS spectra for m/z 510.3535 annotated as LysoPC (17:0) with reference spectra in Metlin;
B) MS/MS fragments for m/z 516.3058 annotated as LysoPC(16:1).
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