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Abstract
Background: The phlebotomine sand flies (Diptera:Psychodidae) Lutzomyia (Nyssomyia) intermedia
Lutz & Neiva 1912 and Lutzomyia (Nyssomyia) whitmani Antunes & Coutinho 1932 are two very
closely related species and important vectors of American cutaneous leishmaniasis. Two single-
locus studies have revealed evidence for introgression between the two species in both
mitochondrial and nuclear genomes. These findings have prompted the development of a
multilocus approach to investigate in more detail the genetic exchanges between the two species.

Results: We analyzed ten nuclear loci using the "isolation with migration" model implemented in
the IM program, finding evidence for introgression from L. intermedia towards L. whitmani in three
loci. These results confirm that introgression is occurring between the two species and suggest
variation in the effects of gene flow among the different regions of the genome.

Conclusion: The demonstration that these two vectors are not fully reproductively isolated might
have important epidemiological consequences as these species could be exchanging genes
controlling aspects of their vectorial capacity.

Background
Gene flow between closely related species has been reported
in an increasing number of studies as a rule and not as an
exception and it is currently well accepted that sibling spe-
cies can retain a low level of gene flow between them [1]. In
this case, divergence between closely related species is deter-
mined by competition between gene flow and genetic drift,
where the first tends to decrease divergence, and the latter to
increase it [2]. A number of studies have provided evidence
that introgression can occur more easily in certain regions of
the genome. This is determined mainly by natural selection,

which is expected to restrain gene flow at regions associated
with species-specific adaptations [3].

In insect disease vectors, gene flow between species may
have important epidemiological consequences, as it
might allow changes in the disease patterns. Fonseca et al.
[4] have shown that hybrids between two different forms
in the Culex pipiens complex, probably introduced in the
United States at two different moments, may act as a
bridge vector between birds and humans of the West Nile
virus, contributing to the current epidemics. In another
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example, Besansky et al. [5] have proposed that the acqui-
sition of chromosome inversions by Anopheles gambiae
from the more arid-adapted Anopheles arabiensis may have
contributed to the spread and ecological dominance of
this malaria vector.

Evidence of introgression has also been reported in sand
flies [6,7], including Lutzomyia intermedia and Lutzomyia
whitmani two important vectors of cutaneous leishmania-
sis in Brazil [8]. Recently, we obtained further evidence for
gene flow between these two closely related species using
the period (per) gene [9], a locus controlling circadian and
lovesong rhythms in Drosophila, that might have a role in
the reproductive isolation between sibling species
[reviewed in [10]]. These first pieces of evidence for intro-
gression lead us to inquire about the level and extent of
gene flow between L. intermedia and L. whitmani.

In this study, we performed a multilocus analysis using
ten different nuclear loci in a sample of L. intermedia and
L. whitmani from the locality of Afonso Claudio (South-
east Brazil) in order to estimate the level of gene flow
between these two vector species in each individual locus
and across the genome. The possibility that introgression
between these two leishmaniasis vectors is extensive and
recurrent, could have important epidemiological conse-
quences. For example, genes controlling aspects of vecto-
rial capacity such as adaptation to man made habitats
(domestic and peridomestic areas), competence to trans-
mit different Leishmania strains and host preference could
be passing from one species to another [8]. Analysis of
multiple markers might determine if introgression
between the two species is affecting many loci and
whether gene flow in genes known to control aspects of
the reproductive isolation in other species, such as period,
is relatively reduced compared to other loci.

Results
Molecular markers
The choice of molecular markers includes genes with dif-
ferent functions and genome locations as described in the
Methods. The ten loci used in this study are the homo-
logues of the following Drosophila genes: Ca1D (or Ca-
α1D; Ca2+-channel protein α1 subunit D), cac (cacophony),
Rp49 (or RpL32; Ribosomal protein L32), RpL17A (or RpL23;
Ribosomal protein L23), RpL36 (Ribosomal protein L36),
RpS19a (Ribosomal protein S19a), TfIIA-L (Transcription fac-
tor IIA L), up (upheld) and ζCOP (or zetacop) [11]. In addi-
tion, we also obtained new sequences of per from the
same samples. Sequences have been submitted to Gen-
bank (accession numbers EU082834–EU083311).

Polymorphism, Recombination and Divergence Analyses
Initially all sequences were checked for recombination, a
necessary step for the IM analysis (see below). The four-

gamete test [12] was carried out for each locus in order to
identify fragments with no evidence for internal recombi-
nation events. The larger non-recombining (NR) block
including at least part of an intron was finally chosen for
each locus to be used in subsequent population analyses
(see Methods).

Table 1 shows the minimum number of recombination
events for each gene and summarizes polymorphism
information for both the NR block and the whole frag-
ment at each locus. It is noticeable that some of the loci
have a large difference in length and in the number of seg-
regating sites between the whole fragment and the NR
block, but this is often due to the high number of recom-
bination events identified in some loci. However, in gen-
eral, this difference does not affect the level of per
nucleotide polymorphism, except for an increase of π and
θ in the per and cac NR blocks, which is probably due to
differences in evolutionary rates between different parts of
these gene fragments.

Divergence between L. intermedia and L. whitmani, esti-
mated from Fst values, is relatively high (Table 2), ranging
from 0.17 to 0.64, except for zetacop, which shows limited
divergence between the two species (Fst = 0.0542 for the
NR block, non significant). However, only three out of the
ten loci present fixed differences (Rp49, RpL36 and
RpS19a), whereas polymorphisms are shared in most
genes, particularly in per (14 shared polymorphisms for
the whole fragment). Some of the loci present differences
in the degree of genetic divergence estimated from the
analysis of the whole fragment and the NR block, respec-
tively. The RpL17A NR block presents far less divergence
between species compared to the whole fragment (Fst =
0.1749 and 0.4135, respectively), while the opposite is
observed in RpL36 (Fst = 0.6026 and 0.3609 for the NR
block and the whole fragment, respectively).

IM Analysis
An analysis of population divergence under the "Isolation
with Migration" model has been performed using the IM
software [2]. The IM analysis requires sequence data from
individual loci that show variation within or between two
populations, under the assumption that recombination is
negligible. For this reason, only the NR blocks containing
at least part of an intron have been used for the analyses
and some putatively recombinant sequences were
excluded (see Methods). In order to avoid mistaking the
effects of selection for those of drift or migration, we car-
ried out preliminary tests of selective neutrality. These
included Tajima's D [13], Fu and Li's D* and F* [14],
Ramos-Onsins and Rozas' R2 [15], and Fu's FS [16]. The
statistic tests have been calculated using the DnaSP soft-
ware [17] (for Tajima's D estimates see Table 1; for the
other tests see additional file 1). The simulation analyses
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of the HKA software [18] were used for performing the
HKA multilocus test of neutral molecular evolution [19].
In only one case (NR block of zetacop in L. whitmani for the
FS test) a significant deviation from neutrality has been
detected after Bonferroni's correction (see additional file

1). Based on their chromosome positions in Drosophila
[11], all ten loci studied are expected to be unlinked,
although we do not know their location in the Lutzomyia
genome.

Table 1: Polymorphism analyses for each locus/non-recombining block

locus species na Length(bp) RMb Sc πd θe Tajima's Df

Ca1D L.intermedia 27(25) 176(176) 1 6(5) 0.0141(0.0129) 0.0088(0.0075) 1.7251(2.0390)
L.whitmani 28(24) 13(11) 0.0205(0.0185) 0.0190(0.0167) 0.2687(0.3541)

cac L.intermedia 12(11) 172(51) 2 4(3) 0.0100(0.0235) 0.0077(0.0201) 1.0291(0.5873)
L.whitmani 30(28) 9(8) 0.0104(0.0306) 0.0132(0.0403) -0.6517(-0.7434)

per L.intermedia 21(20) 481(86) 13 29(7) 0.0154(0.0204) 0.0168(0.0229) -0.4254(-0.3674)
L.whitmani 23(22) 36(12) 0.0236(0.0312) 0.0203(0.0383) 0.2943(-0.8805)

Rp49 L.intermedia 24(18) 237(237) 5 13(12) 0.0149(0.0135) 0.0147(0.0147) 0.0440(-0.3030)
L.whitmani 17(16) 5(5) 0.0040(0.0035) 0.0062(0.0064) -1.1412(-1.4912)

RpL17A L.intermedia 20(16) 238(114) 5 13(5) 0.0188(0.0135) 0.0154(0.0132) 0.4893(0.0580)
L.whitmani 31(31) 19(8) 0.0162(0.0101) 0.0200(0.0176) -0.9231(-1.2859)

RpL36 L.intermedia 36(34) 412(113) 13 29(9) 0.0164(0.0185) 0.0170(0.0195) -0.1108(-0.1489)
L.whitmani 11(11) 29(6) 0.0279(0.0183) 0.0240(0.0181) 0.3898(0.0468)

RpS19a L.intermedia 36(34) 194(117) 3 9(5) 0.0091(0.0106) 0.0112(0.0105) -0.5708(0.0462)
L.whitmani 48(46) 14(5) 0.0169(0.0119) 0.0163(0.0097) -0.0895(0.0532)

TfIIA-L L.intermedia 23(23) 355(254) 1 13(10) 0.0081(0.0080) 0.0099(0.0107) -0.6493(-0.8337)
L.whitmani 21(21) 11(11) 0.0115(0.0161) 0.0086(0.0120) 1.1776(1.1776)

up L.intermedia 11(11) 428(354) 3 6(2) 0.0041(0.0010) 0.0048(0.0019) -1.0943(-1.4296)
L.whitmani 11(11) 22(14) 0.0172(0.0127) 0.0176(0.0135) -0.4745(-0.7781)

zetacop L.intermedia 29(28) 292(230) 3 10(8) 0.0056(0.0059) 0.0087(0.0089) -1.1477(-1.0613)
L.whitmani 19(18) 17(14) 0.0110(0.0116) 0.0167(0.0177) -1.2924(-1.2976)

Note: values refer to sequences without gaps/ambiguous alignment; numbers in parentheses are related to the non-recombining block for each 
locus.
aNumber of sequences for each species for each locus.
bThe minimum number of recombination events.
cNumber of segregating sites.
dThe average number of nucleotide differences per site between two sequences.
eTheta (θ) = 4 N μ from S (number of segregating sites).
fNone of the Tajima's D values was significant after Bonferroni's correction.

Table 2: Divergence between L. intermedia and L. whitmani at each locus, whole fragment and non-recombining block

locus Fst
a Nmb Dxyc Dad Fixede Sharedf

Ca1D 0.4139*(0.4567*) 0.354(0.2974) 0.0295(0.0289) 0.0122(0.0132) 0(0) 2(1)
cac 0.2874*(0.2593*) 0.6198(0.7142) 0.0143(0.0365) 0.0041(0.0095) 0(0) 1(1)
per 0.3188*(0.3313*) 0.5341(0.5045) 0.0288(0.0386) 0.0092(0.0128) 0(0) 14(1)
Rp49 0.6144*(0.6407*) 0.1569(0.1402) 0.0244(0.0236) 0.015(0.0151) 1(1) 1(0)
RpL17A 0.4135*(0.1749*) 0.3546(1.1798) 0.0301(0.014) 0.0126(0.0022) 0(0) 7(1)
RpL36 0.3609*(0.6026*) 0.4427(0.1649) 0.036(0.0464) 0.0138(0.028) 2(2) 6(0)
RpS19a 0.4593*(0.5618*) 0.2943(0.195) 0.024(0.0257) 0.011(0.0145) 1(1) 3(1)
TfIIA-L 0.4401*(0.3646*) 0.3181(0.4357) 0.0174(0.0188) 0.0076(0.0067) 0(0) 0(0)
up 0.3562*(0.4168*) 0.4518(0.3499) 0.0167(0.012) 0.0061(0.0051) 0(0) 3(1)
zetacop 0.0552+(0.0542ns) 4.2752(4.3621) 0.0088(0.0092) 0.0005(0.0005) 0(0) 3(1)

aPairwise fixation index. Significance evaluated with 10000 permutations; * significant at P < 0.001;
+ significant at P < 0.01; ns non significant P > 0.01.
b Estimated number of migrants per generation between populations calculated from Fst.
cThe average number of nucleotide substitutions per site between populations.
dThe number of net nucleotide substitutions per site between populations.
e Number of fixed differences between species.
fNumber of shared polymorphic sites between species.
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Migration parameters have been estimated for each locus
as well as for all loci together for each population in dif-
ferent IM runs. Our aim was to detect the occurrence of
gene flow using the multilocus data, and determine
whether the evidence for introgression is exclusive to
some loci. All marginal densities suggest stationary distri-
butions, with one exception (see below).

The marginal posterior probability densities for each of
the six demographic parameters estimated using IM are
shown in Figure 1. The results obtained suggest gene flow
from L. intermedia to L. whitmani (Figure 1, top right
graph). Table 3 summarizes the features from the mar-

ginal histograms for each of the parameters. The migra-
tion rate estimate with the highest smoothed value of
likelihood is m1 = 0.095 (average of 3 independent runs)
and the 95% confidence intervals exclude the value zero
for gene flow (Table 3). On the other hand, no evidence
of migration has been found in the other direction, from
L. whitmani to L. intermedia (m2 = 0.002, that is m2~0 as
0.002 is the lowest value that can possibly be estimated by
the program under the conditions used).

Simulations were also carried out to estimate the migra-
tion rates of each locus separately. Figure 2 shows the mar-
ginal posterior probability densities for each locus

Estimates of demographic parametersFigure 1
Estimates of demographic parameters. Marginal Posterior Probability Densities for each of the six demographic parame-
ters estimated using IM: theta (θ = 4 N μ); migration rate (m = m/μ) and divergence time between species (t = t μ). Three IM 
simulations (a, b and c) with different seed numbers have been plotted for each parameter estimate (see also Table 3).
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Table 3: Model parameter estimates for all loci

θ1
a θ2

a θA
a tb m1

c m2
c

a b c a b c a b c a b c a b c a b c

Minbind 1.236 1.263 1.453 0.714 0.790 0.790 0.014 0.014 0.014 0.578 0.593 0.588 0.002 0.002 0.002 0.002 0.002 0.002
Maxbind 7.320 6.939 7.374 4.024 4.043 3.986 5.283 7.238 6.043 2.733 2.783 3.038 0.814 0.734 0.810 0.678 0.650 0.630
HiPte 2.838 2.811 2.920 1.608 1.684 1.589 0.448 0.475 0.557 1.348 1.293 1.328 0.102 0.094 0.094 0.002 0.002 0.002
HiSmthe 2.838 2.838 2.838 1.646 1.665 1.646 0.475 0.503 0.530 1.328 1.278 1.313 0.098 0.094 0.094 0.002 0.002 0.002
Mean 2.947 2.947 2.947 1.703 1.703 1.684 0.638 0.665 0.638 1.338 1.323 1.323 0.118 0.114 0.114 0.030 0.030 0.030
95Lof 2.078 2.078 2.105 1.189 1.189 1.189 0.041 0.068 0.041 0.918 0.913 0.908 0.018 0.022 0.018 0.002 0.002 0.002
95Hif 4.115 4.142 4.142 2.407 2.407 2.407 1.833 1.833 1.860 1.848 1.828 1.843 0.302 0.298 0.294 0.174 0.170 0.170
HPD90Log 2.051 2.051 2.078 1.151 1.151 1.151 0.014 0.041 0.014 0.958 0.943 0.938 0.014 0.014 0.014 0.002 0.002 0.002
HPD90Hig 3.870 3.897 3.925 2.274 2.274 2.274 1.399 1.426 1.426 1.743 1.718 1.723 0.242 0.238 0.238 0.110 0.106 0.110

Note: Values are presented for each of the three runs with different seed numbers (a, b and c).
a The population size parameter for L. whitmani (θ1), L. intermedia (θ2) and ancestral population (θA); θ = 4 Nm.
b Time of population splitting parameter
c Migration rate estimate (m1 – from L. intermedia to L. whitmani; m2 – from L. whitmani to L. intermedia).
d The midpoint value of the lowest (Minbin) and highest (Maxbin) bin.
e The value of the bin with the highest count (HiPt), after the counts have been smoothed by taking a running average of 9 points centered on each bin (HiSmth).
f The estimated points to which 2.5% of the total area lies to the left (95Lo) and to the right (95Hi).
g The lower (HPD90Lo) and upper (HPD90Hi) bound of the estimated 90% highest posterior density (HPD) interval.
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migration rate while Table 4 presents a summary from the
marginal histograms. The results have revealed nonzero
values in three different loci, cac, RpL17A and zetacop
towards L. whitmani (Figure 2 and Table 4), showing no
evidence of introgression between these two species at the
other loci. Although the distribution for the RpL17A locus
does not reach the zero value on its right tail, this gene
shows the highest estimate for the migration parameter in
the direction of L. whitmani.

Maximum likelihood estimates for θ suggest that the L.
whitmani effective population size is almost twice as large
as in L. intermedia (Figure 1) while the ancestral popula-
tion is estimated to be smaller than the current ones, indi-
cating a possible expansion for both species.

Divergence time as well as the other parameters estimated
with IM cannot be directly converted to numbers in years
or generations, since the mutation rates in these two spe-
cies or in other sand flies are unknown. However, using D.
melanogaster synonymous and nonsynonymous substitu-
tion rates for nuclear genes, 1.56 × 10-8 and 1.91 × 10-9 per
site per year [20], respectively, seems to be a reasonable
first step for estimating the divergence time between Lut-
zomyia species. Thus, our educated guess for the diver-
gence time between L. intermedia and L. whitmani would
be of approximately 800 thousand years.

Genealogy Analysis
Gene trees for both entire sequence and NR block were
estimated using Neighbor-Joining (NJ) and Parsimony
methods, available in MEGA 3.1 [21], with similar results
(data not shown). Only in the RpL36 gene tree the
sequences of the two species occurred in two separate
clusters (see below) while for 3 genes only one species
formed a cluster (RpS19a, TfIIa-L and Rp49) and 5 genes
did not present the sequences from any of the species in a

single cluster (Ca1D, cac, per, up and zetacop) (data not
shown).

Figure 3 presents the NJ trees from the NR blocks of the
three loci that presented a nonzero migration estimate in
the IM simulations: cac, RpL17A and zetacop. These trees
are compared to the NJ tree of the RpL36 NR block (bot-
tom right). While the former trees present non-structured
topologies with a few identical haplotypes between the
two species, the RpL36 NR block tree clearly groups both
species in different clusters with a high bootstrap value
(86%). Very similar results were obtained when haplotype
networks were estimated using BioNumerics v. 5.0
(Applied Maths). Figure 4 shows Minimum Spanning
Trees of RpL36, cac, RpL17A and zetacop NR blocks. Again
only RpL36 presents a clear separation between the haplo-
types of the two species.

Discussion
Populations seldom evolve according to a simple and
easy-to-identify mechanism. Under the model of Isola-
tion with Migration, information on both divergence time
and gene flow rates can be extracted from the data; thus,
this model is more flexible and realistic than most alterna-
tive models of subdivided populations, which assume
either absence of gene flow or an infinite divergence time
[2,22]. Therefore, the IM model is particularly suitable for
the study of recently-separated populations that may still
be connected by some genetic exchanges, as we believe to
be the case for the closely related species L. intermedia and
L. whitmani, which despite presenting some identical hap-
lotypes and no fixed differences in the per gene and in a
mitochondrial marker [8,9] are nevertheless distinguisha-
ble by morphological differences [23]. Indeed, the simu-
lations presented here between these two vectors showed
good convergence and consistency among independent
runs. In addition, the estimated population size difference

Table 4: Migration parameter estimates for each locus

Ca1D cac per Rp49 RpL17A RpL36 RpS19a TfIIA-L up zetacop
I W I W I W I W I W I W I W I W I W I W

Minbina 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Maxbina 13.54 12.21 19.99 19.99 15.93 12.93 19.99 18.91 19.99 19.99 16.45 15.88 5.45 4.04 15.37 9.87 19.99 19.99 19.99 19.99
HiPtb 0.07 0.01 0.01 0.64 0.04 0.01 0.01 0.01 0.03 4.26 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2.41
HiSmthb 0.05 0.01 0.01 0.63 0.02 0.01 0.01 0.01 0.01 3.95 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2.48
Mean 0.41 0.23 0.91 1.25 0.46 0.32 0.31 0.25 6.18 8.00 0.21 0.23 0.17 0.11 0.25 0.24 0.44 0.41 0.83 3.63
95Loc 0.01 0.01 0.03 0.11 0.01 0.01 0.01 0.01 0.15 0.56 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.36
95Hic 1.98 1.38 9.33 7.36 2.35 1.97 4.99 1.90 19.16 19.17 1.44 1.70 1.01 0.69 1.64 1.42 5.45 5.13 9.07 14.35
HPD90Lod 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
HPD90Hid 1.24 0.80 4.15 3.76 1.43 1.10 1.67 0.94 18.6?

*
16.9?

*
0.76 0.88 0.61 0.43 0.90 0.82 1.94 1.78 4.07 9.13

Note. I – L. intermedia; W – L. whitmani. Each estimated value is an average of four IM runs with different seed numbers.
a The midpoint value of the lowest (Minbin) and highest (Maxbin) bin.
b The value of the bin with the highest count (HiPt), after the counts have been smoothed by taking a running average of 9 points centered on each bin (HiSmth).
c The estimated points to which 2.5% of the total area lies to the left (95Lo) and to the right (95Hi).
d The lower (HPD90Lo) and upper (HPD90Hi) bound of the estimated 90% highest posterior density (HPD) interval.
* HPD estimate not reliable
Page 5 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:141 http://www.biomedcentral.com/1471-2148/8/141

Page 6 of 12
(page number not for citation purposes)

Migration rate estimates in 10 different lociFigure 2
Migration rate estimates in 10 different loci. Marginal Posterior Probability Densities for each locus migration rate. Four 
IM simulations with different seed numbers have been plotted.
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Genealogies of NR blocks of four selected lociFigure 3
Genealogies of NR blocks of four selected loci. Genealogies from the NR blocks of the three loci with evidence of gene 
flow (cac, RpL17A and zetacop) and one locus (RpL36) presenting fixed differences between L. intermedia (blue circles) and L. 
whitmani (red squares). The trees were estimated using the neighbor-joining method, Kimura-2-parameters distance and 1000 
bootstrap replicates. The trees were rooted using the middle-point between the two most distant sequences.
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between the species seems intuitively reasonable, since
the distribution of L. whitmani is wider than L. intermedia.
L. whitmani is distributed throughout most of Brazil
occurring also in neighboring countries. L. intermedia
occurs in the Northeastern and part of the Southeastern
regions of Brazil [23-25].

Although genealogies can be difficult to interpret in case
of recombination, phylogenetic analyses do not have to
assume any historical demographical model [26], and
therefore it is useful to observe the gene trees and compare
them with our summary-statistics analyses. Figures 3 and
4 illustrate the difference between the topologies of loci
presenting either evidence for gene flow or high differen-
tiation between species.

Three loci present fixed differences between L. intermedia
and L. whitmani and no evidence of gene flow and can
therefore be suggested as molecular markers to differenti-
ate the two species: Rp49, RpS19a and RpL36. The latter
also presents insertions/deletions which have not been

considered in Table 2. These three genes codify ribosomal
protein subunits and it is intriguing that only such genes
present fixed differences. As far as we know there is no rea-
son one should expect these highly conserved ribosomal
proteins to be less prone to introgression or to be under
directional selection that would increase the likelihood of
fixed differences between the two siblings. One interest-
ing, but perhaps unlikely, possibility is that codon bias, as
observed in Drosophila ribosomal protein genes [27],
might somehow be responsible for the observed fixed dif-
ferences.

The cac and per genes determine aspects of the lovesong
patterns in Drosophila (reviewed in [28]), and therefore
they are potentially good candidates for speciation loci in
insects producing acoustic signals. So far, there is no
behavioral study providing evidence that lovesongs play a
role in the reproductive isolation between L. intermedia
and L. whitmani as might be the case for the Lutzomyia lon-
gipalpis s.l. siblings [29,30]. Our data suggest the occur-
rence of introgression in cac and, although no evidence for
gene flow in per was obtained in the present study, a pre-
vious analysis using this gene as a molecular marker also
suggests introgression between L. intermedia and L. whitm-
ani in at least one of the populations analyzed [9]. This
evidence of gene flow in cac and per might indicate that
these two loci do not have an important role, if any, in the
reproductive isolation of L. intermedia and L. whitmani.

The RpL17A gene presented great differences between the
genealogies and haploytpe networks obtained with the
whole fragment and the NR blocks. While the latter show
topologies with no grouping pattern for L. intermedia or L.
whitmani and some identical haplotypes in both species
(Figs. 3 and 4), the NJ tree and haplotype network from
the whole fragment divide the species in two distinct
groups (additional files 2 and 3). The same difference can
be noticed for the Fst values, 0.4135 and 0.1749 for the
whole fragment and NR block, respectively (Table 2). The
IM simulations using the NR blocks indicated migration
in the direction of L. whitmani at this gene. The observa-
tion that non-recombining blocks present low-divergence
between species in opposition to the whole gene, suggests
the occurrence of migration followed by recombination,
where new haplotypes are created by recombining differ-
ent alleles inside a population instead of by the occur-
rence of new mutations. It also reinforces the idea that
different regions of a gene might have different evolution-
ary histories [3].

The zetacop gene has also presented interesting results. The
fragment analyzed here revealed a large level of gene flow
between the two species, with low (whole fragment) or
non significant values (NR block) of Fst (Table 2) in addi-
tion to genealogies and networks that do not follow any

Haplotype Networks of NR blocks of four selected lociFigure 4
Haplotype Networks of NR blocks of four selected 
loci. Minimum spanning trees of the NR blocks of the three 
loci with evidence of gene flow (cac, RpL17A and zetacop) and 
one locus (RpL36) presenting fixed differences between L. 
intermedia (blue) and L. whitmani (red). The circles are pro-
portional to the haplotype frequencies and the black and grey 
lines connecting the haplotypes represent the number of 
mutational steps.
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grouping pattern (NR block in Figs. 3 and 4; whole frag-
ment in additional files 2 and 3).

The epidemiological consequences of gene flow involving
disease vectors are still not well known [31], however
some studies do suggest important phenotypical changes
in insect vectors due to introgression (see Background).
The results obtained here are especially important because
L. intermedia and L. whitmani are considered two main
vectors of the cutaneous leishmaniasis, a disease for which
the distribution has been expanding throughout Brazil, as
silvatic areas have been constantly modified by urbaniza-
tion [32-34]. The two species show some behavioral and
ecological differences. L. intermedia is usually more com-
mon in the peridomestic area and more frequent in the
summer months while L. whitmani is found mainly in the
surrounding forest and is more abundant in the winter
[33]. Interestingly it has been reported that only L. whitm-
ani populations sympatric with L. intermedia are involved
in cutaneous leishmaniasis transmission in the perido-
mestic environment [8]. The fact that we find evidence for
introgression from L. intermedia towards L. whitmani is
consistent with that although the loci we studied are prob-
ably not directly related to aspects of vectorial capacity.
Further and more specific analyses focusing on the corre-
lation between genetic, behavioral and habitat character-
istics of these two sand fly species will be necessary to
elucidate the possible consequences of gene flow for the
disease epidemiology.

Conclusion
In conclusion, we have found evidence of introgression
from L. intermedia towards L. whitmani in three out of ten
analyzed loci. In addition, a different study using the per
gene to analyze the geographical variation among popula-
tions of the two species has also indicated introgression in
this locus. These findings suggest the occurrence of gene
flow in roughly one third of the genome of these two vec-
tors of cutaneous leishmaniasis in Southeastern Brazil
raising the question whether this might be related to the
observed changes in the epidemiological patterns of this
disease.

Methods
Choice of molecular markers
Four loci selected for this analysis (Ca1D, cac, Rp49 and
per) had been previously isolated from Lutzomyia species
in our lab [35-38]. To select additional molecular markers
to use in our study, a screen of cDNA sequences of L. lon-
gipalpis available in our lab was carried out. Genes with
high similarity at the protein level compared to Anopheles
gambiae and/or Drosophila melanogaster, and which present
at least one intron in the region of aligned fragments, have
been preferentially selected under the assumption that
they have a well known function and potentially present

an intron in Lutzomyia. Out of the 280 cDNA sequences
initially checked, 26 were selected for primer design for
PCR amplification. After amplification tests using
genomic DNA of L. intermedia and L. whitmani, we ended
up with 6 loci (RpL17A, RpL36, RpS19a, TfIIA-L, up,
zetacop). Primers sequences of all ten loci used in our mul-
tilocus analysis are presented in Table 5.

Sand fly samples and DNA methods
Sand flies were collected in September 2004 from the
locality of Afonso Claudio (Espírito Santo State, 20°04'S
41°07'W), Southeast of Brazil, where L. intermedia and L.
whitmani occur in sympatry. This locality is far from the
known range of L. neivai, a third sibling closely related to
the other two species that occurs mainly in the Southern
and Central Western regions of Brazil and in neighboring
countries [8,24]. L. intermedia and L. whitmani were iden-
tified according to Young and Duncan [23]. DNA was
extracted from 96 individuals from each species according
to Jowett [39] with slight modifications. A mix including
1 μl of each individual DNA preparation was prepared for
each species, and then used for PCR amplifications for all
tested loci using Tth DNA polymerase (Biotools). PCR
products were cloned in pMOS Blue Ended Vector (GE
Healthcare) and sequenced at Fundação Oswaldo Cruz
with an ABI 3730 DNA Sequencer, using "BigDye Termi-
nators" (Applied Biosystems).

Sequence analyses
Sequences were edited using Wisconsin Package Version
9.1, Genetics Computer Group (GCG) and aligned using
ClustalX [40]. Sites within indels or ambiguous alignment
were removed before the analyses (see Table 5). Polymer-
ase error rate was estimated as 1.56 × 10-3 per nt. Based on
this error rate, putative PCR induced singletons were ran-
domly selected and corrected. Analyses of population pol-
ymorphisms and differentiation between populations
were carried out using DNAsp4.1 [17] and ProSeq [41]
softwares. The former program was also used for the
recombination analysis. Table 5 shows the position of the
non-recombining (NR) blocks used in this study as well as
the sequences removed before the analyses carried out
using these fragments. Neutrality tests were carried out
using the HKA software [18] and DNAsp4.1.

Markov Chain Monte Carlo (MCMC) simulations of the
isolation with migration model were carried out using the
IM program [2]. IM estimates the marginal posterior prob-
ability for 6 demographic parameters from multilocus
data, using an implementation of the MCMC (Monte
Carlo Markov Chain) algorithm: time of divergence
between the species (t), effective population sizes for each
species (θ1 and θ2) and the ancestral population (θA), and
migration rates in both directions (m1 and m2). The Infi-
nite Sites model [42] has been chosen as the mutation
Page 9 of 12
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model since these are closely related species and all genes
are nuclear. Upper limits were set to prior values for each
of the demographic parameters based on preliminary
runs. All values in the range were considered to present
equal probabilities. Runs have been repeated at least three
times using different seed numbers and a large number of
updates (~20 million) in order to guarantee convergence.

In addition to the simulations presented in the Results
and Discussion section, tests using twice and half of the
estimated number of singletons have been performed for
IM analysis, in order to examine the effect of changes
caused by differences in the number of corrected single-

tons. The results indicate small quantitative and no qual-
itative differences in the parameter estimates. The
migration estimates did not change for m2 and show
small differences for m1, around 0.018 in either direction.
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Table 5: List of primers and edition of sequences

locus primers Removed gap sitesa NR blocksb Removed sequences from NR 
blocksc

Ca1D 5LWIca1D
5'-CAGGATATAATGATGGATTG-3'

3LWIca1D
5'-CACGAACAAGTTGATAAT-3'

159–160; 162–169; 183 1–176 IAFCa_A12; IAFCa_F09; 
WAFCa_B12; WAFCa_C09; 
WAFCa_H11; WAFCa_H12

Cac 5Llcac
5'-GTGGCCGAACATAATGTTAG-3'

3Llcac
5'-CCACGAACAAGTTCAACATC-3'

10; 19; 124–126; 129–132; 150; 170; 180; 182 122–172 IAFcac_H05; WAFcac_F01; 
WAFcac_H07

Per 5llper2
5'-AGCATCCTTTTGTAGCAAAC-3'

3llper2
5'-TCAGATGAACTCTTGCTGTC-3'

154–157; 167–169; 204 125–210 IAFPER16; WAFPER05

Rp49 5RP49semideg1
5'-TTCATYCGYCAYCAGWSBGA-3'

3llRP49exp2
5'-GGGCGATCTCAGCACAGTAT-3'

29–36; 46–49; 55–56; 59; 65–69; 72; 74; 87 1–237 IAFrp49_B08; IAFrp49_C08; 
IAFrp49_E05; IAFrp49_E08; 
IAFrp49_G08; IAFrp49_H06; 

WAFrp49_D11
RpL17A 5LLrpL17A

5'-TCAATTGCGCCGACAATAC-3'
3LLrpL17A

5'-GCTGATCCTTTCATTTCGCC-3'

90–91; 101–102; 109–110; 131; 135; 144; 
147–148; 153–154

1–114 IAFr17a_D10; IAFr17a_E10; 
IAFr17a_F10; IAFr17a_G11

RpL36 5LWIrpL36
5'-GTTCCTCACGCTTCCTCTTG-3'

3LWIrpL36
5'-AAAGTGAAAGGACTCCGCCC-3'

26–29; 46; 52; 65; 77; 215–217; 226; 238–253; 
267; 270; 274; 289–294; 362

126–238 IAFr36_D07; IAFr36_H11

RpS19a 5LWrpS19
5'-TGATCAACACAAGATTGTCCG-3'

3LWrpS19
5'-ACACCATTCCTCTTACGACC-3'

174 77–193 IAF19_G01; IAF19_H02; 
WAF19_B08; WAF19_F079

TfIIA-L 5LLTfIIA-L
5'-GATAATGATCCAGACGATGCC-3'

3LLTfIIA-L
5'-GAAAACATAGTCCTTCCCACC-3'

162; 173–179; 201–259; 277; 284–319; 341; 
345–346; 369–370; 386–387

1–254 -

Up 5LLup
5'-GCAACAAGTCCAAAGAGCAG-3'

3LLup
5'-TCATAGGAGCGGGTGTCAAC-3'

189–191; 224; 351–355; 360–361; 368–369; 
396–397

1–354 -

zetacop 5LLzetacop
5'-GGATGCAGATCCTTCATCCG-3'

3LLzetacop
5'-CGACCACTTCAGTTGTTCTC-3'

115; 131–134; 149–150; 168; 181; 195; 224; 
234–235; 240–242

1–230 IAFztp_H07; WAFztp_C06

a Sites with indels or ambiguous alignment removed before the analyses.
b Fragment positions of the non-recombining blocks used in the analyses.
c Recombining sequences removed before the analyses using the non-recombining blocks.
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Additional file 1
Supplemental Table – Tests of neutrality. The table presents the results of 
neutrality tests Fu and Li's D* and F*, Fu's FS and Ramos-Onsins and 
Rozas' R2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-141-S1.doc]

Additional file 2
Genealogies of RpL17A and zetacop whole fragments. The figure shows 
trees of RpL17A and zetacop sequences (whole fragments) of L. inter-
media (blue circles) and L. whitmani (red squares). The trees were esti-
mated using the neighbor-joining method, Kimura-2-parameters distance 
and 1000 bootstrap replicates, and rooted using the middle-point between 
the two most distant sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-141-S2.pdf]

Additional file 3
Haplotype networks of RpL17A and zetacop whole fragments. The figure 
shows minimum spanning trees of RpL17A and zetacop sequences 
(whole fragments) of L. intermedia (blue) and L. whitmani (red). The 
circles are proportional to the haplotype frequencies and the black and grey 
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