Instituto Oswaldo Cruz
Programa de Pós-Graduação em Biologia Celular e Molecular

Isolamento e genética de populações de genes associados à resistência a inseticidas em Lutzomyia longipalpis (Lutz \& Neiva, 1912) (Diptera: Psychodidae: Phlebotominae), vetor da Leishmaniose Visceral Americana

Rachel Mazzei Moura de Andrade Lins

Dissertação apresentada como requisito para obtenção do título de Mestre em Ciências, com área de concentração em Biologia Celular e Molecular ao Instituto Oswaldo Cruz, Programa de Pós Graduação em Biologia Celular e Molecular.

Instituto Oswaldo Cruz
Programa de Pós-Graduação em Biologia Celular e Molecular

Isolamento e genética de populações de genes associados à resistência a inseticidas em Lutzomyia longipalpis (Lutz \& Neiva, 1912) (Diptera: Psychodidae: Phlebotominae), vetor da Leishmaniose Visceral Americana

Rachel Mazzei Moura de Andrade Lins
Orientador: Dr. Alexandre Afranio Peixoto

Banca Examinadora:
Dr. Reginaldo Peçanha Brazil - Presidente da banca examinadora
FIOCRUZ / Instituto Oswaldo Cruz / Departamento de Bioquímica e Biologia Molecular

Dra. Gisele Lobo-Hajdu - Revisora do texto
UERJ / Instituto de Biologia / Departamento de Biologia Celular e Genética

Dr. Cicero Brasileiro de Mello Neto
UFF / Instituto de Biologia / Departamento de Biologia Geral

Dra. Nataly Araújo Souza

FIOCRUZ / Instituto Oswaldo Cruz / Departamento de Entomologia

Dr. Alberto Martin Rivera Dávila

FIOCRUZ / Instituto Oswaldo Cruz / Departamento de Bioquímica e Biologia Molecular

Data da defesa: 14 de Julho de 2006

Rio de Janeiro, 2006

Dedico esta dissertação a meus pais, avós, irmãs e ao meu noivo, Thiago.

Agradecimentos

Ao final deste trabalho, tenho a agradável sensação de mais uma etapa finalizada no processo de minha formação. Ao longo destes dois anos pude vivenciar diversas experiências nos campos profissional e emocional, que contribuíram para meu crescimento e amadurecimento de uma forma geral. No decorrer deste meu aprendizado, muitas pessoas estiveram ao meu redor, umas mais presentes, outras, acompanhando, e as demais talvez como meras expectadoras e até mesmo as de convivência no ambiente profissional. Mestres, pais, avós, irmãs, noivo, parentes, amigos, conhecidos, desconhecidos... Todos formam a população de indivíduos que pertenceram a este momento tão importante, experimentado ao longo de alguns meses e que tem seu desfecho na conclusão de um de meus importantes projetos, o Mestrado.

Dessa forma, detalhando as tais participaçães, agradeço em primeiro lugar a Deus, o grande arquiteto do universo, a origem primária de todas as coisas, a energia cósmica e universal.

Agradeço a meus pais Jorge e Lívia, por quem tenho um enorme sentimento de gratidão, sendo os responsáveis pela minha formação não apenas como profissional, mas cujos ensinamentos se consolidaram na formação de meu caráter. Aos meus avós Haroldo e Alayde, pelo incentivo incondicional, pelos conselhos, pelas palavras de consolo. Às minhas irmãs, Mariana e Bianca, companheiras de casa e de saídas, por seu companheirismo e, por compreender minhas explosões de nervosismo ocasionais. Ao meu sobrinho e afilhado Iuri que, mesmo rabiscando meus artigos e materiais, desligando o computador quando eu estava trabalhando, me fez sorrir muitas vezes com suas colocações inteligentes, engraçadas e, muitas vezes inocentes.

Gostaria de agradecer de forma especial ao meu orientador, Alexandre Peixoto, por ser muito mais que o "chefe do laboratório", mas por agir de forma a valorizar a individualidade de cada um de seus alunos, sendo um modelo, no qual muitos de nós nos espelhamos. Agradeço pela oportunidade de ser orientada por ele desde o começo da faculdade até o final do Mestrado. Agradeço pela confiança, pela compreensão, pelo apoio e principalmente pela paciência. Agradeço por fazer parte da minha vida acadêmica, esses momentos foram mais suaves graças à sua tolerância, amizade e orientação.

Agradeço aos meus Mestres, professores com os quais tive contato nas diversas disciplinas, em especial ao professor Antonio Mateo Sole-Cava, que, mais do que um mero professor é um exemplo para seus alunos, formador de opinião e motivador para as coisas corretas e postura adequada de profissional de caráter. Suas frases ficarão impressas em
minha vida: "A análise crítica, acima de tudo de nosso próprio trabalho, mas também das maneiras que a ciência vem sendo construída particularmente nos últimos anos é fundamental. Ciência sem filosofia é como a vida sem o amor. É na filosofia que encontramos a explicação para a ciência. É nela que vemos o vínculo entre o que fazemos e o mundo. Senão fica sendo só PCR, seqüênciamento, publicações, dinheiro, projetos, competição... tudo muito vazio". À professora Gisele Lobo, que com sua forma meiga e carinhosa cativa a todos os seus alunos, não abstraindo que seu vasto conhecimento em diversas áreas e na sua própria nos estimula a estudar cada vez mais e mais.

Não poderia deixar de citar alguns amigos especiais que, não apenas pela simples convivência, mas também pelo apoio, me ajudaram, me ensinaram e me compreenderam durante esse período: Felipe Gomes (Gogô), pelos bons momentos que convivemos no laboratório, fora dele, nas viagens e aventuras; Ronaldo, bom amigo desde o tempo da faculdade; Tamara, pela amizade e carinho; Rachel Canto (Rachelzinha), pela amizade e paciência, por me motivar quando eu estive desanimada, por chamar minha atenção quando eu mereci e por toda sua ajuda nas análises de genética de populações, obrigado chel, por sua paciência; e à Ingrid, irmã, amigona de longa data, pelos bons momentos de convivência. Quanto aos amigos externos, agradeço a Tati e Cota, Priscilla Leão, Antonio Lawand, Rodolfo Jr e Luis (Mico Branco) pelo apoio e pelas inúmeras conversas sobre questões acadêmicas.

Muito obrigada aos profissionais que estiveram envolvidos de alguma forma com meu trabalho, onde não posso deixar de citar: Paulo, Rosa e Erico pelos seqüenciamentos, Carla pelos artigos e dicas de protocolo, Saori pela troca de experiência com nossas populações, Camila Mazzoni pela ajuda com os softwares, Robson, pela amizade e ajuda ao longo destes 8 anos de Fiocruz e por ser um grande incentivador e não poderia deixar de citar o amigo Ademir, companheiro de estudos de resistência desde a faculdade, pessoa com quem troquei muitas idéias e por quem tenho um grande carinho.

Finalmente, meu enorme agradecimento ao meu noivo Thiago, por seu apoio incondicional, seu carinho, sua amizade, seu incentivo e, por não me deixar recuar quando o estresse me consumia, e não desanimar, estando ao meu lado sempre.

RESUMO

Flebotomíneos são os insetos vetores das leishmanioses e Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) o principal transmissor da Leishmania infantum chagasi, agente etiológico da Leishmaniose Visceral Americana (LVA). Devido a sua importância como vetor, diversos estudos foram conduzidos de forma a verificar o real status taxonômico de L. longipalpis. A existência de um complexo de espécies crípticas entre populações brasileiras ainda é conflituosa. No presente trabalho, foram isolados fragmentos de três genes associados à resistência a inseticidas, os genes paralytic (para), Acetylcholinesterase (Ace) e Resistant to dielrin ($\mathrm{R} d l$). Foi escolhida uma região do gene para onde algumas mutações para resistência a piretróides e DDT ocorrem em outras espécies de insetos, para ser utilizada como marcador para estudar populações brasileiras de L. longipalpis e para investigar a ocorrência de mutações potencialmente associadas à resistência a inseticidas neste vetor. Amostras das localidades de Sobral (CE), Pancas (ES), Lapinha (MG), Jacobina (BA), Estrela de Alagoas (AL) e Nísia Floresta, Grande Natal (RN) foram analisadas. Os resultados obtidos com o gene para, corroboram resultados anteriores mostrando que em Sobral, machos com os fenótipos de uma (1S) e duas (2S) pintas abdominais pertencem a duas espécies crípticas vivendo em simpatria. A ocorrência de diferenças fixas no fragmento estudado entre os dois tipos de machos, torna para um marcador molecular muito útil para identificar fêmeas dessas duas espécies em estudos futuros. Os dados apresentados também sugerem que Pancas, Sobral 2 S e Natal pertencem à mesma espécie, enquanto Sobral 1S, Lapinha, Jacobina e Estrela 1S, provavelmente representariam quatro outras espécies no Brasil. Os resultados obtidos estão de acordo com estudos anteriores utilizando outros marcadores moleculares, experimentos de cruzamentos, feromônio e análise de som de cópula, e sugerem fortemente a existência de um complexo de espécies entre populações brasileiras de L. longipalpis. Esse estudo também representa uma primeira análise do uso de genes de resistência a inseticidas com esse importante vetor da leishmaniose.

Abstract

Sandflies are the vectors of leishmaniasis and Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) is the main vector of Leishmania infantum chagasi, the causative agent of American Visceral Leishmaniasis (AVL). Because of its importance as a vector, several studies have been carried out to verify the real taxonomic status of L. longipalpis and the existence of cryptic sibling species among Brazilian populations is still a controversial issue. Fragments of three genes associated with insecticide resistance were isolated: paralytic (para), Acetylcholinesterase (Ace) and Resistant to dielrin (Rdl). In addition, a region of the para gene were many pyrethroid and DDT resistance mutations occur in other insect species, was used as a molecular marker to study Brazilian populations of L. longipalpis and to investigate the occurrence of mutations potentially associated with insecticide resistance in this vector. Samples from the Brazilian localities of Sobral (CE), Pancas (ES), Lapinha (MG), Jacobina (BA), Estrela de Alagoas (AL) and Nisia Floresta, Great Natal (RN) were analyzed. The results obtained with the para gene support previous results showing that in Sobral L. longipalpis males carrying one (1S) and two (2S) abdominal spots belong to two sympatric sibling species. The occurrence of fixed differences in the studied gene fragment between the two types of males makes para a very useful molecular marker to identify females of these two species in future studies. Data presented here also suggests that Pancas, Sobral 2S and Natal belong to the same sibling species, while Sobral 1S, Lapinha, Jacobina and Estrela 1S probably represent four other sibling species in Brazil. These results are in agreement with previous studies using other molecular markers, crossing experiments, pheromone and copulation song analysis, and strongly support the existence of a species complex among Brazilian populations of L. longipalpis. The present study also represents the first analysis of insecticide resistance genes in this important leishmaniasis vector.

ÍNDICE

Página

1. Introdução 01
1.1 O complexo Lutzomyia longipalpis. 01
1.2 Resistência a inseticidas 05
1.3 Genes de Resistência em L. longipalpis. 08
2. Objetivos 12
3. Material e Métodos 13
3.1 Amostras 13
3.2 Preparação de DNA e cDNA 13
3.3 Reação em cadeia da polimerase (PCR) e purificação dos fragmentos 14
3.4 Clonagem dos produtos de PCR 16
3.5 Seqüênciamento 17
3.6 Análise dos dados 17
4. Resultados 19
4.1 Clonagem dos fragmentos dos genes de resistência 19
4.2 Genética de populações do gene para. 21
5. Discussão 39
5.1 Clonagem dos fragmentos dos genes associados à resistência a inseticidas 39
5.2 Genética de populações do gene para 40
6. Anexo 44
7. Referências Bibliográficas 57

1. INTRODUÇÃO

1.1 O complexo Lutzomyia longipalpis

Flebotomíneos (Díptera: Psychodidae: Phlebotominae) são os vetores das leishmanioses (Tesh \& Guzmam, 1996; Munstermann, 2005) e Lutzomyia longipalpis (Lutz \& Neiva, 1912) é o principal transmissor da Leishmania infantum chagasi (Cunha \& Chagas, 1937), agente etiológico da Leishmaniose Visceral Americana (LVA). Este vetor possui uma distribuição ampla, porém descontínua, que se estende desde o México (20° Latitude Norte) até o Norte da Argentina (28° Latitude Sul) (Young \& Duncan, 1994), existindo um grau considerável de isolamento entre as numerosas populaçães devido a sua baixa mobilidade assim como às barreiras geográficas e climáticas (Lanzaro et al, 1993; Alexander et al, 1998).

Após a publicação (post mortem) por Mangabeira (1969) do primeiro artigo sugerindo que este vetor deveria fazer parte de um complexo de espécies, numerosos estudos foram conduzidos de forma a verificar o grau de diferenciação entre populações deste vetor. Mangabeira encontrou diferenças no fenótipo de pintas nos tergitos abdominais de populações de L. longipalpis (Figura 1.1). Machos coletados no Estado do Ceará (Nordeste) possuíam duas pintas, uma no terceiro e outra no quarto tergito

Fig 1.1: Variação no número de pintas nos tergitos abdominais de machos de L. longipalpis (retirado de Ward et al, 2003) abdominal (sendo este fenótipo chamado de 2 S) enquanto machos coletados no Pará (Norte) possuíam apenas uma pinta no quarto tergito abdominal (fenótipo chamado de 1S). Nesse trabalho também se ressaltou o fato das duas
formas serem encontradas em condições ecológicas distintas e, assim, se especulou que elas poderiam representar diferentes espécies ou variedades.

Devido a sua importância como vetor, diversos estudos morfológicos, comportamentais, bioquímicos, isoenzimáticos e genéticos envolvendo populações de L. longipalpis de diferentes localidades foram realizados com a finalidade de esclarecer o status taxonômico desta espécie (Uribe, 1999). Em uma recente revisão feita por Bauzer e colaboradores (Bauzer et al, 2007), onde um resumo dos principais trabalhos envolvendo esta espécie foi realizado, todos os estudos comparando amostras da América Central com a América do Sul sugerem que L. longipalpis de fato seja um complexo de espécies (e.g. Lanzaro et al, 1993; Arrivilaga et al, 2003). Contudo, em populações brasileiras, até recentemente a controvérsia com relação à existência de um complexo ainda era grande, já que os resultados obtidos com a análise de cruzamentos e feromônios de um lado (e.g. Ward et al, 1983, 1988) e isoenzimas do outro (Mukhopadhyay et al, 1998; Mutebi et al, 1999; Azevedo et al., 2000) eram contraditórios.

De acordo com os autores contrários a idéia da existência de um complexo, os seus estudos falharam em detectar uma divergência genética suficiente para indicar a presença de uma ou mais espécies no Brasil (Mukhopadhyay et al, 1998; Mutebi et al, 1999; Azevedo et al., 2000). Contudo, as evidências obtidas com diferentes análises (cruzamentos, feromônios, sinais acústicos e marcadores moleculares), são hoje, a favor da existência de um complexo no Brasil (Bauzer et al, 2007).

Ward e colaboradores (1983) testaram, por análise de cruzamentos, populações brasileiras simpátricas e alopátricas que diferiam pelo número de pintas abdominais. Eles observaram que entre duas colônias oriundas de Sobral (Estado do Ceará) com machos possuindo uma (1) e duas (2) pintas havia baixa taxa de inseminação, sugerindo que elas poderiam representar diferentes espécies crípticas em simpatria. Também se verificou uma baixa taxa de inseminação entre colônias contendo machos com duas pintas (2S) de Morada

Nova (CE) e machos contendo uma pinta (1S) de Lapinha (Estado de Minas Gerais) e entre machos 1S da Ilha de Marajó e machos 1S de Lapinha. Esses resultados foram confirmados posteriormente, incluindo outras populações, (Ward et al, 1988) e validaram a hipótese de que L. longipalpis representa um complexo de espécies no Brasil. Nesse último estudo, Ward e colaboradores também verificaram a presença de uma forma intermediária entre o fenótipo 1 S e 2 S (uma pequena pinta no terceiro tergito e uma pinta no quarto) em altas frequiências em algumas localidades, principalmente na região Nordeste, indicando um polimorfismo que também era verificado entre cruzamentos de estirpes 1 S e 2 S (sugerindo ser este um caráter semidominante). Ainda que este fenótipo não seja espécie-específico, ele pode ser útil para identificar espécies simpátricas em localidades onde os fenótipos intermediários sejam raros, como em Sobral (Ward et al, 1988).

Ao examinar os feromônios produzidos por machos de diferentes populações, Ward e colaboradores encontraram uma correlação positiva entre estes e o isolamento reprodutivo observado em alguns cruzamentos (Ward et al, 1988). Análises posteriores mostraram que machos da localidade de Lapinha (MG) produzem o feromônio 9-metilgermacreno-B (Hamilton et al, 1996a), de Jacobina (Estado da Bahia) produzem o 3-metil- α-himacaleno (Hamilton et al, 1996b) e de Natal (Rio Grande do Norte) produzem cembreno (Souza et al., 2002), também observado em populações do Norte e Nordeste, assim como na Ilha de Marajó (Ward et al, 1988). Recentemente um novo tipo de cembreno foi descoberto na população de Jaíba, MG (Hamilton et al 2004).

Uma outra evidência corroborando os dados a favor da existência de um complexo de espécies foi obtida analisando o som de cópula produzido por machos de L. longipalpis (Souza et al, 2002). Em Drosophila, durante a corte os machos vibram suas asas produzindo um sinal acústico (Hall, 1994). Esta serenata de amor aumenta a receptividade das fêmeas e foi descrito como um dos sinais que elas usam para reconhecer os machos da própria espécie (Kyriacou \& Hall, 1982, 1986). Deste modo, variações neste som de corte são importantes no
isolamento reprodutivo entre espécies próximas de Drosophila (Kyriacou \& Hall, 1982, 1986; Ritchie et al, 1999). Em populações brasileiras de L. longipalpis, os dados de som e de feromônio estão correlacionados, sendo dois sinais que podem ter um papel importante no isolamento reprodutivo de espécies próximas (Souza et al, 2004; Bauzer et al, 2007).

O estudo da especiação críptica é um dos temas mais interessantes em evolução e a sua ocorrência em flebotomíneos tem importantes consequiências epidemiológicas já que a divergência genética causada pela deriva gênica e/ou seleção natural pode modificar a capacidade vetorial, resultando em algumas populações mais eficientes como vetores que outras (Lanzaro et al, 1993; Lanzaro \& Warburg, 1995).

Desta maneira, a utilização de marcadores genéticos que possam estar diretamente associados ao processo de especiação se torna particularmente importante. Dentre os marcadores mais interessantes neste aspecto, estão os genes envolvidos no controle do comportamento sexual que foram identificados no inseto modelo para estudos genéticos, Drosophila melanogaster.

Alguns genes de Drosophila que controlam o som de corte já foram identificados e clonados (Hall, 1994) e dentre estes se destacam period e cacophony. O gene period está envolvido no controle do ritmo circadiano e no som de corte de Drosophila. O gene cacophony codifica a subunidade $\alpha-1$ de um canal de cálcio dependente de voltagem e também está envolvido no controle do som de corte de Drosophila (Smith et al, 1998; Peixoto \& Hall, 1998). Estes são, potencialmente, excelentes marcadores genéticos no estudo do processo de especiação não só de Drosophila como também de outros insetos que utilizam sinais acústicos durante a corte, como é o caso de flebotomíneos vetores (Ward et al, 1988; Souza et al, 2002, 2004), e por este motivo eles foram isolados em L. longipalpis (Peixoto et $a l, 2001)$.

Estudos prévios utilizando a região IVS6 do gene cacophony mostraram que esta região do gene serviria como um ótimo marcador molecular em estudos de genética de
populações e especiação em flebotomíneos, pois inclui um íntron com alta variabilidade e divergência entre espécies próximas (Lins et al, 2002). Isto veio a se confirmar com a análise de populações naturais de L. longipalpis (Bottecchia et al, 2004), que juntamente com os resultados obtidos com o estudo dos sons de cópula (Souza et al, 2002; 2004) e com a análise molecular do gene period (Bauzer et al, 2002a,b), indicaram a existência de um complexo de espécies crípticas. Estes resultados foram corroborados também com análise de microsatélites (Maingon et al, 2003; Watts et al, 2005). No entanto, os dados obtidos tanto com cacophony como com period sugerem a ocorrência de introgressão entre os membros do complexo. Esta observação tem importantes consequiências epidemiológicas já que torna possível não só a passagem de genes envolvidos na competência vetorial entre uma espécie e outra, como também a disseminação de genes controlando a resistência a inseticidas (Weill et al, 2000) que estão sendo ou poderão ser utilizados no controle de L. longipalpis (e.g. De Silans et al, 1998).

Curiosamente, diversos outros genes que controlam aspectos do som codificam também canais iônicos (Peixoto \& Hall, 1998). Estes por suas vez podem estar relacionados à resistência a inseticidas o que os torna marcadores moleculares particularmente importantes no estudo de insetos vetores.

1.2 Resistência a inseticidas

A resistência a inseticidas é uma das mais difundidas alterações genéticas causadas pela atividade humana e representa um dos mais interessantes exemplos da ação da seleção natural. Contudo, nós ainda compreendemos pouco sobre a origem e a distribuição de alelos resistentes em populações naturais de insetos (Daborn et al, 2002). A resistência pode ser mediada tanto por mudanças na sensibilidade de alvos de inseticidas no sistema nervoso
central quanto pelo metabolismo dos inseticidas antes que eles atinjam esses alvos (ffrenchConstant et al, 1998).

Na resistência do tipo sítio-alvo, as causas mais comuns de resistência são as mutações pontuais não silenciosas em genes estruturais. Para que a seleção da mutação venha a ocorrer, a mudança de aminoácido resultante deve reduzir a ligação do inseticida sem causar a perda de sua função primária (Hemingway \& Ranson, 2000). Nesse exemplo de resistência podemos citar os casos da Acetilcolinaesterase (Ace), dos receptores GABA (ácido gama amino butírico) e dos canais de sódio. Os organofosfatos e os carbamatos são alvo da acetilcolinaesterase, que hidrolisa o neurotransmissor excitatório acetilcolina na membrana nervosa pós-sináptica (Hemingway \& Ranson, 2000). Alteraçães na acetilcolinaesterase em insetos resistentes a organofosfatos e carbamatos resultam em um decréscimo na sensitividade à inibição da enzima por esses inseticidas (Ayad \& Georghiou, 1975). Em insetos, o receptor GABA é um canal iônico de cloro heteromultimérico, um canal de neurotransmissão inibitória no sistema nervoso e nas junções neuromusculares (Bermudez et al, 1991). Esse receptor está envolvido como sítio de ação para piretróides e avermectinas, assim como para ciclodienos. Esses inseticidas exercem seu efeito ao interagir com o ionóforo de cloro associado ao receptor GABA (Bloomquist, 1994). No caso dos canais de sódio, o efeito farmacológico do DDT e do piretróide é de causar uma ativação persistente do canal, adiando o mecanismo voltagem-dependente normal de inativação (Soderlund \& Bloomquist, 1989).

Na resistência metabólica, há um aumento da expressão de enzimas capazes de promover uma detoxificação frente aos inseticidas ou a substituição de aminoácidos nestas enzimas, que pode alterar a afinidade da enzima para o inseticida, podendo resultar em altos níveis de resistência a inseticidas. Um aumento da expressão de genes codificando as principais enzimas que metabolizam xenobióticos são a causa mais comum da resistência a inseticidas em mosquitos. O aumento da produção dessas enzimas pode ter um menor custo
adaptativo do que aquele associado a alterações em genes estruturais porque a função primária da enzima não é perdida (Hemingway \& Ranson, 2000).

Três grandes grupos de enzimas são responsáveis pela resistência metabólica: as DDTdehidroclorinases (anteriormente conhecidas como glutationa S-transferase), conferindo resistência a inseticidas da classe dos organoclorados, organofosfatos, carbamatos e piretróides; as esterases, conferindo resistência aos organofosfatos, carbamatos e, em menor escala aos piretróides e as monooxigenases, envolvidas no metabolismo de piretróides, na ativação e/ou detoxificação de organofosfatos e em menor escala aos carbamatos (Hemingway \& Ranson, 2000).

Os inseticidas desempenham um papel central no controle dos principais vetores de doenças tais como: mosquitos, flebotomíneos, pulgas, piolhos, moscas tsé-tsés e triatomíneos. Contudo, desde a introdução de potentes inseticidas sintéticos em programas de saúde, o principal problema técnico foi o desenvolvimento de resistência. O surgimento e o grau de resistência encontrado em populaçães de insetos vetores é dependente tanto do volume quanto da freqüência das aplicações de inseticidas usados contra eles e as características do ciclo de vida das espécies de insetos envolvidas. Os mosquitos, por exemplo, possuem todas as características para o desenvolvimento rápido de resistência, incluindo ciclo de vida curto com progênie abundante (Hemingway \& Ranson, 2000). Atualmente, uma maior ênfase em pesquisa associada à resistência é dada aos seus mecanismos moleculares, ao seu manejo racional, enfatizando o controle do desenvolvimento a dispersão de populações de vetores resistentes (Hemingway \& Ranson, 2000).

1.3 Genes de Resistência em L. longipalpis

Em flebotomíneos, a resistência a inseticidas tem sido pouco estudada e poucos casos foram registrados. Dois deles envolvem a resistência a DDT em Phlebotomus papatasi na India (El-Sayed et al, 1989; Das Gupta et al, 1995) e um outro envolve o aumento de esterases e redução da sensitividade da acetilcolinaesterase em P. argentipes (Surendran et al, 2005). Em L. longipalpis a ocorrência de resistência ainda não foi estabelecida e não está claro se isto se deve a sua inexistência ou ao pequeno número de estudos com este vetor nesta área.

Neste projeto propusemos isolar fragmentos de três genes envolvidos com essa característica: a) o gene paralytic (para), que codifica a subunidade α de um canal de sódio (Loughney et al, 1989; Littleton \& Ganetzky, 2000) e está envolvido não só no controle do som de corte (Peixoto \& Hall, 1998) como também na resistência a inseticidas da classe dos piretróides (Pittendrigh et al, 1997). A região de maior interesse se localiza na sexta subunidade do segundo domínio (IIS6), onde uma das mutações que promove resistência já foi caracterizada e é conservada ao longo de vários táxons (L1029H) (Figura 1.2); b) o gene Acetilcolinaesterase (Ace), que codifica a enzima de mesmo nome e que participa na sinapse nervosa ao hidrolisar o neurotransmissor excitatório acetilcolina na membrana nervosa póssináptica (Hemingway \& Ranson, 2000) e está envolvido na resistência a organofosfatos e carbamatos (Ayad \& Georghiou, 1975). A Figura 1.3 mostra a localização aproximada do fragmento que contém uma das mutações conservadas (F368Y); c) o gene resistant-todieldrin (Rdl), que codifica o receptor GABA em insetos (Bermudez et al, 1991) e está envolvido principalmente como sítio de ação para ciclodienos (Bloomquist, 1994). O fragmento que contém o sítio já descrito como responsável pelo fenótipo de resistência (A302S) está contido no exon 7 (Figura 1.4) que codifica o domínio transmembrana M2 do
canal (Figura 1.5). A Figura 1.6 mostra as mutações pontuais no sítio $302(\mathrm{~A} \rightarrow \mathrm{~S})$ no gene $R d l$ que substituem o mesmo aminoácido ao longo de diferentes espécies de insetos

Em um segundo momento projetamos utilizar o gene para como marcador molecular para analisar a variação molecular na região IIS6 em populações de L. longipalpis e verificar a existência de mudanças de aminoácidos possivelmente associadas à resistência. Além disso, esta região seria utilizada para estudar a diferenciação entre algumas populações brasileiras do Complexo L. longipalpis.
(a)

(b)

	H.virescens- $k d r$	VSCIPFFLATVVIGNHVVLNLFLALILSN
	H.virescens-susceptible	VSCIPFFLATVVIGNLVVINLFLALLLSN
II-S6	D.melanogaster-para	VSCIPFFLATVVIGNLVVINLFLALILSN
L1029H	M. domestica-Cooper	VSCIPFFLATVVIGNLVVINLFLALLISN
	M.domestica-kdr	VSCIPFFLATVVIGNFVVLNLFLALLISN
	B.germanica-kdr	VSCIPFFLATVVIGNFVVINLFLALILSN

Figura 1.2: (a) Subunidade α do canal de sódio codificado pelo gene para. A região envolvida pelo círculo em verde (II-S6) posiciona o local do fragmento obtido incluindo o sítio onde a mutação ($\mathrm{L} \rightarrow \mathrm{H}$) para resistência ocorre ao longo de vários táxons (b) (retirado de Zhao et al, 2000).

Figura 1.3: Localização aproximada da mutação $(\mathrm{F} \rightarrow \mathrm{Y})$ conservada no gene Ace que confere resistência a inseticidas. O retângulo azul evidencia a posição conservada da ocorrência da mutação em diversas linhagens de Drosophila. Na figura, a linha de cima mostra as regiões genômicas que codificam a proteína madura, os exons estão numerados de I-X. A parte inferior esquematiza a seqüência da proteína com as posições das mutações mostradas abaixo (retirado e de Mutero et al, 1994, com adaptações)

Figura 1.4: Localização do exon que codifica a região M2 onde a mutação para resistência no gene Rdl ocorre (exon 7, seta em vermelho) (adaptado de Hosie et al, 1997).

Figura 1.5: Esquema do canal de cloro codificado pelo gene $R d l$ e a localização do domínio transmembrana M2 onde a mutação conservada $(\mathrm{A} \rightarrow \mathrm{S})$ para resistência ocorre (seta em preto) (retirado de ffrench-Constant, 1999).

	Amino acid	L	N	R	N	A	T	P/L	A	R	v	$\begin{gathered} \downarrow^{\mathrm{A}} \\ \mathrm{~s} / \mathrm{G} \end{gathered}$	L	G	v	T	T
D. melanogaster	s	CTC	AAT	CGC	AAT	GCA	ACG	CCG	GOG	CGT	GTG	GCG	CTC	GGT	GTG	ACA	ACC
D. simulans allele 1	R	CTC	AAT	CGC	AAT	GCA	ACG	CCG	GOG	CGT	GTG	$\begin{aligned} & \text { TCG } \\ & \uparrow_{\mathrm{s}} \end{aligned}$	CTC	GGT	GTG	ACA	ACC
D. simulans allele 2	s	CTC	AAT	CGC	AAT	GCA	ACG	CCG	GCG	CGT	GTG	GCG	CTC	GGT	GTG	ACA	ACC
	R	CTC	AAT	CGC	AAT	GCA	ACG	CCG	GCG	CGT	GTG	$\begin{gathered} \text { GGG } \\ \uparrow G \end{gathered}$	CTC	GGT	GTG	ACA	ACC
Housefly	s	CTT	AAT	CGT	AAT	GCT	ACA	CCA	GCC	CGT	GTA	GCT	TTA	GGT	GTC	ACC	ACT
	R	CTT	AAT	CGT	AAT	GCT	ACA	CCA	GCC	CGT	GTA	$\begin{aligned} & \mathrm{TCT} \\ & \uparrow \mathrm{~S} \end{aligned}$	TTA	GGT	GTC	ACC	ACC
Red flour beetle	s	CTG	AAT	CGT	AAC	GCT	ACT	CTC	GCC	AGA	GTG	GCT	CTG	GGG	GTC	ACC	ACC
	R	CTT	AAT	CGT	AAT	GCT	ACA	CCA	GCC	OGT	GTR	$\begin{aligned} & \text { TCT } \\ & \uparrow \mathrm{s} \end{aligned}$	TTA	GGT	GTC	ACC	ACT
German cockroach	s	CTG	AAC	OGC	AAY	GCG	ACG	CCC	GCC	CGA	GTC	GCC	CTC	GGG	GTT	ACC	ACT
	R	CTS	AAC	CGC	AAT	GCG	AOG	CCC	GCC	CGA	GTC	$\begin{aligned} & \mathrm{TCC} \\ & \uparrow \mathrm{~s} \end{aligned}$	CTC	GGG	GTT	ACC	ACT
Yellow fever mosquito																	
	R	CTA	AAT	AGA	GAT	GCT	ACA	CCA	GCA	CGT	GTT	$\begin{aligned} & \mathrm{TCA} \\ & \uparrow \mathrm{~s} \end{aligned}$	TTA	GGT	GTA	ACC	$A C T$
															TREN	DS in	enetics

Figura 1.6: Mutações pontuais no gene $R d l$ que substituem o mesmo aminoácido ao longo de várias espécies de insetos. A resistência está associada com a substituição da alanina na posição 302 por serina (maior freqüência) ou glicina. As setas indicam as posições onde as substituiçães ocorrem (retirado de ffrench-Constant et al, 2004).

2. OBJETIVOS

2.1 Isolar e sequenciar em L. longipalpis fragmentos homólogos aos genes paralytic (para), Acetilcolinaesterase (Ace) e resistant-to-dieldrin (Rdl).
2.2 Analisar a variação molecular na região IIS6 do gene para em populações de L. longipalpis para verificar a existência de mudanças de aminoácidos possivelmente associadas à resistência.
2.3 Utilizar o gene para como marcador molecular para estudar a diferenciação entre algumas populações brasileiras do Complexo L. longipalpis.

3. MATERIAL E MÉTODOS

3.1- Amostras

Neste trabalho, foram analisadas as populações da localidade de Sobral - CE (40,5 ${ }^{0} \mathrm{O}$; $3,7^{0} \mathrm{~S}$) onde estudos com cruzamentos, feromônios, som de cópula, period e cacophony (Ward et al, 1988; Souza e Peixoto; resultados não publicados; Bauzer et al, 2002b; Bottecchia et al 2004) indicam a ocorrência em simpatria de duas espécies do complexo que diferem no padrão de manchas abdominais dos machos (um ou dois pares de pintas). Estudamos também, a população de Pancas - ES ($40,8^{0} \mathrm{O} ; 19,2^{0} \mathrm{~S}$), onde já foram utilizados inseticidas da classe dos piretróides (Dr. Aloísio Falqueto, comunicação pessoal) para se determinar a existência ou não de alelos carregando mutações semelhantes àquelas identificadas em outros insetos. Também foram incluídas as populações da gruta da Lapinha (Lagoa Santa - MG) (43, 9^{0} O; 19, 6° S), Jacobina - BA ($40,6^{0} \mathrm{O} ; 11,1^{0} \mathrm{~S}$), Estrela de Alagoas - AL ($36,8^{0} \mathrm{O} ; 9,4^{0} \mathrm{~S}$) e Nisia Floresta - Grande Natal, RN ($35,2^{0} \mathrm{O} ; 6^{0} \mathrm{~S}$). As amostras usadas são provenientes de captura diretamente do campo, mantidas em álcool 96 \% ou congeladas a $-20^{\circ} \mathrm{C}$ até a análise.

3.2 - Preparação de DNA e cDNA

Na obtenção dos fragmentos iniciais do gene Ace de Drosophila, foi utilizado DNA genômico de L. longipalpis preparado com o kit Genomic Prep - Cells and Tissue DNA Isolation Kit (Amersham Biosciences) seguindo o protocolo do fabricante. Devido às dificuldades iniciais encontradas na obtenção dos fragmentos dos demais genes estudados, optamos por utilizar cDNA ao invés de DNA genômico, com o objetivo de reduzir os sítios de ligação possíveis para os oligos dos genes para e Rdl. Na preparação do cDNA, utilizamos o kit Quick prep Micro mRNA Purification Kit (Amersham Biosciences) para o isolamento do

RNA e o kit First Strand cDNA Synthesis kit (Amersham Biosciences) para a síntese do cDNA.

Para as demais análises, o DNA genômico individual foi preparado com um método rápido semelhante ao descrito por Jowett (1998). O espécime inteiro foi macerado em $50 \mu 1$ de Buffer Sq (Triton X-100 0,2\%, Tris-HCl $10 \mathrm{mM} \mathrm{pH} 8,2$, EDTA 2 mM), adicionando-se, ao final, $1 \mu \mathrm{l}$ de proteinase $\mathrm{K}(20 \mathrm{mg} / \mathrm{mL})$. As amostras ficaram incubando por 1 h , sendo posteriormente aquecidas a $95^{\circ} \mathrm{C}$ por cerca de 10 minutos para a completa inativação da proteinase K antes do seu uso no PCR.

3.3- Reação em Cadeia da Polimerase (PCR) e Purificação dos fragmentos

A amplificação dos fragmentos iniciais deste trabalho foi obtida com a técnica de PCR com oligos degenerados. As soluções para a reação incluíam: $4,0 \mu \mathrm{l}$ de tampão 10X (10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,5 ; \mathrm{KCl} 50 \mathrm{mM} \mathrm{e} \mathrm{MgCl}_{2} 1,5 \mathrm{mM}$), $0,4 \mu \mathrm{l}$ de Taq DNA polimerase (5 unidades / $\mu \mathrm{l}$, AB gene), $0,8 \mu \mathrm{l}$ de dNTPs (10 mM cada), $8 \mu \mathrm{l}$ de cada oligo ($10 \mu \mathrm{M}$), $4 \mu \mathrm{l}$ de DNA genômico (no caso do gene Ace) ou $4 \mu \mathrm{l}$ de cDNA (no caso dos genes para e Rdl) (concentrações exatas desconhecidas em ambos os casos), $3 \mu \mathrm{l}$ de $\mathrm{MgCl}_{2}(25 \mu \mathrm{M})$ e água mili-Q até completar o volume de $40 \mu \mathrm{l}$. Na obtenção destes fragmentos houve a necessidade de reamplificação, onde os componentes foram mantidos, exceto a substituição do DNA / cDNA por $5 \mu \mathrm{l}$ da primeira reação de PCR. As condições de temperatura foram idênticas para os genes Ace e Rdl na amplificação e reamplificação: desnaturação inicial de $95^{\circ} \mathrm{C}$ por 3 minutos; 30 ciclos de $95^{\circ} \mathrm{C}$ por 30 segundos de desnaturação, $50^{\circ} \mathrm{C}$ de anelamento por 30 segundos e $72^{\circ} \mathrm{C}$ por 30 segundos de extensão; ao final, a temperatura era reduzida a $4^{\circ} \mathrm{C}$ até que as amostras fossem retiradas do termociclador. Devido ao insucesso inicial ao tentar amplificar fragmentos do gene para usando essas condições de temperatura, recorremos ao método touchdown na amplificação e reamplificação segundo as condiçães: $94^{\circ} \mathrm{C}$ por 3 minutos de desnaturação inicial; 15 ciclos de $94^{\circ} \mathrm{C}$ por 1 minuto de desnaturação, $50^{\circ} \mathrm{C}$ por

90 segundos de anelamento (com o decréscimo de 1 grau por ciclo) e $72^{\circ} \mathrm{C}$ por 1 minuto de temperatura de extensão; seguidos de 20 ciclos de $94^{\circ} \mathrm{C}$ por 1 minuto, $50^{\circ} \mathrm{C}$ por 90 segundos e $72^{\circ} \mathrm{C}$ por 1 minuto; ao final, reduzindo a temperatura a $4^{\circ} \mathrm{C}$ até que as amostras fossem retiradas do termociclador.

Na amplificação do gene Ace testamos diversos pares de oligos correspondentes a regiões já estudadas em outros modelos e que contem mutações associadas à resistência, entretanto, apenas o par de oligos descrito a seguir amplificou um dos fragmentos desejados: 5acedegC (5` - ACNATGAAYGCNCCNTG - 3`) cujo fragmento traduzido corresponde a seqüência de aminoácidos"TMNAPW" e 3acedegC (5’- CNCCRTCDATNGTNGG - 3') correspondente ao fragmento traduzido "PTIDGA". Para o gene para usamos: 5paraIIdegC (5'- TGGAAYTTYACNGAYTT - 3') cujo fragmento traduzido corresponde a "WNFTDF" e 3paraIIdegB (5^{\prime} - TTRTTNGTRTCRTTRTC - 3') correspondente ao fragmento traduzido "DNDTNK"; na amplificação do fragmento do gene $R d l$ foram usados os oligos: 5 rdl degB (5'- TGGGTNWSNTTYTGGYT - 3') equivalente ao fragmento traduzido "WVSFWL" e 3rdldegA (5'- GCRAANACCATNACRAA - 3') equivalente a "FVMVFA".

A partir do fragmento inicial do gene para gerado pela técnica de PCR com oligos degenerados, foi desenhado um par de oligos específicos que foram utilizados para amplificar fragmentos deste gene em todas as populações estudadas, sendo eles: 5llpara2 (5'ACGGACTTCATGCATTCATTC - 3') e 3llpara1 (5^{\prime} - TGGTGCTGATAAACTTGACG 3^{\prime}). Para essas análises utilizamos o PCR Master Mix (Promega), por ser mais prático e diminuir as chances de contaminação, com as seguintes quantidades por amostra: $25 \mu \mathrm{l}$ de PCR Master Mix, $5 \mu \mathrm{l}$ de cada oligo ($10 \mu \mathrm{M}$), $4 \mu \mathrm{l}$ de DNA genômico (concentração desconhecida) e 11μ de água mili-Q para completar os 50μ l de volume final. Nesse caso, as condições de temperatura foram: $95^{\circ} \mathrm{C}$ por 3 minutos de desnaturação inicial; 35 ciclos de 95° C por 30 segundos, $60^{\circ} \mathrm{C}$ por 30 segundos e $72^{\circ} \mathrm{C}$ por 30 segundos; ao final, a temperatura
era reduzida a $4^{\circ} \mathrm{C}$ até que as amostras fossem retiradas do termociclador. Foram feitos controles negativos em todas as reações.

A eletroforese das reações de PCR (em média foram usados $10 \mu \mathrm{l}$) foi realizada em gel de agarose a 2% com brometo de etídio $(0,05 \mu \mathrm{~g} / 100 \mathrm{ml})$, utilizando-se TAE 1X (TrisBorato EDTA 1X) como tampão de corrida a aproximadamente 120V. Como marcador de peso molecular foi usado o 100 Base-Pair Ladder (Amersham Biosciences) e como corante de corrida o Gel loading solution (azul de bromofenol $0,25 \%$, xilenocianol $0,25 \%$, sacarose $40 \%)$. Os géis foram posteriormente fotografados em transiluminador UV.

Os fragmentos iniciais foram purificados com o kit Wizard PCR Preps DNA Purification System (Promega). Os fragmentos do gene para usados nas análises posteriores foram purificados com o kit Wizard SV Gel and PCR Clean System (Promega) ambos de acordo com o protocolo fornecido pelo fabricante.

3.4 - Clonagem dos produtos de PCR

Todos os fragmentos gerados foram ligados a vetor plasmidial com o kit pMosblue blunt-ended cloning kit (Amersham Biosciences) seguindo o protocolo fornecido pelo fabricante com redução dos volumes à metade nas análises de populações. As ligações foram usadas na transformação de células competentes de Escherichia coli DH5- α e colocadas para crescer em meio LB sólido contendo ampicilina ($100 \mu \mathrm{~g} / \mu \mathrm{l}$), X-gal (2\%) e IPTG (100 mM). As colônias brancas e / ou azul claras foram inoculadas em meio LB líquido (1,5 a 3 ml) ou meio SOC ($80 \mu \mathrm{l}$ para cada $20 \mu \mathrm{l}$ de célula) com ampicilina ($75 \mu \mathrm{~g} / \mu \mathrm{l}$) e colocadas sob agitação (cerca de 200 RPM) por 16-22 horas a $37^{\circ} \mathrm{C}$. As células foram centrifugadas e os pellets foram guardados a $-20^{\circ} \mathrm{C}$ até o isolamento do DNA plasmidial, onde foi utilizado o kit Flexiprep (Amersham Biosciences) ou utilizando o método de mini-preparação em microplacas de 96 poços, com o uso da técnica da lise alcalina (Sambrook \& Russel, 2001) e filtrados em placa Millipore (Multiscreen - filter plates).

O DNA plamidial dos fragmentos isolados previamente (10 $\mu \mathrm{l}$) e de amostras das placas ($5 \mu \mathrm{l}$) foi digerido em $20 \mu \mathrm{l}$ com $0,5 \mu \mathrm{l}$ das enzimas EcoRI ($12 \mathrm{u} / \mu \mathrm{l}$, Promega) e PstI (10 u / μ l, Promega) seguindo as instruções dos fabricantes. As digestões foram separadas em eletroforese de gel de agarose conforme descrito acima para verificar a presença do fragmento de interesse. Os clones com inserto foram seqüenciados.

3.5 - Seqüênciamento

Os primeiros fragmentos homólogos aos genes de resistência de Drosophila foram seqüenciados através de uma colaboração com a Universidade de Leicester, Reino Unido.

As demais reações de sequenciamento foram feitas utilizando o kit ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction v3.0 e v3.1 (Applied Biosystems) juntamente com o oligo M13 forward (New England Biolabs). Foram utilizados dois seqüenciadores, o ABI Prism 337 DNA Sequencer com géis de acrilamida a $4,75 \%$ e o ABI 3730 de 48 capilares.

Para amostras seqüenciadas no ABI Prism 377 foram utilizados 25 ciclos na reação e 40 ciclos para amostras seqüenciadas no ABI 3730 . As condiçães dos ciclos são: $96^{\circ} \mathrm{C}$ por 10 segundos, $50^{\circ} \mathrm{C}$ por 5 segundos e $60^{\circ} \mathrm{C}$ por 4 minutos. Os produtos seqüenciados foram purificados seguindo o método de precipitação por etanol, sendo, ao final, ressuspendidos em Blue Dextran com formamida (na proporção de 1:5) ou formamida HiDi (Applied Biosystem) e desnaturados a $95^{\circ} \mathrm{C}$.

3.6 - Análise dos dados

As seqüências geradas foram editadas e alinhadas com o auxílio do pacote de programas GCG (Wisconsin Package Version 9.1, Genetic Computer Group, Madison Wisconsin, USA).

Para os fragmentos dos genes de resistência isolados inicialmente, somente no caso do gene Ace obtivemos apenas uma seqüência. No caso do gene para, utilizamos as sequiências obtidas para elaborar um consenso que serviu de molde para que oligos específicos fossem desenhados para uso posterior.

Para o estudo de genética de populações utilizando o gene para como marcador, foram construídos alinhamentos de no mínimo 3 e no máximo 8 seqüências por indivíduo a fim de se obter um consenso e, sempre que possível, se determinar os dois alelos (chamados de haplótipos A e B).

A análise dos polimorfismos e estruturação populacional foi realizada usando o programa DnaSP versão 4.10.4 (Rozas \& Rozas, 1999) e com o programa Proseq versão 2.9 (Filatov \& Charlesworth, 1999). As análises filogenéticas foram realizadas com o programa Mega 3.1 (Kumar et al, 2001).

A análise da correlação entre as distâncias genéticas medidas pelos valores de Fst entre os genes para e o gene period (Araki, 2005; Bauzer et al, 2002a, b e c) foi realizada através da utilização do teste de Mantel, disponível no programa Mantel version 2.0 - Mantel nonparametric test calculator (Liedloff, 1999).

4. RESULTADOS

4.1 - Clonagem dos fragmentos dos genes de resistência

Foram obtidos diversos clones com insertos dos genes para e Rdl. As sequiências dos fragmentos gerados foram alinhadas para cada gene e o consenso destes alinhamentos foi utilizado para as análises subseqüentes.

No caso do gene Ace, foram testados diversos pares de oligos em diferentes regiões onde as mutações já caracterizadas e associadas à resistência ocorrem em posições conservadas em diversos táxons. Diversos clones foram seqüenciados, entretanto, desses, apenas um (1) obteve fragmento homólogo a uma das regiões do gene Ace. Esse fragmento foi utilizado para as análises subseqüentes.

A homologia dos fragmentos dos genes de resistência gerados, foi confirmada com a utilização do banco de dados BlastX (www.ncbi.nlm.nih.gov), que compara a seqüência nucleotídica de entrada traduzida em todos os quadros de leitura com um banco de dados de seqüências protéicas. O programa fornece também, os valores de similaridade e identidade entre as duas seqüências, conforme pode ser observado nas figuras abaixo mencionadas.

A Figura 4.1 mostra um dos resultados obtidos com a utilização do programa BlastX usando a seqüência consenso do fragmento do gene para obtido em L. longipalpis com D. melanogaster. Como observado, a similaridade entre as duas seqüências é de 98% e a identidade é também de 98%.

A Figura 4.2 mostra um dos alinhamentos gerados pelo programa Blastx através da comparação entre a seqüência do fragmento do gene Ace gerado de L. longipalpis e D. melanogaster. O valor médio de similaridade é de $91,7 \%(66 / 72)$ e o de identidade é de 79,2 \% (57/72).

A Figura 4.3 mostra um dos alinhamentos obtidos com a utilização do programa BlastX entre a seqüência consenso do fragmento do gene $R d l$ de L. longipalpis e D. melanogaster. O valor de similaridade é de 98% e de identidade é de 98%.

Para uma comparação mais detalhada as sequiências dos fragmentos gerados foram traduzidas e as respectivas proteínas foram alinhadas com as seqüências protéicas de D. melanogaster já conhecidas.

O alinhamento da proteína gerada pelo fragmento traduzido do gene para de L. longipalpis com D. melanogaster é mostrado na Figura 4.4. Conforme observado, este fragmento é bastante conservado, havendo apenas uma substituição de aminoácido (posição 30, $\mathrm{Y} \rightarrow \mathrm{L}$) quando comparado com Drosophila. A posição do íntron em relação a Drosophila também é conservada.

Conforme citado anteriormente, através do alinhamento das sequiências obtidas inicialmente do gene para, e a geração de uma seqüência consenso, foram desenhados oligos específicos para as análises de genética de populações na segunda parte do trabalho. A seqüência destes oligos específicos pode ser visualizada na seção de Materiais e Métodos.

A Figura 4.5 mostra o alinhamento da proteína do gene Ace de D. melanogaster e daquela obtida através da tradução do fragmento desse gene em L. longipalpis. Algumas substituições de aminoácidos podem ser observadas nas regiões próximas a posição do intron, como mostra a figura. Resultados semelhantes foram obtidos quando este fragmento traduzido de L. longipalpis foi alinhado com a proteína conhecida de Anopheles gambiae. O fragmento nucleotídico do gene Ace de L. longipalpis apresenta um íntron de cerca de 200 pb e sua posição também é conservada quando comparada com D. melanogaster.

A Figura 4.6 mostra o alinhamento do fragmento traduzido do gene $R d l$ obtido em L. longipalpis com a seqüência conhecida de D. melanogaster. Como mostrado na figura, esta região é bastante conservada, havendo também, apenas uma substituição de aminoácido (posição $3, S \rightarrow R$).

Nas Figuras 4.4, 4.5 e 4.6, os oligos degenerados estão destacados com cores diferentes. A posição do íntron, quando é o caso, está indicada por um triângulo invertido (\mathbf{V}). Também se encontram destacadas em cinza, as posições conservadas onde as mutações associadas à resistência ocorrem.

4.2 - Genética de populações do gene para

No estudo de genética de populações foram analisadas 707 sequiências com cerca de 417 pares de base (pb) do gene para em L. longipalpis. Este fragmento inclui um intron com cerca de 215 pb .

Foram obtidas 155 seqüências consenso de diferentes populações de L. longipalpis (representando um ou dois alelos por indivíduo) sendo 27 seqüências correspondentes à população de Sobral 1S, 22 de Sobral 2S, 21 de Lapinha, 18 de Jacobina, 24 de Natal, 14 de Estrela 1S com dois indivíduos com o fenótipo de pintas intermediário (Estint1A e Estint2A) e 29 de Pancas.

Foram analisados 377 sítios, onde $50(13,26 \%)$ foram variáveis. A Figura 4.7 mostra um alinhamento dos sítios polimórficos observados nos diferentes haplótipos gerados. A maior parte da variação é encontrada no intron que possui também diversas regiões com bases cuja repetição variava em diversas populações, gerando seqüências com tamanhos diferentes.

Constatou-se também um pequeno número de substituições sinônimas e não sinônimas. A Figura 4.8 mostra um alinhamento da seqüência de aminoácidos do primeiro (a) e segundo (b) exons. Conforme pode ser observado nas figuras 4.7 e 4.8 , há quatro substituições sinônimas (três no primeiro exon, posição 5: $\mathrm{t} \rightarrow \mathrm{c} ; 7: \mathrm{c} \rightarrow \mathrm{t} ; 31: \mathrm{g} \rightarrow \mathrm{a}, \mathrm{e}$ uma (1) no segundo exon, posição 41:t \rightarrow c) e duas substituições não-sinônimas (uma no primeiro exon, posição 38: $\mathrm{t} \rightarrow \mathrm{c}$, gerando a substituição de $\mathrm{N} \rightarrow \mathrm{K}$ apenas no haplótipo sob2s17B e uma no segundo exon, posição 58: $t \rightarrow$ a, havendo a substituição de $N \rightarrow K$ nos haplótipos
sob2s14A e B). A maior parte das substituições ocorre em terceira base, com exceção da segunda substituição sinônima (Leu: CTG \rightarrow TTG) que ocorre em primeira base.

A Tabela 4.1 mostra o número de sítios segregantes (S), a diversidade nucleotídica (π), o parâmetro neutro (θ) e o valor calculado do teste de Tajima, D_{T} (1989), que contrasta a diversidade nucleotídica (π) com o parâmetro neutro (θ). Os valores de π e θ encontrados traduzem um baixo grau de polimorfismo encontrado nas seqüências analisadas, sendo Lapinha a menos polimórfica ($\mathrm{S}=2, \pi=0,0017$ e $\theta=0,0015$) e Estrela 1 S a com valores mais representativos $(\mathrm{S}=5, \pi=0,0056, \theta=0,0043)$. Esta população foi uma das mais polimórficas analisadas por Araki (2005).

Os valores do teste de Tajima (D_{T}) não indicaram desvios significativos ao modelo neutro para a maioria das populações, exceto para a população de Sobral 1 S cujo valor do teste foi significativo (ver Tabela 4.1).

A Tabela 4.2 mostra as estimativas de diferenciação par-a-par entre as populações de L. longipalpis estudadas. Os valores de Fst encontrados foram altos em geral, indicando uma diferenciação genética significativa na maioria das comparações realizadas, exceto para o grupo de populações formado por Pancas, Natal e Sobral 2S. Os resultados obtidos através das análises com estas populações indicam uma diferenciação menor ou não significativa, estando de acordo com os resultados obtidos por Araki (2005) ao comparar a população de Pancas com àquelas analisadas anteriormente por Bauzer e colaboradores (2002 a, b). Foi verificada ainda, uma grande diferenciação ao se comparar este grupo de populações com as de Lapinha, Sobral 1S, Jacobina e Estrela 1S.

As comparações entre os dois tipos morfológicos da população de Sobral, revelam uma diferenciação muito grande entre os tipos 1 S e $2 \mathrm{~S}(\mathrm{Fst}=0,7657, \mathrm{Nm}=0,0765, \mathrm{p}<0,001)$, sendo semelhante ao resultado encontrado por Bauzer e colaboradores (2002b) ao analisar estas mesmas populaçães utilizando o gene period como marcador $(\mathrm{Fst}=0,3952, \mathrm{Nm}=$ 0,3827, $\mathrm{p}<0,001$). De fato, o teste de Mantel (Ledloff, 1999) indicou uma correlação positiva
e significativa ($\mathrm{r}=0,8269, \mathrm{p}<0,05$) entre os valores de Fst do gene period (Araki, 2005; Bauzer et al, 2002a, be c) e do gene para com todas populaçães de L. longipalpis estudadas.

A Figura 4.9 mostra uma análise das populações simpátricas da localidade de Sobral, Sobral 1S e Sobral 2S, realizada mediante a construção de uma árvore através do programa Mega 3.1 (Kumar et al, 2001) e as sequiências consenso dessas populaçc̃es, utilizando-se a distância p (que mede a proporção de diferenças encontradas por sítio em relação ao total de sítios analisados na comparação de pares de sequiências) e o método de Evolução Mínima (nesse método, a soma (S) de todos os tamanhos de braços estimados é computada para todas as topologias plausíveis [ou testadas na procura heurística], e a topologia que tiver o menor valor de S é escolhida como a melhor árvore). Seguindo o mesmo perfil que agrupamentos descritos anteriormente por Araki (2005) e Bauzer e colaboradores (2002 be c) utilizando o gene period como marcador molecular, estas populações foram separadas com um alto valor de bootstrap (análise estatística de reamostragem que indica a confiabilidade de um determinado agrupamento), de 87%.

A Figura 4.10 mostra uma outra árvore construída com as sequiências de todas as populações deste trabalho e utilizando a distância p e o método de Evolução Mínima. Para a construção dessa árvore foi utilizado o alinhamento das 155 seqüências consenso obtidas para cada amostra conforme mencionado anteriormente. Uma quantidade razoável de valores de bootstrap foi inferior a 50%, provavelmente devido ao alto número de seqüências e ao pequeno número de sítios polimórficos, porém, os agrupamentos refletem resultados consistentes com análises realizadas anteriormente envolvendo essas populações e outros marcadores genéticos.

Nesta árvore, seguindo o mesmo perfil encontrado por Bauzer (2002c) e Araki (2005), é possível observar um agrupamento entre as seqüências de Natal, Sobral 2S e Pancas de um lado (em amarelo) e, de outro formado pelas seqüências de Lapinha, Jacobina, Sobral 1S e a maior parte das seqüências de Estrela 1S.

Um aspecto interessante que deve ser ressaltado é o fato de quatro seqüências (estint 1 A , estint 2 A , est1s8A e B) referentes à população de Estrela 1 S terem se agrupado ao grupo que contém Sobral 2S, Natal e Pancas. As seqüências estint1A e estint2A como mencionado anteriormente, são referentes a indivíduos homozigotos que possuem o fenótipo intermediário de pintas e o fato delas terem se agrupado com Sobral 2S, Natal e Pancas está de acordo com os resultados obtidos por Araki (2005), que incluiu em suas análises a comparação entre os três tipos morfológicos da população de Estrela (1S, 2 S e intermediário) e os dados de Bauzer e colaboradores (2002a, b).

A Figura 4.11a mostra a relação entre todas as populações através de uma árvore construída utilizando os valores de Dxy (divergência bruta) e o método de Neighbour-Joining (Saitou \& Nei, 1987), (que a partir de um algorítimo gera uma árvore igual à obtida pelo método de Evolução Mínima quando o número de sequiências não é muito grande). Pode ser observada claramente a presença de dois grupos marcantes, um contendo as populações de Pancas, Natal e Sobral 2S e outro contendo as demais. Resultados semelhantes foram obtidos para a árvore construída com o mesmo método e os valores de Fst (Figura 4.11b). Novamente, este agrupamento está em consonância com os resultados obtidos por Araki (2005) com estas e outras populações.

```
gi|403447|gb|AAB59195.1| sodium channel alpha subunit [Drosophila melanogaster]
    Score = 164 bits (415), Expect = 1e-39
    Identities = 78/79 (98%), Positives = 78/79 (98%), Gaps = 0/79 (0%)
    Frame = -1
Query 237 WNFTDFMHSFMIVFRVLCGEWIESMWDCMLVGDVSCIPFFLATVVIGNLVVLNLFLALLL 58
        WNFTDFMHSFMIVFRVLCGEWIESMWDCM VGDVSCIPFFLATVVIGNLVVLNLFLALLL
Sbjct 981 WNFTDFMHSFMIVFRVLCGEWIESMWDCMYVGDVSCIPFFLATVVIGNLVVLNLFLALLL 1040
Query 57 SNFGSSSLSAPTADNDTNK 1
    SNFGSSSLSAPTADNDTNK
Sbjct 1041 SNFGSSSLSAPTADNDTNK 1059
```

Figura 4.1: Alinhamento do fragmento traduzido do gene para de L. longipalpis com D. melanogaster gerado através do programa BlastX.

```
gi|113036|sp|P07140|ACES_DROME Acetylcholinesterase precursor (AChE)
gi|7536|emb|CAA29326.1| unnamed protein product [Drosophila melanogaster]
Length=649
    Score = 70.5 bits (171), Expect(2) = 1e-23
    Identities = 32/39 (82%), Positives = 35/39 (89%), Gaps = 0/39 (0%)
    Frame = +2
Query 209 SPVLVMECMQNVDAKTISVQQWNSYSGILGFPSAPTIDG 325
    +P VM CM++VDAKTISVQQWNSYSGIL FPSAPTIDG
Sbjct 338 NPAHVMSCMRSVDAKTISVQQWNSYSGILSFPSAPTIDG 376
    Score = 61.6 bits (148), Expect(2) = 1e-23
    Identities = 25/33 (75%), Positives = 31/33 (93%), Gaps = 0/33 (0%)
    Frame = +1
Query 1 TMNAPWSHMTGERATKIGKALIDDCNCNSSLLQ }9
    TMNAPWSHMT E+A +IGKALI+DCNCN+S+L+
Sbjct 304 TMNAPWSHMTSEKAVEIGKALINDCNCNASMLK 336
```

Figura 4.2: Alinhamento do fragmento traduzido do gene Ace de L. longipalpis homólogo ao de D. melanogaster gerado através do programa BlastX.

```
gi|24661416|ref|NP_523991.2| Resistant to dieldrin CG10537-PA, isoform A
gi|7294983|gb|AAF50311.1| G CG10537-PA, isoform A [Drosophila melanogaster]
gi|30581023|sp|P25123|GBRB_DROME G Gamma-aminobutyric-acid receptor beta subunit
precursor (GABA(A)
receptor) (Protein cyclodiene resistance)
Length=606
    Score = 116 bits (291), Expect = 3e-25
Identities = 57/58 (98%), Positives = 57/58 (98%), Gaps = 0/58 (0%)
Frame = -1
Query 174 WVRFWLNRNATPARVALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFA 1
Sbjct 286 WVSFWLNRNATPARVALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFA 343
```

Figura 4.3: Alinhamento do fragmento traduzido obtido em L. longipalpis homólogo ao gene $R d l$ de D. melanogaster gerado através do programa BlastX.

Figura 4.4: Alinhamento da sequiência de aminoácido codificada pelo fragmento do gene para de L. longipalpis e D. melanogaster. As setas indicam a orientação dos oligos usados. A posição do intron encontrada nas seqüências genômicas de D. melanogaster e L. longipalpis está indicada pelo triângulo invertido. A posição onde a mutação associada a resistência ($\mathrm{L} \rightarrow$ H) ocorre em D. melanogaster está destacada em cinza.

Figura 4.5: Alinhamento da sequiência de aminoácido codificada pelo fragmento do gene Ace de L. longipalpis e D. melanogaster. As setas indicam a orientação dos oligos usados. A posição do intron encontrada nas seqüências genômicas de D. melanogaster e L. longipalpis está indicada pelo triângulo invertido. A posição onde a mutação associada à resistência ($\mathrm{F} \rightarrow$ Y) ocorre em D. melanogaster está destacada em cinza.

Figura 4.6: Alinhamento da seqüência de aminoácido codificada pelo fragmento do gene $R d l$ de L. longipalpis e D. melanogaster. As setas indicam a orientação dos oligos usados. A posição onde a mutação associada a resistência $(\mathrm{A} \rightarrow \mathrm{S})$ ocorre em D. melanogaster está destacada em cinza.

	0001111111111111222222222222222222223333333333 11914456677888990112333334445666667777880011112337 59343865839123165576245781231012480368141767896270
lap1s15A	TCGTTACCGGGGTAGTCTCTGGTTTGCGATCCTCGTATACAAT---CTTT
lap1s14B	
lap1s14A	
lap1s13A	
lap1s17A	. A. TT-
lap1s18A	TT-
lap1s16A	A. TT-
sob2s11A	.
pan8A	.T........T.--.C. .T.T. .-G. . . . - - TC
sob2s6A	.T........T.--. T.T. .-G. . . . - -
sob2s5A	.T........T.--.T.T. .-G
sob2s4B	.T.......T.--. T.T. . -G
sob2s4A	.T.......T.--.C.........T.T. .-G..... -T
sob2s1A	.T.T.--. T.T. .-G.
sob2s18B	.T. T.--. T. $^{\text {T. . -G }}$
sob2s18A	.T.......T.--...........T.T..-G. . . . -T
sob2s17B	.T.G. . . . T.---T.T. .-G. . . . - -
sob2s17A	.T........T.--. T.T. .-G. . .G.
sob2s15A	.T. T.--- T.T. . -G
sob2s13A	.T........T.--........... T.T. .-G.
pan4B	.T........T.--. T. T. .-G. . . . - -
pan4A	.T.T.--.T.T. .-G .
pan2B	CT........T.--...........T.T..-G......-T
pan2A	.T. T.--.T.T. .-G .
pan18B	
pan18A	
pan14A	.T.T.--. T.T. .-G.
natal7B	.T........T.--. T.T. . - ${ }^{\text {G }}$
natal7A	.T........T.--............T.T. .-G..... - -
natal6B	.T........T.--.C.T.T. .-G. . . . - -
natal6A	.T........T.--. T. T. .-G. . . . - -
natal5B	
natal5A	.T. T.--. T. T. .-G. -
natal4B	.T.T.--. C. .T.T. .-G.
natal4A	.T. T.--. T. T. .-G .
natal3B	.T.......T.--. T.T.. - -
natal3A	.T........T.--............T.T
natal2B	.T.T.--. T.T. .-G.
natal2A	.T.......T.--. T. T. .-G. . . . - -
natal11B	.T.......T.--...........T.T. .-G..... -T
natal11A	
natal10B	.T........T.--............T.T.. -G
natal10A	.T........T.--. T. T. .-G..... - -
sob2s9B	.T. T.--. T.T. . -G .
sob2s8B	.T.T.--. T.T. .-G. . . . - -
sob2s8A	.T. T.--. T.T. .-G .
sob2s7B	.T. T.--. T. $^{\text {T }}$
sob2s 7A	.T. T.--- T.T. . -G
sob2s16B	.T........T.--...........T.
sob2s16A	.T. T.--- T.T. .-G
sob1s9A	
pan9B	.T........T.--. T. T. .-G
pan9A	
pan7A	.T.T.--- T. T.. - - -
pan6B	
pan6A	
pan17B	.T........T.--.C. . T.T..-G. . . . -T. . . T--
pan17A	.T........T.--. T.T. . -G
pan16B	.T........T.--. T. T. .-G..... - -
pan16A	

Figura 4.7: Alinhamento dos sítios variáveis nas seqüências consenso do fragmento obtido do gene para de L. longipalpis. Em azul os sítios que ocorrem na região do íntron e em preto os sítios que ocorrem na região do exon. Os pontos indicam o mesmo nucleotídeo que o existente na primeira seqüência alinhada. Sobral uma pinta (sob1s), Sobral duas pintas (sob2s), Lapinha (lap1s), Jacobina (jac2s), Natal (natal), Estrela uma pinta (1s), Estrela fenótipo de pintas intermediário (estint) e Pancas (pan).
(a)

	$\begin{array}{r} 10 \\ \star \end{array}$	$\begin{array}{r} 20 \\ \text { * } \end{array}$	$\begin{array}{r} 30 \\ \text { * } \end{array}$	40 $*$
lap1s15A	MIVFRVLCGEV	ML	PFI	
lap1s14B				
lap1s14A				
lap1s13A				
lap1s17A				
lap1s18A				
lap1s16A				
sob2s11A				
pan8A				
sob2s6A				
sob2s5A				
sob2s4B				
sob2s4A				
sob2s1A				
sob2s18B				
sob2s18A				
sob2s17B				
sob2s17A				
sob2s15A				
sob2s13A				
pan4B				
pan4A				
pan2B				
pan2A				
pan18B				
pan18A				
pan14A				
natal7B				
natal7A				
natal6B				
natal6A				
natal5B				
natal5A				
natal4B				
natal4A				
natal3B				
natal3A				
natal2B				
natal2A				
natal11B				
natal11A				
natal10B				
natal10A				
sob2s9B				
sob2s8B				
sob2s8A				
sob2s7B				
sob2s7A				
sob2s16B				
sob2s16A				
sob1s9A				
pan9B				
pan9A				
pan7A				
pan6B				
pan6A				
pan17B				
pan17A				
pan16B				
pan16A				
pan15B				
pan15A				
pan12B				
pan12A				
pan11B				
pan11A				
natal9B				
natal9A				
natal8B				
natal8A				
sob2s14B				
sob2s14A				
pan21B				

(b)
lap1s15A
lap1s14B
lap1s14A
lap1s13A
lap1s17A
lap1s18A
lap1s16A
sob2s11A
pan8A
sob2s6A
sob2s5A
sob2s4B
sob2s4A
sob2s1A
sob2s18B
sob2s18A
sob2s17B
sob2s17A
sob2s15A
sob2s13A
pan4B
pan4A
pan2B
pan2A
pan18B
pan18A
pan14A
natal7B
natal7A
natal6B
natal6A
natal5B
natal5A
natal4B
natal4A
natal3B
natal3A
natal2B
natal2A
natal11B
natal11A
natal10B
natal10A
sob2s9B
sob2s8B
sob2s8A
sob2s7B
sob2s7A
sob2s16B
sob2s16A
sob1s9A
pan9B
pan9A
pan7A
pan6B
pan6A
pan17B
pan17A
pan16B
pan16A
pan15B
pan15A
pan12B
pan12A
pan11B
pan11A
natal9B
natal9A
natal8B
natal8A

sob2s14A

41
VLNLFLALLLSNFG
.
.................................
.
.
.
.
.
.............
.
.

-
.
.
.
.
.

.
.
.
.
.
.
.
. -
.
.
.

. \cdot.
.
.
.
.

Figura 4.8: Alinhamento das seqüências de aminoácidos codificadas pelo fragmento do gene para estudado, em (a) exon 1 e (b) exon 2 . Os pontos indicam o mesmo aminoácido que o indicado na posição da primeira sequiência alinhada. As letras indicam as substituições ocorridas na seqüência específica. Em verde o aminoácido onde ocorre substituição sinônima em alguma das seqüências e, em vermelho, a substituição não sinônima. Sobral uma pinta (sob1s), Sobral duas pintas (sob2s), Lapinha (lap1s), Jacobina (jac2s), Natal (natal), Estrela uma pinta (1s), Estrela fenótipo de pintas intermediário (estint) e Pancas (pan).

Figura 4.10: Árvore construída através do método de Evolução Mínima com as seqüências consenso do gene para. Os valores de bootstrap foram obtidos mediante a 1000 permutações. As diferentes cores separam as diferentes populações analisadas.

(a)

(b)

Figura 4.11: Árvores construídas utilizando o método Neighbour-Joining (Saitou \& Ney, 1987) e os valores de Dxy (a) e Fst (b).

Tabela 4.1: Sumário dos polimorfismos no fragmento do gene para de L. longipalpis.

População	\mathbf{n}	\mathbf{S}	$\boldsymbol{\pi}$	$\boldsymbol{\theta}$	$\mathbf{D}_{\mathbf{T}}$
Lapinha	21	2	0,0017	0,0015	0,22217
Sobral 2S	22	8	0,004	0,006	$-1,08108$
Pancas	29	10	0,0048	0,0069	$-0,98104$
Natal	24	11	0,0047	0,008	$-1,40808$
Sobral 1S	27	12	0,0037	0,0085	$-2,014$
Jacobina	18	9	0,0052	0,0071	$-0,96784$
Estrela 1S	14	5	0,0056	0,0043	1,03871

\mathbf{n}, número de seqüências de DNA das amostras; \mathbf{S}, número de sítios segregantes; $\boldsymbol{\pi}$, diversidade nucleotídica; $\boldsymbol{\theta}$, parâmetro neutro baseado no número de sítios segregantes; $\mathbf{D}_{\mathbf{T}}, \mathrm{D}$ de Tajima (1989), que testa se as diferenças entre as medidas de π e θ são significativas. Com exceção para a população de Sobral 1S, os demais valores de Tajima não foram significativos $\mathrm{p}>0,10$.

Tabela 4.2: Estimativas de Fst, Nm, Dxy e Da entre as populações de L. longipalpis, e a distribuição de quatro categorias mutuamente exclusivas de sítios polimórficos.

Populaçães \mathbf{x} / \mathbf{y}	Fst		\mathbf{p}	$\mathbf{N m}$	$\mathbf{D x y}$	$\mathbf{D a}$	$\mathbf{S s}$	$\mathbf{S f}$	$\mathbf{S x}$
Lap x Sob 2S	0,8245	$* * *$	0,0532	0,0161	0,0133	0	4	2	8
Lap x Pan	0,8148	$* * *$	0,0568	0,0174	0,0142	0	4	2	10
Lap x Nat	0,8165	$* * *$	0,0562	0,0173	0,0141	0	4	2	11
Lap x Sob 1S	0,1365	$* * *$	1,5809	0,0031	0,0004	1	0	1	12
Lap x Jac	0,2356	$* * *$	0,811	0,0045	0,0011	0	0	2	9
Lap x Est 1S	0,5196	$* * *$	0,2311	0,0075	0,0039	0	1	2	5
Sob 2S x Pan	0,0768	$*$	3,0036	0,0048	0,0004	3	0	5	7
Sob 2S x Nat	0,0311	ns	7,7815	0,0045	0,0001	5	0	3	6
Sob 2S x Sob 1S	0,7657	$* * *$	0,0765	0,0165	0,0126	1	3	7	12
Sob 2S x Jac	0,681	$* * *$	0,1171	0,0144	0,0098	0	2	8	9
Sob 2S x Est 1S	0,5087	$* *$	0,2415	0,0097	0,0049	2	0	6	3
Sob 1S x Pan	0,7606	$* * *$	0,0787	0,0178	0,0135	1	3	12	9
Sob 1S x Nat	0,7617	$* * *$	0,0782	0,0176	0,0134	1	3	12	10
Sob 1s x Jac	0,1068	$* *$	2,0915	0,005	0,0005	2	0	11	7
Sob 1s x Est 1s	0,4139	$* * *$	0,354	0,0079	0,0033	0	0	13	5
Pan x Nat	$-0,0148$	$n s$	xxx	0,0047	$-0,0001$	4	0	6	7
Pan x Jac	0,6821	$* * *$	0,1165	0,0157	0,0107	0	2	10	9
Pan x Est 1S	0,5114	$* * *$	0,2388	0,0106	0,0054	2	0	8	3
Nat x Jac	0,6827	$* * *$	0,1162	0,0155	0,0106	0	2	11	9
Nat x Est 1S	0,5119	$* *$	0,2383	0,0105	0,0054	2	0	9	3
Jac x Est 1S	0,2158	$* * *$	0,9085	0,0068	0,0015	1	0	8	4

Fst, índice de fixação par-a-par e Nm, número de migrantes por geração (Hudson et al., 1992). A significância dos valores de Fst foram testados mediante 1000 permutações ($* * *=$ $\mathrm{p}<0,001, * *=\mathrm{p}<0,01, *=\mathrm{p}<0,05, \mathrm{~ns}=\mathrm{p}>0,05$). $\mathbf{D x y}$, divergência bruta (número médio de substituições nulceotídicas por sítio entre as populações); Da, divergência líquida (número de substituições nucleotídicas líquida por sítio entre as populações) (Nei \& Kumar, 2000). Ss, número de polimorfismos compartilhados entre as populações; $\mathbf{S f}$, número de diferenças fixas entre as populações; $\mathbf{S x}$, número de sítios polimórficos exclusivos da população "x"; $\mathbf{S y}$, número de sítios polimórficos exclusivos da população "y". Lap: Lapinha, Sob 2S: Sobral 2S, Pan: Pancas, Nat: Natal, Sob 1S: Sobral 1S, Jac: Jacobina e Est 1S: Estrela 1S.

5. DISCUSSÃO

5.1 - Clonagem dos fragmentos dos genes associados à resistência a inseticidas

A obtenção dos fragmentos iniciais de genes associados à resistência a inseticidas em L. longipalpis representa um importante passo inicial para estudos subseqüentes já que a maior parte dos trabalhos anteriores publicados, além de escassos, não tratam da questão molecular, estando esta, ainda não resolvida em L. longipalpis. A maior parte dos artigos publicados em flebotomíneos se concentra em Phlebotomus e, mesmo nesses trabalhos, poucos abordam a questão molecular (El-Sayed et al, 1989; Das Gupta et al, 1995; Surendran et al, 2005).

Uma vez que agora dispomos destes fragmentos, isolados em L. longipalpis dos principais genes envolvidos com a resistência a inseticidas listados na literatura, novas abordagens e grandes avanços poderão ser realizados dentro deste tema intrigante e com este importante vetor nas Américas.

Os alinhamentos gerados pela tradução dos fragmentos dos genes de resistência clonados em L. longipalpis mostram que, em geral, estas regiões são bastante conservadas, havendo poucas substituições de aminoácidos quando comparado com D. melanogaster. Isto fica mais evidente com as sequiências dos genes para e $R d l$ (canais iônicos), onde apenas uma única substituição é observada em cada caso. O fragmento do gene Ace, que codifica a enzima acetilcolinaesterase, por sua vez, mostra um número maior de alterações nas regiões próximas a posição do íntron.

A maior permissividade pela seleção quanto à ocorrência de mutações em alguns genes de resistência mais do que em outros, já fora tema de especulação e debate em diversos trabalhos anteriores (e.g. ffrench-Constant, 1999). Alguns estudos discutem o custo do valor adaptativo destas mutações e questionam porque um número maior de mutações associadas à resistência são encontradas no gene Ace. Esse gene possui várias mutações já caracterizadas
que, isoladamente, cada uma tem um efeito pequeno na resistência a inseticidas e, quando combinadas, têm seu efeito bastante amplificado, motivo pelo qual, na pressão de seleção pelo inseticida, são freqüentemente encontradas mais de uma mutação. Entretanto, no caso de para e $R d l$ poucas mutações são encontradas.

Uma das explicações reside no fato da acetilcolinaesterase ser uma enzima altamente eficiente, que degrada a acetilcolina na sinapse nervosa, e que essas mutações tenham um pequeno efeito no funcionamento normal da enzima, de forma que podem ser mantidas em populaçães naturais. Entretanto, mutações em Rdl e para podem estar associadas com uma grande disfunção do receptor ou canal (ffrench-Constant, 1999).

Temas como a resistência a inseticidas são prioridades em saúde pública para a efetividade dos esforços empregados no controle de vetores de doenças. Isso inclui uma gama de estudos com diferentes insetos e áreas do conhecimento. Como mencionado anteriormente, em flebotomíneos existem poucos estudos envolvendo resistência, portanto, consideramos que a clonagem dos fragmentos desses genes associados à resistência citados, representa um importante passo inicial e contribui de forma ímpar para que novos trabalhos sejam realizados. Acreditamos, desta forma, que estes fragmentos poderão ser utilizados como eficientes marcadores moleculares em estudos de resistência envolvendo este vetor.

Uma vez isolados os fragmentos, o passo subseqüente seria desenhar oligos específicos para que estudos mais detalhados, como de genética de populações sejam exequíveis.

O primeiro gene escolhido para a realização de tal abordagem foi o gene para, com o qual trabalhamos na segunda parte do presente estudo.

5.2 - Genética de populações do gene para

Inicialmente as análises nos mostraram que a região estudada, contida no domínio IIS6 (mostrado previamente), onde uma das mutações associadas à resistência ocorre (L1029H), é
uma região bastante conservada em todas as populações estudadas, havendo poucas substituições nas regiões codantes e uma maior quantidade na região do íntron, conforme citado anteriormente.

Ainda que as substituições de aminoácidos não sejam as previamente descritas como as responsáveis pela resistência promovida por este gene em outros modelos, esta região trouxe aspectos interessantes ao apontar diferenças fixas que suportam o agrupamento de populações descrito anteriormente por Bauzer (2002 a, b e c) e Araki (2005).

Seguindo a mesma tendência que outros marcadores usados em outros trabalhos, a diferenciação genética evidenciada com as análises de para entre as populações de L. longipalpis estudadas, não parece seguir um modelo simples de isolamento por distância, onde se constata que populações geograficamente próximas são mais divergentes que populaçães distantes. Ressalta-se que a coexistência de populações geneticamente divergentes vivendo em simpatria, como já fora reportado para Sobral e Estrela, suporta a idéia de L. longipalpis ser um complexo de espécies crípticas no Brasil. De fato, os dados obtidos para Sobral 1S, 2S e Estrela 1S deste presente estudo vão ao encontro dessa constatação. Interessantemente, os indivíduos intermediários (estint1A e estint2A) se assemelham e se agrupam com o grupo de Sobral 2S, e os indivíduos com o fenótipo de uma pinta de Estrela (com exceção do indivíduo 8, est1s8A e B) se agrupam com o de Sobral 1S, estando de acordo com os resultados de Araki (2005). Vale ressaltar que tanto Estrela (Hamilton et al, 2005) quando Sobral 2 S (Ward et al, 1988) produzem o cembreno como tipo de feromônio. A discordância existe entre Estrela 1 S e Sobral 1S que, mesmo agrupados, produzem feromônios de tipos diferentes, esta produz o germacreno (Ward et al, 1988) e aquela produz o cembreno (Hamilton et al, 2005). De fato, o valor de Fst entre essas últimas populaçães, da mesma forma que verificado por Araki (2005) com o gene period, é bastante alto (cerca de 41%). Torna-se curioso analisar os dados já obtidos mais ainda não processados, do morfótipo
$2 S$ de Estrela e sua comparação com Sobral 2 S, a fim de verificar se são de fato próximos, como demonstrado por Araki (2005).

A análise da diferenciação do gene para entre Sobral 2S, Natal e Pancas revelou que são semelhantes geneticamente. As árvores da figura 4.11 construídas com os valores de Dxy e Fst sustentam essas análises ao agrupar essas populações. Vale ressaltar que esse grupo utiliza o mesmo tipo de feromônio, o cembreno (Ward et al, 1988; Souza et al, 2002; Reginaldo Brazil, comunicação pessoal) e diversos estudos corroboram a proximidade entre essas populações (e.g. Mukhopadhyay et al, 1998a; Mutebi et al, 1999; Azevedo et al, 2000), evidenciando uma proximidade entre as populações da costa do Nordeste, que se distribuem até o Sudeste em Pancas (ES). Outras populações serão analisadas posteriormente nesse continuит e, com os dados de outros marcadores esta hipótese poderá ser mais bem avaliada.

Os dados que obtivemos através da comparação das diferentes populações utilizadas nesse estudo (Tabela 4.2) estão de acordo com os trabalhos anteriores que envolvem cruzamentos, som de cópula, feromônio, microssatélites e marcadores moleculares que indicam a existência de um complexo de espécies no Brasil. Nossos resultados contribuem, ainda, para reforçar o agrupamento das espécies que constituiriam o complexo brasileiro, proposto por Araki (2005). Dentre as populações que analisamos, um primeiro grupo seria formado por Sobral 2S, Natal e Pancas, representando uma espécie, com tipo de feromônio cembreno, de 20 carbonos em sua estrutura (incluindo Pancas, analisado recentemente, Reginaldo Brazil, comunicação pessoal) e som de cópula do tipo Burst (Ward et al, 1988; Souza et al, 2002, 2004; Vigoder F, dados não publicados) e, de outro lado teríamos Sobral 1S, Jacobina e Lapinha como outros representantes do complexo, com som de cópula do tipo pulsado e feromônio do tipo germacreno (Sobral 1S e Lapinha) e himacaleno (Jacobina) de 16 carbonos em sua estrutura (Ward et al, 1988; Hamilton et al, 1996a, b e 1999a, b; Souza et al, 2002; 2004). Estrela 1S, assim como sugerido por Araki (2005) parece representar uma outra espécie do complexo, com altos valores de Fst na comparação com as outras populações (ver

Tabela 4.2 para maiores detalhes). De fato, embora machos desta população exalem o feromônio do tipo cembreno (Hamilton et al, 2005) eles produzem um novo som de cópula do tipo pulsado não encontrado em outras populações.

Além de apontarem para a existência de um complexo no Brasil, nossos resultados com o gene para representam uma primeira análise do uso de genes de resistência como marcadores moleculares no estudo da genética de populações de L. longipalpis. Ainda que não tenham sido detectadas as mutações clássicas associadas à resistência, acreditamos que a análise das populações nos forneceu dados interessantes acerca da estrutura genética entre as populações que compõem esse complexo o que será de grande utilidade, pois, nos permitirá prever, o possível grau de dispersão de alelos resistentes, caso sejam detectados ou venham a surgir.

Acreditamos que seria de grande valor a análise conjunta deste e outros genes de resistência, como por exemplo, o uso dos fragmentos dos genes gerados nesse trabalho (Ace e $R d l)$ e a inclusão de outras populaçães de diversas localidades, inclusive daquelas onde o uso de inseticidas é freqüente, objetivando um perfil mais detalhado desses marcadores no complexo L. longipalpis, permitindo, dessa forma, estabelecer seu comportamento e as forças atuantes nesses tipos peculiares de marcadores, assim como a investigação das mutações associadas à resistência.

6. ANEXO

Figura 6.1: Alinhamento das seqüências consenso do fragmento do gene para em diferentes populaçães de L. longipalpis. Destaca-se em azul os sítios localizados na região do íntron. Os traços indicam os nucleotídeos iguais à primeira sequiência alinhada e os pontos indicam gaps. As substituições nos sítios polimórficos estão indicadas pelas respectivas letras ao longo do alinhamento.

				1111	111	1111	122	2222	2222	223	333	333	333	4444	444	444	455	555	555	556	66	666	666	777	777	777	788	888	888	889	999	999	999	111		111	$\begin{array}{ll} 111 & 111 \\ 011 & 111 \end{array}$
	123	456	789	0123	345	6789	901	2345	56789	8901	123	456	789	0123	345	678	901	234	567	890	123	456	789	012	345	678	901	234	567	890	123	456	789	012	345	678	901234
\#lap1s15A	AtG	ATA	GTA	TTC	CGT	GTG C	CTG	TGC	GGC GA	GAA	TGG	ATT	GAG	TCA A	ATG	TGG	GAT	TGC	ATG	CTG	GTG	GGA	GAT	GTA	TCA	TGC	Att	CCT	TTC	TTC	TTG	GCA	ACA	GTA	GTA	ATT	GGG AAt
\#lap1s14B					---	-	---						---																								-
\#lap1s14A				---	---	--- -	---	---	--- --	---	---		---	---		--			-																		- ---
\#lap1s13A					---	---	---																														- ---
\#lap1s17A						---																															- ---
\#lap1s18A																																					
\#lap1s16A																																					
$\begin{aligned} & \text { \#sob2s11A } \\ & \text { \#pan8A } \end{aligned}$	----	----		----	-	T	T--	----	---- --	----	---	---	----	---- --	---	----	---	---	----	---	--		---	---	--	---	---	--	--	---	---	---	---	--	---	---	-
\#sob2s6A		---		---	--	-- T	T--	--	--- -	---	---	-	-	---	--	---	-	---	--							---											------
\#sob2s5A		---		---	-	T	T--	---		---			---	---		---		---	---																		-- ---
\#sob2s 4B					---	T	T--																														
\#sob2s4A		--		---	---	T	T	---	--- -	---	---		---	---																							
\#sob2s1A					---	T	T--																														- ---
\#sob2s18B						T	T--																														- ---
\#sob2s18A		---			---	T	T--	---					--			---			-																		- ---
\#sob2s17B	---	---		---	---	T	T--	---	--- -	---	---	---	---	---	---	---	---	---	---	-	--			--	--	---	--	--			--		---	--	---	---	--G
\#sob2s17A				---		T	T--	---	--- -	---	---		---	--- -		---			---		---			--		---					---			---			
\#sob2s15A				---	---		T	---					---	---		---			--_						---	---		---	---		---	---	-_-	--			--- ---
\#sob2s13A							T--																			---											
\#pan4B					-	T	T												-																		
\#pan4A	---	---	---	-	-	- T	T--	---	--- -	---	---	---	---	---	---	---	---	---	---	--	--	---	--	--	--	---	--	--	--	---	--	---	--	--	---	---	-- ---
\#pan2B		---		---	C	T	T--	---	--- -	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--	--	---	---	--- ---
\#pan2A		---		---		T	-		--- -	---			---	---		---			---							-_-											--- ---
\#pan18B							T--																														
\#pan18A						T	T-		--- -		---		---	---	---	---	---	---	---	--	---		---	--	---	---	---	---			---		---	---			,
\#pan14A	----	----	----	-	-	---- T	T--	-	- -	----	----	----	----	---		----	---		----	---						---											
\#natal 7 B	---	---			-- -	--- T	T--		---	---	---					---																					
\#natal7A					---	T	T--		--- -	---																											
\#natal6B	----	----		----	----	T	T--	----						----																							
\#natal5B	----					T	T--																														
\#natal5A		---			---	T	T--	---	--- -			--	--	---	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	---	--	--	--	--	--	--	--- ---
\#natal4B		-		---	-	- T	T--	-	--- -	---	---	---	--	--- -	---	--	--	--	--	--	--	--	--	--	--	--	---	--	--		---	---		--	---		------
\#natal4A		--		-	-	- T	T--	-	--- -	---	---	---	---	---	---	---	--	---	---	---	--	---	---	--	---	---	---	---	---	---	---	---	---	--	---	---	--- ---
\#natal3B	---	-	---	-	-	-- T	T--	-	--- -	---	---	--	-	---	---	--	--	---	---	---	--		---	--	---	---	---	---		---	---	---	---	---	---	---	
\#natal3A					---	T	T-		---			--	--	--- -	---	--		--	--		--	---		---	---	---					--	---					--- ---
\#natal2B		---	---	- -	---	T	T-	-	---				--	---	--	--	---	--	---	---	--	---	---	---	--	---	---	--			---	---		---			--- ---
\#natal2A		---	---	--	---	T	T--			---		--	--	--	--	--	---	--	--	---	--	--	---	---	--	---	---	--		---	---	--					--- ---
\#natal11B		---		-	-	- T	T--		---	--	-	---	--	---	--	--		--	--	--					--						---						
natal11A							T																								--A						

\#natal10B
\#natal10A
\#natal10A
\#sob2s9B
\#sob2s8B
\#sob2s8A
\#sob2s7B
\#sob2s7B
\#sob2s7A
\#sob2s7A
\#sob2s16B
\#sob2s16B
\#sob2s16A
\#sob2s16A
\#sob1s9A
\#sob1s9A
\#pan9B
$\# \operatorname{pan9B}$
$\# \operatorname{pan} 9 A$
\#pan9A
\#pan7A
\#pan7A
$\# p a n 6 B$
\#pan6B
\#pan6A
\#pan6A
\#pan17A
\#pan16B
\#pan16A
\#pan15B
\#pan15A
\#pan15A
\#pan12B
\#pan12B
\#pan11B
\#pan11A
\#natal9B
\#natal9A
\#natal8B
\#natal8A
\#sob2s14A
\#pan21B
\#pan21A
\#pan19B
\#pan19A
\#pan13B
\#pan13A
\#natal1B
\#natal1A
\#natal12B
\#natal12A
\#jac2s3A
\#jac2s3A

\#jac2s10B
\#jac2s10A
\#sob1s6B
\#sob1s6A
\#sob1s1B
\#sob1s1A
\#lap1s2B
\#lap1s2A
\#jac2s1B

\#est1s6A
\#est1s3A
\#est1s3A
\#est1s9A
\#est1s5B
\#est1s5B
\#est1s5A
\#est1s12A
\#est1s12A
\#est1s11A
\#est1s10A

 \#lap1s14B \#lap1s14A
\#lap1s13A
\#lap1s18A
\#lap1s16A
pan8A
\#sob2s6A
\#sob2s5A
\#sob2s4B
\#sob2s4A
\#sob2s1A
\#sob2s18B
\#sob2s18B
\#sob2s17B
\#sob2s17A
\#sob2s15A
\#sob2s13A
\#pan4B
\#pan4A
\#pan2B
\#pan2A
\#pan18B
\#pan18A
\#pan14A
\#natal7B
\#natal7A
\#natal6B
\#natal6A
\#natal5B
\#natal5A
\#natal4B
\#natal4A
\#natal3B
\#natal3A
\#natal2B
\#natal2A
\#natal11B \#natal11A

 --- --- --- --- --- -- --
\qquad
\qquad --- --- -A- --- --- --- --- --- --- --- ------ --- --- --- C-- --- --- --- --- --- --- --- ------ --- --- --- --- --- --- --- --- --- --- --- ---
 --- --- --- --- --- --- --- --- --- --- --- --- --- -- ----- --- --- --- c-- --- --- --- --- --- --- --- --- ----- --- --- --- --- --- --- --- --- --- --- --- --- -- -- --- -_- --- ---- --- --- ----- --- --- --- --- --- --- --- --- --- --- --- --- ----_- --- ---- ---- --- --- --- --- --- --- ----- ------- --- --- --- --- --- --- --- --- --- --- --- --- ----- --- --- --- --- --- --- --- --- --- --- --- --- -- ---_- ---- --- ---- --- --- --- --- --- --- --- --- --- --- ------ --- --- --- --- --- --- --- --- --- --- --- --- --- -- -- --
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- -- ----- --- --- --- --- --- --- --- --- --- --- --- --- -- ----- --- --- --- --- --- --- --- --- --- --- --- ------ --- --- --- --- ---- --- --- --- --- --- --- --- ------ --- --- --- ---- --- --- --- --- --- --- --- --- --- ----- --- --- --- --- --- --- --- --- --- --- --- --- ------ --- --- --- --- --- --- --- --- --- --- --- --- -- -- ----- --- --- --- --- --- --- --- --- --- --- --- --- --- ----- --- --- --- --- --- --- --- --- --- --- --- --- -- --- -- --- ------ --- --- --- --- --- --- --- --- --- --- -- -- -- --

$$
\begin{aligned}
& \text { \#est1s6A }
\end{aligned}
$$

> \#est1s5A
> \#est1s12A
> \#est1s11A

33333333333333333333333333333333333
44444445555555555666666666677777777
 \#apls15A TCT TTT CTT AGC CTT GCT TTT GAG CAA TTT CGG AT \#lap1s14B --- --- --- --- --- --- --- --- --- -- --- -- -- -- -- -\#lap1s13A --- ---- ---- ---- ---- ---- --- --- --- --- ---
\#lap1s17A --- --- --- --- -- -- --
\#lap1s18A --- --- --- --- --- --- --- ---
\#lap1s16A --- --- --- --- --- --- --- -- --
\#sob2s11A --- --- --- --- --- --- --- --- -- -\#pan8A
\#sob2s6A
\#sob2s5A
\#sob2s4B
\#sob2s4A
\#sob2s1A
\#sob2s18B
\#sob2s18A
sob2s17B
sob2s17B --- -- --- --- --- -- --
nsob2s17A ---- --- --- --- --- --- --- --- --- ---
\qquad
tob2si3A ---- --- --- --- --- --- --- --- ---
--- --- --- --- --- --- --- --- ---
\#pan4A --- --- --- --- --- --- --- --- --- --- ---
pan2B --- --- --- --- --- --- --- --- --- -- --
\#pan2A --- --- --- --- --- --- --- --- ---
\#pan18B --- --- --- --- --- --- --- --- --- --- --
\#pan18A --- --- --- --- --- --- --- --- --- -- --
pan14A
\#natal7B
natal7A --- --- --- --- --- --- --- --- --- --- --- --- -- --- --
natal6B --- --- --- --- --- --- ---
natal6A --- --- --- --- --- --- --
natal5B --- --- --- --- --- --- --- ---
natal5A --- --- --- --- --- --- --- --- ---
natal4B --- --- --- --- --- --- --- --- ---
natal4A --- --- --- --- --- --- ---
natal3B --- --- --- --- --- --- --- --- --- --
natal3A --- --- --- --- --- --- -- -- -- --
natal2B --- --- --- --- --- --- -- --
\#natal2A --- --- --- --- --- --- --- --- --- -- -- --
\#natal11B --- --- --- --- --- --- --- -- -- -- --
\#natal11A --- --- --- --- --- --- --- --- --- --- --

\#est1s6A
est1s3A --- --- --- --- --- --- -- --- --- -- --- --- ---

\#est1s9A --- --- --- --- --- --- --- --- --- --- ---
\#est1s5B
\#est1s5A
\#est1s5A --- --- --- --- --- --- --- --- --- -- ---
\#est1s12A
\#est1s11A --- --- --- --- --- --- ---
\#est1s10A --
-

7. REFERÊNCIAS BIBLIOGRÁFICAS

Alexander B, Mutebi JP, Hearne D, Lanzaro GC, Ward RD, Hamilton JGC. Current Status of the Lutzomyia longipalpis Species Complex. Mem Inst Oswaldo Cruz 1998;93:31-3.

Araki AS. Análise da diferenciação genética no gene period entre populações de Lutzomyia longipalpis (Lutz \& Neiva, 1912) e Lutzomyia cruzi (Mangabeira, 1938) (Díptera: Psychodidae: Phlebotominae). Rio de Janeiro; 2005. Mestrado [Dissertação em Biologia Celular e Molecular] - Instituto Oswaldo Cruz.

Arrivilaga J, Mutebi JP, Pinango H, Norris D, Alexander B, Feliciangeli MD, Lanzaro GC. The taxonomic status of genetically divergent populations of Lutzomyia longipalpis (Díptera: Psychodidae) base don the distribution of mitochondrial and isozyme variation. J Med Entomol 2003;40(5):615-627.

Ayad H, Georghiou GP. Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase. J Econ Entomol 1975;68:2957.

Azevedo ACR, Monteiro FA, Cabello PH, Souza NA, Rosa-Freita MG, Rangel EF. Studies on Population of Lutzomyia longipalpis (Lutz \& Neiva, 1912) (Diptera: Psychodidae: Plebotominae) in Brasil. Mem Inst Oswaldo Cruz 2000;95:305-22.

Bauzer LGSR, Souza NA, Ward RD, Kyriacou CP, Peixoto AA. The period gene and genetic differentiation between three Brazilian populations of Lutzomyia longipalpis. Insect Mol Biol 2002a; 11:315-23.

Bauzer LGSR, Gesto JSM, Souza NA, Ward RD, Hamilton JGC, Kyriacou CP, et al. Molecular divergence in the period gene between two putative sympatric species of the Lutzomyia longipalpis complex. Mol Biol Evol 2002b;19:1624-7.

Bauzer LGSR. Análise da diferenciação genética entre populações de Lutzomyia longipalpis (Lutz \& Neiva, 1912) (Díptera: Psychodidae: Phlebotominae) utilizando o gene period como marcador molecular. Rio de Janeiro; 2002c. Mestrado [Dissertação em Biologia Parasitária] Instituto Oswaldo Cruz.

Bauzer LGSR, Souza NA, Maingon RD, Peixoto AA. Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. Mem Inst Oswaldo Cruz 2007;102(1):1-12. Review.

Bermudez I, Hawkins CA, Taylor AM, Beadle DJ. Actions of insecticides on the insect GABA receptor complex. J Recept Res 1991;11:221-32.

Bloomquist JR. Cyclodiene resistance at the insect GABA receptor chloride channel complex confers broad cross-resistance to convulsants and experimental phenylpyrazole insecticides. Arch Insect Biochem Physiol 1994;26:69-79.

Bottecchia M, Oliveira SG, Bauzer LG, Souza NA, Ward RD, Garner KJ, et al. Genetic divergence in the cacophony IVS6 intron among five Brazilian populations of Lutzomyia longipalpis. J Mol Evol 2004;58:754-61.

Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, et al. A single p450 allele associated with insecticide resistance in Drosophila. Science 2002;297:2253-6.

Das Gupta RK, Saxena NB, Joshi RD, Rao JS. DDT resistance in P. papatasi in Bihar. J Commun Dis 1995;27:124.

De Silans LN, Dedet JP, Arias JR. Field monitoring of cypermethrin residual effect on the mortality rates of the Phlebotomine sand fly Lutzomyia longipalpis in the state of Paraiba, Brazil. Mem Inst Oswaldo Cruz 1998;93(3):339-44.

El-Sayed S, Hemingway J, Lane RP. Susceptibility baselines for DDT metabolism and related enzyme systems in the sandfly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae). Bull Entomol Res 1989;79:679-84.
ffrench-Constant RH, Pittendrigh B, Vaughan A, Anthony N. Why are there so few resistance-associated mutations in insecticide target genes? Philos Trans R Soc London Ser 1998;B,353:1685-93.
ffrench-Constant RH. Target site mediated insecticide resistance: what questions remain? Insect Biochem Mol Biol 1999;29:397-403.
ffrench-Constant RH, Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet 2004;20(3):163-70.

Filatov DA, Charlesworth D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 1999;153:1423-34.

Hall JC. The mating of a fly. Science 1994;264(5166):1702-14.

Hamilton JGC, Dawson GW, Pickett JA. 9-Methylgermacrene-B: Proposed structure for novel homosesquiterpene sex pheromone glands of Lutzomyia longipalpis (Diptera: Psychodidae) from Lapinha, Brazil. J Chem Ecol 1996a;22:1477-91.

Hamilton JGC, Dawson GW, Pickett JA. 3-Methyk-Himachalene: Proposed strcture for novel homosesquiterpene sex pheromone of Lutzomyia longipalpis (Diptera: Pssychodidae) from Jacobina, Brazil. J Chem Ecol 1996b;22:2331-40.

Hamilton JGC, Hooper AM, Mori K, Pickett JA, Sano S. 3-Methyl- α-himachalene confirmed, and relative stereochemistry defined, by synthesis as the sex pheromone of the sandfly Lutzomyia longipalpis from Jacobina, Brazil. Chem Commun 1999a;355-6.

Hamilton JGC, Ibbotson HC, Hooper AM, Mori K, Pickett JA, Sano S. 9-MethylgermacreneB confirmed by synthesis as the sex pheromone of the sandfly Lutzomyia longipalpis from Lapinha, Brazil, and the absolute stereochemistry defined as 9S. Chem Commun 1999b;23356.

Hamilton JG, Brazil RP, Maingon R. A fourth chemotype of Lutzomyia longipalpis (Diptera: Psychodidae) from Jaibas, Minas Gerais, Brazil. J Med Entomol 2004;41:1021-6.

Hamilton JG, Maingon RD, Alexander B, Ward RD, Brazil RP. Analysis of the sex pheromone extract of individual male Lutzomyia longipalpis sandflies from six regions in Brazil. Med Vet Entomol 2005 Dec;19(4):480-8.

Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 2000;45:371-91.

Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH. Molecular biology of insect neuronal GABA receptors. Trends Neurosc 1997;20(12):578-83.

Jowett, T. (1998) Preparation of nucleic acids. In: Roberts, D.B., (Ed.). Drosophila: A practical approach. IRL press, Oxford. 347-71.

Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 2001;17:1244-5.

Kyriacou CP, Hall JC. The function of courtship song rhythms in Drosophila. Anim Behav 1982; 30:784-801.

Kyriacou CP, Hall JC. Interspecific genetic control of courtship song production and reception in Drosophila. Science 1986;232:494-7.

Lampo M, Torgerson D, Márquez LM, Rinaldi M, Garcia CZ, Arab A. Occurrence of sibling species of Lutzomyia longipalpis (Diptera: Psychodidae) in Venezuela: first evidence from reproductively isolated sympatric populations. Am J Trop Med Hyg 1999;61:1004-9.

Lanzaro GC, Ostrovska K, Herrero MV, Lawyer PG, Warburg A. Lutzomyia longipalpis is a Species Complex: Genetic Divergence and Interespecific Hybrid Sterility among Three Populations. Am J Trop Med Hyg 1993;48(6):839-47.

Lanzaro GC, Warburg A. Genetic Variability in Phlebotominae Sanflies: Posible Implications for Leishmaniasis Epidemiology. Parasitol Today 1995;4:151.

Liedloff A. Mantel nonparametric test calculator for Windows, version 2.0. 1999.

Lins RMMA, Oliveira SG, Souza NA, de Queiroz RG, Justiniano SC, Ward RD, et al. Molecular evolution of the cacophony IVS6 region in sandflies. Insect Mol Biol 2002;11(2):117-22.

Littleton JT, Ganetzky B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 2000;26(1):35-43.

Loughney K, Krreber R, Ganetzky B. Molecular analysis of the para locus, a sodium-channel gene in Drosophila. Cell 1989;58:1143-54.

Maingon RD, Ward RD, Hamilton JG, Noyes HA, Souza N, Kemp SJ, et al. Genetic identification of two sibling species of Lutzomyia longipalpis (Diptera: Psychodidae) that produce distinct male sex pheromones in Sobral, Ceará State, Brazil. Mol Ecol 2003;12:187994.

Mangabeira, O. (1969). Sobre a sistemática e biologia dos flebótomos do Ceará. Rev Bras Mal Doen Trop 21:3-26.

Mukhopadhyay J, Ghosh K, Rangel EF, Mustermann L. Genetic variability in biochemical characters of Brazilian field populations of Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 1998a;59:893-901.

Mukhopadhyay J, Ghosh K, Azevedo AC, Rangel EF, Munstermann LE. Genetic polymorphism of morphological and biochemical characters in a Natal, Brazil, population of Lutzomyia longipalpis (Diptera: Psychodidae). J Am Mosq Control Assoc 1998b;14:277-82.

Munstermann LE. Phlebotomine Sand Flies, the Psychodidae. In: Marquardt WC, editor. $2^{\text {a }}$ ed. Biology of disease vectors. Burlington: Elsevier Academic Press; 2005. p.141-151.

Mutebi JP, Alexander B, Sherlock I, Wellington J, Souza AA, Shaw J, et al. Breeding Structure of the Sand Fly Lutzomyia longipalpis (Lutz \& Neiva) in Brasil. Am J Trop Med Hyg 1999; 61(1):149-57.

Mutero A, Pralavorio M, Bride JM, Fournier D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci 1994;91:5922-6.

Peixoto AA, Hall JC. Analysis of temperature-sensitive mutants reveals new genes involved in the courtship song of Drosophila. Genetics 1998;148(2):827-38.

Peixoto AA, Gomes CA, Amoretty PR, Lins RMMA, Meireles-Filho ACA, Souza NA, et al. New molecular markers for Phlebotomine sand flies. Int J Parasit 2001;31:635-9.

Pittendrigh B, Reenan R, ffrench-Constant RH, Ganetzky B. Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Molec Gen Genet 1997;256(6):602-10.

Ritchie MG, Halsey EJ, Gleason JM. Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou \& Hall cycles in D. melanogaster song. Anim Behav 1999;58:649-57.

Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003;19:2496-7.

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenbetic trees. Mol Biol Evol 1987;4:406-25.

Sambrook D, Russell J. Molecular cloning. A Laboratory Manual. $3^{\text {rd }}$ ed. New York: Cold Spring Harbor; 2001.

Smith LA, Peixoto AA, Kramer EM, Villella A, Hall JC. Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel alpha1 subunit in Drosophila. Genetics 1998;149:1407-26.

Soderlund DM, Blomquist JR. Neurotoxic action of pyrethroid insecticides. Annu Rev Entomol 1989;34:77-96.

Souza NA, Ward RD, Hamilton JGC, Kyriacou CP, Peixoto AA. Copulation songs in three siblings of Lutzomyia longipalpis (Diptera:Psychodidae). Trans Royal Soc Trop Med Hyg 2002; 96:102-3.

Souza NA, Vigoder FM, Araki AS, Ward RD, Kyriacou CP, Peixoto AA. Analysis of the copulatory courtship songs of Lutzomyia longipalpis in six populations from Brazil. J Med Entomol 2004;41(5):906-13.

Surendran SN, Karunaratne SH, Adams Z, Hemingway J, Hawkes NJ. Molecular and biochemical characterization of a sand fly population from Sri Lanka: evidence for inseticide resistance due to altered esterases and insensitive acetylcholinesterase. Bull Entomol Res 2005;95(4):371-80.

Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989;123:585-95.

Tesh RB, Guzmann H. Sand Flies and the agents they transmit. In: The biology of disease vectors. Colorado: University Press of Colorado; 1996. p.117-27.

Uribe S. The Status of the Lutzomyia longipalpis Species Complex and Posible Implications for Leishmania Transmission. Mem. Inst. Oswaldo Cruz 1999;94(6):729-34.

Ward RD, Ribeiro AL, Ready PD, Murtagh A Reproductive isolation between different forms of Lutzomyia longipalpis (Lutz \& Neiva, 1912) (Diptera: Psychodidae) the vector of Leishmania donovani chagasi (Cunha \& Chagas) and its significance to Kala-azar distribution in South America. Mem Inst Oswaldo Cruz 1983;78:269-80.

Ward RD, Phillips A, Burnet B, Marcondes CB. The Lutzomyia longipalpis complex: reproduction and distribution. In: Biosystematics of Haematophagous Insects. Oxford: Oxford University Press; 1988. p.258-69.

Watts PC, Hamilton JGC, Ward RD, Noyes HA, Souza NA, Kemp SJ, et al. Male sex pheromones and the phylogeographic structure of the Lutzomyia longipalpis species complex (Diptera: Psychodidae) from Brazil and Venezuela. Am J Trop Med Hyg 2005;73(4):734-43.

Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, et al. The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol 2000 Oct;9(5):451-5.

Young DG, Duncan MA. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Mem Amer Ent Inst 1994;54:1-881.

Zhao Y, Yoonseong P, Adams ME. Functional and Evolutionary Consequences of Pyrethroid Resistance Mutations in S6 Transmembrane Segments of a Voltage-Gated Sodium Channel. Biochem Biophys Res Commun 2000;278:516-21.

