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The  purpose  was  to assess  RDS  estimators  in populations  simulated  with  diverse  connectivity  charac-
teristics,  incorporating  the putative  influence  of  misreported  degrees  and  transmission  processes.  Four
populations  were  simulated  using  different  random  graph  models.  Each  population  was  “infected”  using
four different  transmission  processes.  From  each  combination  of  population  x transmission,  one  thou-
sand  samples  were  obtained  using  a RDS-like  sampling  strategy.  Three  estimators  were  used  to  predict
the  population-level  prevalence  of the  “infection”.  Several  types  of misreported  degrees  were  simulated.
Also,  samples  were  generated  using  the  standard  random  sampling  method  and  the  respective  preva-
lence  estimates,  using  the  classical  frequentist  estimator.  Estimation  biases  in relation  to population
pidemiology parameters  were  assessed,  as  well  as  the  variance.  Variability  was  associated  with  the  connectivity  char-
acteristics  of each  simulated  population.  Clustered  populations  yield  greater  variability  and  no RDS-based
strategy  could  address  the  estimation  biases.  Misreporting  degrees  had  modest  effects,  especially  when
RDS estimators  were  used.  The best  results  for  RDS-based  samples  were observed  when  the “infection”
was  randomly  attributed,  without  any  relation  with  the  underlying  network  structure.

© 2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Most hard-to-reach populations are marginalized, stigmatized
nd−depending on mores and laws−may  be criminalized. Men  who
ave sex with men  (MSM), drug users, migrants belonging to eth-
ic/linguistic/religious minorities, people living with HIV/AIDS are
ome examples of these populations. Even when their members
re relatively numerous in a given setting (for instance, neighbor-
oods where migrants from a given ethnicity cluster), it is difficult
r rather impossible to use traditional sampling methods to assess
hem (Johnston et al., 2016; Montealegre et al., 2012a).

Such populations/groups are not easily identifiable, tend to con-
eal their status to protect them from actual or perceived prejudice
nd to avoid interactions with institutions and/or people who may

e viewed as sources of additional difficulties and stigma (but
ee Montealegre et al., 2012b; respecting successfully HIV testing
trategies for undocumented immigrant in Houston, Texas, USA,

∗ Corresponding author at: Rua Ferreira de Andrade, 583-202, Rio de Janeiro, RJ
0780-200, Brazil.

E-mail address: ssperandei@gmail.com (S. Sperandei).

ttp://dx.doi.org/10.1016/j.socnet.2017.05.004
378-8733/© 2017 Elsevier B.V. All rights reserved.
despite relevant differential rates according to education, country
of origin, etc.).

Low frequencies of a given characteristic behavior and/or geo-
graphic dispersal worsens the problem because even if individuals
may  be candid and prone to reveal their status and habits, a large
sample size and complex, costly logistics would be required to find a
reasonable number of individuals (Heckathorn, 1997; Salganik and
Heckathorn, 2004). Examples of such difficulties (having as a key
consequence the violation of basic assumptions of random selec-
tion, an essential feature of any unbiased sampling strategy) have
been documented by studies targeting rural populations, even in
high-income countries (e.g., USA) where good transportation and
sound infrastructure partially alleviate such hurdles and caveats
(Young et al., 2014).

Currently, one of the most popular sampling technique used to
assess hard-to-reach populations is respondent-driven sampling
(RDS) (Heckathorn, 1997). Since the late 1990′s, its application have
mushroomed and it has already proven to be efficient in finding

members of several hard-to-reach populations. The recommenda-
tion and adoption of RDS by major agencies such as the Centers
for the Disease Control and Prevention (CDC) (Lansky et al., 2007)
and the World Health Organization (WHO) (Johnston et al., 2013)

dx.doi.org/10.1016/j.socnet.2017.05.004
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.socnet.2017.05.004&domain=pdf
mailto:ssperandei@gmail.com
dx.doi.org/10.1016/j.socnet.2017.05.004
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ave fostered its acceptance and widespread use (Salganik and
eckathorn, 2004).

However, although RDS is able to recruit members from a hard-
o-reach population, estimates based on RDS studies remain a

atter of concern and debate. Clearly, RDS is a chain-referral, non-
robabilistic, sampling method, similar to snowballing (Goodman,
961; Heckathorn, 2011), and prevalence estimates based on RDS
ata may  be biased (Goel and Salganik, 2010). As a chain-referral
ethod, sampling results are intrinsically dependent on the under-

ying network structure of the population under analysis, as well as
n several other factors, such as the differential recruitment of spe-
ific subgroups, geographic heterogeneities, structural bottlenecks
econdary to violence or lack of transportation, less-than-optimal
ridging between different segments etc. (see, for instance, Burt
nd Thiede, 2014; Rudolph et al., 2015; Toledo et al., 2011).

The assessment of the accuracy and validity of RDS estimates
emains a challenge, since it is very difficult (or rather impossi-
le) to know the actual contact network of each individual. Usually,
he reported number of contacts is used to weight the individual
nformation when calculating prevalence of a given characteristic
r medical condition (Gile et al., 2015; Goel and Salganik, 2010).

Since the actual contact network of each individual is unknown,
imulating connected populations seems to be a valid strategy to
valuate assumptions which are key to the method, as well as their
utative violations when estimators are based on studies carried
ut in real-life situations. Some studies have assessed the accuracy
nd validity of standard estimators using simulated data, prof-
ting from actual information on degree distributions (Goel and
alganik, 2010; McCreesh et al., 2012; Mills et al., 2014; Wejnert,
009). However, one must be keep in mind that the number of con-
acts in common between any two individuals is hard to assess or
s unknown, and there is little, if any, information about it. Even
ssuming that information from two individuals about their total
umber of contacts are precise, the extent such contacts may  over-

ap is usually hard or impossible to estimate in real-life conditions.
Another possible relevant source of estimation error from RDS

ampling is due to the dependency between the putative transmis-
ion of a given pathogen (or any other transmissible element) and
he underlying network structure of the population. For instance,
he transmission of some pathogens depend on close and prolonged
ontact between infected and at-risk individuals (e.g., HIV/AIDS
nd other sexually transmitted infections/diseases), whereas other
onditions are less dependent on the network structure and can
e transmitted even if individuals’ interaction is incidental, such
s in the spread of influenza virus via the shared use of public
ransportation.

To the best of our knowledge, a single study has addressed the
mpact of information error about the number of contacts on RDS
stimators. Mills et al. (2014) have shown information error may
etermine relevant estimation biases on RDS studies.

In the present paper, we assessed RDS estimators’ performance
nder varying conditions of network structure, misreporting
egrees, and transmission dependency.

. Material and methods

.1. Simulated populations

Four different populations (N = 10,000) were simulated, each
sing a different approach based on different families of random

raph models: Erdös-Renyi (ER – Erdös and Rényi, 1959), Watts-
trogatz (WS  – Watts and Strogatz, 1998), Barabasi-Albert (BA –
arabasi and Albert, 1999) and Interconnected Islands (II). For the
ake of the present study, only static network have been consid-
orks 52 (2018) 48–55 49

ered. Some information about the connectivity characteristics of
each model used is provided as follows:

• Erdös-Renyi (ER): the connection between two individuals is
established in a completely random fashion and any two indi-
viduals will be connected with a fixed probability. The only
parameter needed is the probability (P) of a link between two
individuals, set at 0.001;

• Watts-Strogatz (WS): starting from a regular ring lattice, an indi-
vidual will be linked to a fixed number of neighbors at each side.
Here, we set this parameter to five neighbors to each side. Then,
each link has a certain probability to be broken and reattached
to any other individual in the population, creating “shortcuts”
between groups of individuals, which was set at 0.1 in our model.
This model is usually known as the small-word model;

• Barabasi-Albert (BA): known as the preferential attachment
model, this model starts with one individual and adds other indi-
viduals, one by one. Each entering individual will be preferentially
attached to individuals with a higher number of contacts (usu-
ally mentioned as a “rich get richer” attachment strategy). The
parameter to this model is the number of connections each new
member of the population will add when created and was  set at
five in the simulation;

• Interconected-Islands (II): the original population is initially split
into a number of subpopulations (five, in our simulations). Within
each subpopulation, the connectivity is determined as in the ER
model and a random set of individuals in each subpopulation is
chosen connecting individuals from other subpopulations. In our
simulation, we set five connecting individuals, which represents
a highly clustered population. The third parameter needed is the
probability of a random connection between individuals, as in the
ER model before and was set at 0.005.

All model parameters were set to obtain a mean degree of 10
connections, irrespectively of the model used.

2.2. Disease transmission process

Each population was challenged by four transmission processes,
all of them dependent on the underlying network connections. Dif-
ferent numbers of infection seedings (10, 100, 500, and 1500 seeds)
were randomly selected and launched to transmit the condition
(to “infect”) to their contacts. Following a Susceptible-Infected (SI)
model (which does not consider recovery as a plausible outcome),
and taking HIV/AIDS as our key example, infection was spread in
the population step by step. In each step, an individual connected
to an infected contact had a probability of 0.05 to become infected.
The infection process follows until a theoretical prevalence of
∼15% “infected” individuals, which is defined here as a theoret-
ical  ̈ ceiling value”. Clearly, the greater the number of infection
seedings, the lesser the dependency between infection dynamic
and network connections (i.e., infections spread by a huge num-
ber of infection seedings could not be distinguished from a simple
“mass effect” dissemination process, where the underlying net-
work structure is not taken into consideration). In our simulation,
the ceiling value was  a 1,500 seeds infectious process, where no
relationship between the condition and the underlying network of
contacts was  made evident, and the infection can be approximately
described as “randomly assigned” (data not shown). Information
about individual degree was  purposely “biased” in several ways, to
simulate different types of misreported degree. Besides “no bias”,
i.e., a hypothetically perfectly accurate degree information, which

corresponds to actual population data, we defined the alternatives
as follows: “random misreporting”, where the degree information
was extracted from normally distributed data, with coefficients of
variation either equal to 0.2 or 0.6; and, “systematic misreporting”,
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here simulated degrees were rounded up to the “next five” num-
er (e.g., degrees 41 or 44 would be rounded to 45; here represented
s “5+”), rounded up to the “next 10” (e.g., degree 41 or 44 would
e rounded to 50; here represented as “10+”), or rounded to the
earest 10 or 100 (to those degree above 100; here represented as
100”). For all misreported degree under analysis, all other simu-
ation parameters were kept fixed and the degree information has
een deliberately altered.

.3. Sampling from each population

For each combination of “network population
odel” + “transmission process”, one thousand simulations

each one with n = 500 individuals) were obtained using a “RDS
chain-referral recruiting) process”. The RDS process was always
aunched with three random seeds. Then, each seed randomly
ecruited one to three of its contacts. The probability to recruit one,
wo or three contacts were set as 0.18, 0.18 and 0.64, respectively,
ased on empirical data from drug users in the city of Recife, BR
unpublished data). The process was continued until the total
ample size were obtained. Although the literature has clearly
hown that non-random recruitment may  introduce biases in
DS-based studies (Gile et al., 2015), no homophily-related bias
as explicitly incorporated into the present simulations.

Random samples were generated for all populations and trans-
ission processes, and used as “yardsticks” to cross-compare

esults generated by RDS simulations.

.4. Estimators

Prevalences were estimated based on three estimators. For RDS
imulations, the prevalence was first assessed using the classic
revalence estimator (thereafter called “naïve estimator”), which

s obtained by simply dividing the number of infected individ-
als in a sample by the total sample size. Such naïve estimator
as cross-compared with both RDS-I estimator (Heckathorn, 1997;
eckathorn, 2002; Salganik and Heckathorn, 2004) and RDS-II
stimator (Volz and Heckathorn, 2008), which use the individual
egree information to weight the prevalence estimates. RDS-I and
DS-II estimates were calculated using each one of the degree infor-
ation described before.
The following assumptions by Goel and Salganik’s previous sim-

lations study (2010) were used for the sake of our own  analysis:
i) symmetric relationships (i.e., if “A is a contact of B, B is a contact
f A”); (ii) recruitment is randomly performed within the network
ontacts; (iii) recruited individuals always take part in the sample;
nd, (iv) the number of recruits do not depend on the size of the
ecruiter’s network.

.5. Outputs

For each combination of “population”, “transmission” and
degree information” alternative, the mean and variance of the
stimation bias (the difference between the estimated and actual
opulation parameter) were observed.

All simulations and analyses were performed using software R
R Core Team, 2015) and the igraph package (Csardi and Nepusz,
006).

. Results

Fig. 1 presents the four simulated populations with 10,000 indi-

iduals each. It can be observed the similarity between WS  and ER
imulated populations, the more organized distribution in BA pop-
lation and the very different pattern of II population, in which only
ew individuals have links across different subgroups.
orks 52 (2018) 48–55

Fig. 2 depicts the degree distribution of each simulated popula-
tion and information bias. All four populations presented a mean
degree of 10, as expected, when there were no information bias
about individual degrees, however they may  present higher mean
degrees when systematic biases were added. The BA model yielded
a population with a very different degree distribution, with most
individuals presenting a very low number of contacts, whereas few
individuals presented a very high connectivity (up to 1,800 con-
tacts). The similarity between ER and II degree distributions is due
to the fact II connectivity was defined based on the ER model.

Fig. 3 presents the box plots for the estimators, as applied to
the different simulations. Each box plot was  generated by one-
thousand replications and it is related to one of the graph structures
(Erdös-Renyi, Barabasi-Albert, Watts-Strogatz, and Interconnected
Islands). The figure depicts the differences between each estimate
and the actual prevalence from the reference population. Each row
of sub-figures is related to one of the estimators under analysis,
while each column is related to the number of infection seedings
used in the dissemination (infection) process. Fig. 3 shows infor-
mation about degree, but did not incorporate the effect of the
before-mentioned biases. The complete (inevitably overburdened)
figures for each graph structure can be found in the supplemen-
tary material (Web appendix). Some preliminary remarks about
the simulations’ findings are presented as follows.

Overall findings related to information biases, for different
populations and transmission processes are illustrated in the Sup-
plementary Figs. (1–4). In general, simple random sample is the
“benchmark” (standard) model. Such models were not affected
by the number of infection seedings used in the simulations of
the transmission process, as expected (bottom line). When 1500
infection seedings were used in the dissemination process (right
column), the results were very close to those obtained by random
sampling.

It is possible to note that estimates from II-structured simu-
lations show a greater dispersion of the estimates when 10 or
100 infection seedings were used, irrespectively of the estimators
under analysis. BA-structured simulations yield a slightly lower
dispersion. However, when the “naïve” estimator is chosen, the
BA-structured simulations show a greater estimation bias (top line)
vis-à-vis the other simulations.

Overall, the performance of the two  RDS estimators are strongly
associated with the nature of the graph model chosen to simulate
the population and with the number of infection seedings used to
disseminate the disease in the population. These variables seem
to be more important than the information biases respecting the
degree information, even when the mean degree of every simu-
lated population are about the same and when the information bias
equals half of the mean population degree (for instance, situations
like 5+ and 10+).

4. Discussion

Simulation studies have a pivotal role in the assessment of
complex statistical methods, especially when it is difficult (or
rather impossible) to optimally standardize operations and proce-
dures in real-life conditions. Such difficulties or impossibilities may
be secondary to budgetary restrictions, operations issues, ethical
conundrums, among other factors.

Obviously, the usefulness and accuracy of simulation studies
depend on the soundness of methods, procedures and choice of
parameters. Although “in silico” simulations cannot (at least, given

the current status of computer science) fully emulate the com-
plexity and subtleness of the real world, in silico models should
always attempt to be as comprehensive and accurate as possible
(Cioffi-Revilla, 2014).
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Fig. 1. Graphical representation of

Despite the forceful exclusion of some elements, our simulations
uccessfully emulated the expected prevalence of a hypothetical
nfection in the contexts of different structures of connectivity
etween individuals and different transmission dynamics. The key
haracteristic of such models is flexibility since the detailed struc-
ure of connectivity between individuals in the context of large
opulations remains an elusive goal, especially considering its very
ynamic nature.

Our simulation platform may  help to better understand the
perational characteristics and the performance of RDS under
ifferent conditions and can be used to assess the accuracy of

ts standard estimators, as well as to cross-compare the accu-
acy of RDS vis-à-vis other methodological strategies that have
een used for hard-to-reach populations, such as Time Location
ampling. Recent papers have compared the two methods under
ifferent conditions and targeting several populations (Paz-Bailey
t al., 2013; Tran et al., 2015; Zhao et al., 2015), and such cross-
omparative studies (both empirical and in silico) seem to be a
romising field of study, given the relevance of several hard-to-
each populations for policy making and the absence of a gold
tandard method to assess them.

The performance of the estimators under random sampling
imulations speaks in favor of the good quality of the simulation
latform, with a good match between expected and observed val-
es for the parameters, without any discernible estimation bias and

ow dispersion.
Several authors have addressed the relevance of misreporting

egrees to the performance of RDS estimators (Gile et al., 2015; Goel

nd Salganik, 2009; Wejnert, 2009), but to the best of our knowl-
dge, only Mills et al. (2014) and Lu et al. (2012) cross-compared
he influence of different degree distributions on the accuracy of
mulated populations (N = 10,000).

estimates. However, in Mills et al.’s study connectivity was always
modeled after a random distribution, that may  or may  not corre-
spond to specific populations and contexts. Notwithstanding, Mills
et al. (2014) have consistently found that information bias have a
more relevant effect when distributions had heavier tails. Lu et al.
(2012), on the other hand, reported effects on bias almost exclu-
sively bellow 0.02 or 2% in prevalence.

In our study, four different connectivity structures were
assessed, varying from random links (Erdös-Renyi model) to a
heavy tail distribution (Barabasi-Albert model). The relevance of
such different connectivity structures can be visualized in Fig. 2.

Other studies that assessed the performance of RDS estimators
(Goel and Salganik, 2010; Wejnert, 2009) profit from simulations
based on a hypothetically known network. In this sense, the capac-
ity of a randomly-generated network, based on the distribution of
degrees to reproduce real world contact networks is unknown.

A key aim of our study was  to comprehensively assess the hypo-
thetical influence of misreporting degrees on estimates derived
from RDS samples. In this sense, our findings were auspicious
since the impact of misreporting degrees was  found to be rela-
tively modest, compared, for instance, with the more pronounced
influence of some underlying network structure. The addition of a
random information error was  found to be associated with mod-
est increments of dispersion. Even such modest increments have
emerged only as a consequence of errors of a great magnitude
(≥60% of the reference [proper] information). Information bias
was particularly more pronounced among BA-based simulations,
as previously demonstrated by Mills et al. (2014). Moreover, mis-

reporting degrees showed effect only with Barabasi-Albert and
Erdös-Renyi networks. In the first case, it can be related to the
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ias  proportional to 20% of the real degree; 5+: degree rounded to the “next five”; 1
0  and degrees above 100 are rounded to the nearest 100. Squares indicate mean d

reater dispersion of degrees. In the second, it happened only at
he “100” simulated case.

Systematic errors have also a modest influence on estimates:
ven an addition of 50% of the mean degree of a given population
+5 with a mean degree of 10) has not been associated with a rel-
vant change of the estimates. Just substantial rounding affecting
egrees greater than 100 were found to be associated with relevant
hanges in most populations under analysis, especially among BA-
enerated simulations, i.e. those with a heavier tail. Our findings
iffer here from Mills et al.’ findings (2014), whom have observed

 much larger effect of the same information biases under anal-
sis in our paper. We  believe that the structure of the contacts
ould be responsible for this difference, since Mills et al.’s simu-
ations were generated randomly from degree distributions, with
o control about the structure of the contacts.

Regarding transmission process, a surprising result was that, in
he case of completely random infection, no bias was registered and
as the best performance for all estimators. As the RDS method
epends on the underlying network structure, the condition of
nterest among individuals are interdependent, and this interde-
endence is reflected in the poor prevalence estimates. This result

s important for studies with hard-to-reach populations where the
es. 0: no bias; 0.2: random bias proportional to 20% of the real degree; 0.6: random
egree rounded to the “next ten”; 100: degrees until 100 are rounded to the nearest

condition of interest is not so strongly associated with the contact
network, since the RDS method is simpler, easier and cheaper than
classic sampling strategies (actually, as mentioned before, classic
probability sampling methods can be simply impossible to apply
to some populations). Similar findings were reported by Mills et al.
(2014). Interconnected Islands model represented a particular case,
where the standard deviation of the estimates showed a marked
decrease as the number of infection seeds increase. Given the highly
clustered pattern of the population, an infection process less depen-
dent of contact network will decrease the chance of the disease
being trapped in one subpopulation and the sample trapped in
another.

In our simulation, the effect of network connectivity can be
noted when comparing the four supplemental figures. In this sense,
it is important to stress II networks and its effect on the esti-
mates. This network model creates loosely connected to each other
subpopulations. Such effect can be observed when working with
populations living in territories dominated by rival factions such as
discussed by Toledo et al. (2011) or biases by differential locations

vis-a-vis recruitment centres (McCreesh et al., 2011). The extent
this translate an homophily-related bias or other constraints, such
as clustering, accessibility, etc remains open, as discussed by Rocha



S. Sperandei et al. / Social Networks 52 (2018) 48–55 53

F n seed
a  inform

e
u
r

ig. 3. Distribution of the biases in the estimation according to population, infectio
nd  the actual prevalence from the reference population. Only the result to the “no
t al. (2017). In II networks, the low connectivity among subpop-
lations caused that not only the simulated infection often stays
estricted to a single subpopulation, but also a selected sample
ings and estimator used. The figure depicts the differences between each estimate
ation bias” condition is shown.
belongs entirely only to one subpopulation. In a scenario where the
sample was  restricted to a subpopulation and infection restricted
to a different sub-population, the prevalence is underestimated.
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nalogously, when sample and infection were confined within the
ame subpopulation, the estimate prevalence of infection is much
igher than its true value in the population. This simulation can be
seful in the development and improvement of estimators able to
andle this type of problem.

Rocha et al. (2017) assessed this clustering effect on RDS esti-
ates in a series of simulation experiments. The authors reported

ssociation between the performance of the estimators and the
efusal rate of the recruited individuals, variable not controlled in
ur work. According to the authors, a good response rate is able
o cancel the clustering effect. However, their experiment did not
ontrol the sample size used, which can also explain the differences
n relation to current results.

The present simulation study is limited by the fact homophily is
ot explicitly taken in consideration despite the literature shown
ay  be an important source of bias in RDS studies. Gile and
andcock (2010) simulated a scenario were infected persons would
e 20% more likely to be recruited and, not surprisingly, it produced

 bias in the estimate toward greater prevalences, averaging about
% more. Also, Lu et al. (2012) simulated homophily, but using the
ctivity between peers as the strength of probability of recruitment.
hey reported an effect they classified as “moderate”, up to 3%.
ompared to the effects of the transmission process and network
tructure presented here, this magnitude of effect can be consid-
red small. However, more work is needed to investigate the effect
f homophily in RDS studies.

Limitations are also secondary to the fact our study is based on
tatic networks. A former study by Boily et al. (2004) has clearly
emonstrated that social networks might be dynamic. But such
ynamics is under dependence of antiretroviral therapy availability
nd coverage, for instance. A third limitation refers to the absence
f simulation of different types of bottlenecks.

. Conclusion

The estimators RDS I and RDS II show to be robust to the degree
nformation bias in almost all simulated scenarios. Even where the
egree information bias affected the estimate, the RDS estimators
erformed better than the naïve estimator that ignores the sam-
ling design. In any case the RDS estimates performed better than
he naïve estimator under simple random sampling. However, the
ractical aspects associated with RDS sampling seem to be suffi-
ient to justify its use in hard-to-reach populations. The presence
f population clusters appears to compromise the performance of
hese estimators, what should be evaluated by further simulations.
inally, the RDS sampling seems to be an effective way to obtain
alid estimates of outcomes that are not associated with the net-
ork contacts of individuals.
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