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Surface-associated proteins fromMycobacterium bovis BCGMoreau RDJ are important

components of the live Brazilian vaccine against tuberculosis. They are important targets

during initial BCG vaccine stimulation and modulation of the host’s immune response,

especially in the bacterial-host interaction. These proteins might also be involved in

cellular communication, chemical response to the environment, pathogenesis processes

through mobility, colonization, and adherence to the host cell, therefore performing

multiple functions. In this study, the proteomic profile of the surface-associated proteins

from M. bovis BCG Moreau was compared to the BCG Pasteur reference strain. The

methodology used was 2DE gel electrophoresis combined with mass spectrometry

techniques (MALDI-TOF/TOF), leading to the identification of 115 proteins. Of these, 24

proteins showed differential expression between the two BCG strains. Furthermore, 27

proteins previously described as displaying moonlighting function were identified, 8 of

these proteins showed variation in abundance comparing BCG Moreau to Pasteur and

2 of them presented two different domain hits. Moonlighting proteins are multifunctional

proteins in which two or more biological functions are fulfilled by a single polypeptide

chain. Therefore, the identification of such proteins with moonlighting predicted functions

can contribute to a better understanding of the molecular mechanisms unleashed by live

BCG Moreau RDJ vaccine components.

Keywords: Mycobacterium bovis BCG Moreau, bi-dimensional electrophoresis, MALDI-TOF-TOF, surface-

associated proteins, moonlighting proteins

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00716
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00716&domain=pdf&date_stamp=2019-04-26
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tdpagani@yahoo.com
mailto:lmlima@ioc.fiocruz.br
https://doi.org/10.3389/fimmu.2019.00716
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00716/full
http://loop.frontiersin.org/people/455446/overview
http://loop.frontiersin.org/people/360180/overview
http://loop.frontiersin.org/people/644291/overview
http://loop.frontiersin.org/people/706029/overview
http://loop.frontiersin.org/people/722731/overview
http://loop.frontiersin.org/people/706065/overview


Pagani et al. Surface Proteome From BCG Strains

INTRODUCTION

Tuberculosis (TB) is one of the 10 major causes of death
worldwide. According to the World Health Organization
(WHO), TB killed 1.7 million people in 2016 with 10.4
million new cases estimated worldwide ratifying the need
for more effective treatment and prevention (1). To date,
Bacillus Calmette-Guérin (BCG) is the only widely used
prophylactic measure against TB (1). BCG is an attenuated
Mycobacterium bovis strain obtained at the beginning of the
Twentieth century at the Pasteur Institute, in Lille. It was
distributed to more than 34 countries and maintained in
culture without adequate standardization for a long time (2).
Because of in vitro evolution, slightly different BCG substrains
emerged from the parental BCG, such as those with deletions
and duplications of genomic regions and/or single nucleotide
polymorphism (SNPs) well documented through analysis and
genome sequencing (3–9). These genetic differences among the
various BCG strains in use worldwide partially explain the
variable efficacy in protection against pulmonary TB in adults
(2). In Brazil, the strain used for vaccine production since 1927
is M. bovis BCG Moreau. The genomic comparison between
BCG Pasteur, reference strain, and BCG Moreau showed regions
of difference (RD), for example the loss of RD2 and RD14 in
BCG Pasteur and RD16 in BCG Moreau, leading to unique
genomic/proteomic characteristics (5, 10). These particularities
justify more detailed proteomic studies in order to elucidate
which proteins are effectively expressed by these bacteria.

BCG is a live attenuated vaccine, and the expression of
secreted and surface-associated proteins is extremely relevant
since these proteins may play a role in the bacteria-host cell
interaction at the beginning of infection (11, 12). These proteins
can also be released from the surface since they are non-
covalently linked to the mycomembrane (13). Many intracellular
proteins with a known function in cell metabolism have also been
found on the cell surface, such as glutamine synthetase, gamma-
glutamyl phosphate reductase, and cysteine desulfurase (14).
Different factors may contribute to the switch between functions
such as release to the extracellular space, changes in temperature,
redox state of the cell, oligomeric state of the protein, direct
interactions with a variety of binding partner proteins, or even
to changes in the cellular concentration of a ligand/substrate,
cofactor or product, bringing to light the importance of surface-
associated proteins playing different roles in cell system (15,
16). This switch between functions is a characteristic called
moonlighting (15, 17).

Considering this variability on protein expression, localization
and function(s) in different strains of BCG, we compared the
surface-associated proteome from the Brazilian strain used in
TB vaccine production, M. bovis BCG Moreau, to that of
BCG Pasteur through 2DE gel electrophoresis combined with

Abbreviations: TB, Tuberculosis; WHO, World Health Organization; BCG,

Bacillus Calmette-Guerin; SNPs, single nucleotide polymorphisms; RD, Region

of Difference; 2DE gel, Two-dimensional gel electrophoresis; PTMs, Post-

translational modifications; FH, Fumarate hydratase; TCA, trichloroacetic acid;

GS, glutamine synthetase; TDM, trehalose dimycolate; CDD, Conserved Domains

Database; Fba, fructose-biphosphate aldolase; AldC, aldehyde dehydrogenase.

mass spectrometry. Complementary to the information already
available in the literature, our approach allows a more confident
evaluation of expression, abundance, localization and function(s)
of proteins between these two BCG strains. The results presented
here may lead to the identification of key components of the
M. bovis BCG Moreau vaccine strain which can be related
to the variability in immunological response observed in
vaccinated individuals.

MATERIALS AND METHODS

Mycobacterial Cultivation
Mycobacterium bovis BCG Pasteur strain 1173P2 was obtained
from the Pasteur Institute (Paris, France) and seed-stocks
maintained at −80◦C. M. bovis BCG Moreau was supplied in
Sauton/potato medium by the Ataulpho de Paiva Foundation
(FAP), producer of the BCG vaccine in Brazil. Both strains
were cultured as surface pellicles for 2 weeks at 37◦C in Sauton
medium (18).

Surface Fraction Preparation
After the removal of the culture filtrate, the surface associated
material was obtained through vigorous manual shaking of the
bacterial pellicle with 2mm glass beads, essentially as described
(19). The surface components were recovered in Milli-Q sterile
water and centrifuged twice at 2,500 g for 10min at 4◦C.
Aliquots of 1mL were further centrifuged twice at 16,000 g in
order to remove any remaining bacteria. The surface-associated
protein fraction was obtained using an adaptation of the method
described by Wessel and Flugge (20). Briefly, proteins were
precipitated with 15% TCA/acetone, the resulting pellets were
washed sequentially with 400 µL of 100% cold acetone, 200 µL
of diethyl ether, and 200 µL of chloroform. The final pellets
were resuspended in 100µL Isoelectric focusing (IEF) buffer (8M
ureum/2% CHAPS).

Bi-Dimensional Electrophoresis
The immobilized pH gradient (IPG) strips and all 2DE reagents
were purchased from Bio-Rad, (Hercules, CA, USA). For the
first dimension, 500 µg of proteins were diluted to a final
volume of 300µL of rehydration solution (8M urea, 2% CHAPS),
4mM Tributyl phosphine (TBP), 0.4% ampholytes pH 3-10,
trace of bromophenol blue). The samples were applied to IPG
strips (17 cm, pH interval of 4–7) by in-gel rehydration and
incubated for 1 h at room temperature. All isoelectric focusing
was performed on a Protean R© IEF cell (Bio-Rad) with a
temperature of 20◦C and a maximum current of 50 µA/strip.
Running conditions: active rehydration (50V) for 11 h; step 1-
linear gradient from 1 to 250V over 20min; step 2 - linear
gradient from 250 to 10,000V over 2 h; step 3- constant 10,000V
until complete 80,000 V/h. After isoelectric focusing, proteins
were reduced in 130mM dithiothreitol (DTT) and alkylated
in 270mM iodoacetamide, both in equilibration buffer (6M
urea, 2% SDS, 375mM Tris-HCl pH 8.8, 20% glycerol). Second
dimension separation was done in 17 cm, 12% SDS-PAGE gels,
1.0mm thick, using a vertical system (Bio-Rad) in standard
Tris/glycine/SDS buffer at 40mA/gel, 10◦C, until the tracking dye
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left the gel. Proteins were visualized with Comassie Brilliant Blue
(CBB) following procedures described elsewhere (21).

Image Analysis
Gel images were documented using a GS-800TM calibrated
imaging densitometer (Bio-Rad) and images were analyzed
using PDQuestTM software (Bio-Rad). During the alignment
of the images, to compensate for subtle differences in sample
loading, gel staining, and destaining, the volume of each spot
was normalized in relation to the total density of valid spots
present in the gel image. Comparison of 2DE maps derived
from three independent protein preparations, each one obtained
from three independent BCG cultures, was performed. To
determine experimental isoelectric point (pI) and molecular
mass (Mr) coordinates for each single spot, 2DE gels were
calibrated using a select set of reliable identification landmarks
distributed throughout the entire gel. The theoretical pI and Mr

of proteins identified by mass spectrometry were obtained using
the BCG Moreau RDJ genome reference sequence (9; accession
number: AM412059.2).

Protein Digestion, Peptide Extraction and
MALDI-TOF/TOF Analysis
In-gel digestion of the 2DE SDS-PAGE separated proteins was
carried out using the procedure according to Shevchenko (22).
Briefly, protein spots were excised, and the gel pieces were washed
three times with 50% (v/v) acetonitrile in 25mM ammonium
bicarbonate for 15min each, dehydrated in acetonitrile, and
dried in a vacuum centrifuge. Gel pieces were rehydrated in
15 µL of 50mM ammonium bicarbonate containing 20 ng of
sequencing grade modified trypsin (Promega). After 15min, 20
µL of 50mM ammonium bicarbonate was added to keep the
gel pieces wet during tryptic digestion (37◦C, 16 h). To extract
peptides, 20 µL of 0.5% (v/v) trifluoroacetic acid (TFA) in 50%
(v/v) acetonitrile were added and samples were sonicated for
30min. The separated liquid was concentrated under vacuum
to an approximate volume of 10 µL. The resulting peptides
were extracted, partially dried, and salts were removed using
ZipTipC18 columns (Millipore, Bedford, MA) following the
manufacturer’s instructions. The tryptic peptides were analyzed
on a 4700-Proteomics Analyzer MALDI-TOF/TOF (Applied
Biosystems, Foster City, CA). All mass spectra were acquired
on positive ion reflector mode with 2,000 shots per spot and
externally mass calibrated with a peptide mixture. The 10 most
intense ion peaks from the peptide mass fingerprinting (or MS
run) were further submitted to fragmentation using post source
decay (PSD) mode with collision induced dissociation (CID) gas
off and 1 keV collision energy.

Data Analyses and Protein Identification
Following MS/MS acquisition, the processed data files (ppw
files) from the MALDI-TOF/TOF were analyzed on a Mascot
Server license v. 2.2 (23, 24). The mass spectra were searched
against the M. bovis BCG str. Moreau protein database (9;
accession number: AM412059.2). The parameters used for
the search were as follows: peptide and fragment ions mass
tolerance was set at 0.5 Da; maximum of one miss cleavage

site by trypsin; carbamidomethylation of cysteine residues as
fixedmodification, whereas oxidation of methionine/tryptophan,
acetylation of the N-terminal, pyroglutamic acid, pyroglutamine,
and deamidation of asparagine/glutamine were considered as
variable modifications. Positive protein hit identification was
accepted with at least 1 matched unique peptide. False discovery
rate was estimated at <1%. The peptide ion score was considered
>15 with a significance threshold of p< 0.05, whereas the protein
score was above 20. Finally, a good correlation between the
experimental and theoretical molecular mass and pI was also
considered for positive identifications. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository (25) with the
dataset identifier PXD006141.

Statistical Analysis
Differences between spot intensity observed in 2DE gel images
of M. bovis BCG strains Moreau and Pasteur were considered
statistically significant when ∗p < 0.05; ∗∗p < 0.01; or ∗∗∗p <

0.001, as determined by Graph Pad Prism 4.0 software (Graph-
Pad Software Inc., San Diego, CA, USA). The unpaired Student‘s
t-test was used to analyze the significant differences among both
strains, using data obtained from at least 3 different sets of
independent biological samples.

Bioinformatic Data
Regions of difference RD2 and RD14 both present on BCG
Moreau were evaluated in terms of protein identification and
predicted function according to BCG Moreau genome while
the region of difference RD16 absent from BCG Moreau
was evaluated according to M. tuberculosis H37Rv reference
genome (accession numbers: AM412059.2 and NC_000962,
respectively). For this purpose, TubercuList (http://genolist.
pasteur.fr/TubercuList/) was used as the reference site to find the
information about predicted function and amino acid sequence
from all the proteins in M. tuberculosis H37Rv encompassing
RD2, RD14, and RD16 allowing the construction of Table 1.

Putative signal peptide for protein export were predicted
using SignalP 4.1 (26–28), LipoP 1.0 (29, 30), TatP 1.0 (31,
32) and SecretomeP 2.0 (33, 34) in order to predict protein
localization. Potential transmembrane domains were predicted
with TMHMM 2.0 (35, 36). Beta-barrel membrane proteins
structural subclass from integral membrane proteins were
discriminated using a Hidden Markov Model method with
PRED-TMBB (37–39).

The protein sequences described with moonlighting function
were retrieved from the MoonProt (40, 41) or Multitasking
Protein databases (42) as well as references on Table 3 and
Table S3. These sequences were used to construct the sequence
database used in comparison to the sequences of the proteins
identified in this work. The similarity search was performed using
BLASTP (BLOSUM62matrix), assuming the results with bitscore
> 50 and E-value < e-10. Domain analyses were accomplished
with proteins that obtained hit in theMoonProt andMultitasking
databases using CDD (43, 44) and PFAM (45, 46).
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TABLE 1 | Proteins encoded by the genes localized in the regions of difference RD2, RD14, and RD16.

Region of

Difference

ORFs completely

removed from

the genome

Orthologs H37Rv/BCG

Moreau

Protein identification Predicted function

RD2 (10,787 bp) Rv1979c–Rv1987 Rv1979c/BCGM_1980c Possible conserved permease Unknown; Possibly involved in transport of

amino acid across the membrane

Rv1980c/mpb64/BCGM_1981c Immunogenic protein mpt64

(antigen mpt64/mpb64)

Unknown

Rv1981c/nrdF1/BCGM_1982c Ribonucleoside-diphosphate

reductase (beta chain)NRDF1

(Ribonucleotide reductase small

subunit) (R2F protein)

Involved in the DNA replication pathway.

Catalyzes the biosynthesis of

deoxyribonucleotides from the corresponding

ribonucleotides, precursors that are necessary

for DNA synthesis (catalytic activity:

2-deoxyribonucleoside diphosphate + oxidized

thioredoxin + H2O = ribonucleoside

diphosphate + reduced thioredoxin)

Rv1982c/BCGM_1983c Conserved hypothetical protein Unknown

Rv1983/PE_PGRS35/BCGM_1984 PE-PGRS family protein Unknown

Rv1984c/cfp21/BCGM_1985c Probable cutinase precursor cfp21 Hydrolyzes cutin

Rv1985c/BCGM_1986c Probable transcriptional regulatory

protein (probably

Involved in transcriptional mechanism

Lysr- family

Rv1986/BCGM_1987 Probable conserved integral

membrane protein

Unknown; possibly involved in transport of

lysine across the membrane

Rv1987/BCGM_1988 Possible chitinase Hydrolysis of chitin

RD14 (9,068 bp) Rv1765A–Rv1772 Rv1765A/BCGM_1774c Putative transposase (fragment) Possibly required for the transposition of an

insertion element

Rv1766/BCGM_1775 Conserved hypothetical protein Unknown

Rv1767/BCGM_1776 Conserved hypothetical protein Unknown

Rv1768/PE_PGRS31/BCGM_1777 PE-PGRS family protein Unknown

Rv1769/BCGM_1778 Conserved hypothetical protein Unknown

Rv1770/BCGM_1779 Conserved hypothetical protein Unknown

Rv1771/BCGM_1780 Probable oxidoreductase Unknown; Probably involved in cellular

metabolism

Rv1772/BCGM_1781 Hypothetical protein Unknown

RD16 (7,608 bp) Rv3401–Rv3404c Rv3401/*1 Conserved hypothetical protein Unknown; Probably enzyme involved in cellular

metabolism

Rv3402c/*1 Conserved hypothetical protein Unknown; Thought to be involved in cell

process

Rv3403c/* 1 Hypothetical protein Unknown

Rv3404c/* 1 Conserved hypothetical protein Unknown

*1 means deleted from the genome of BCG Moreau.

RESULTS

Proteins Encoded by the Genes From
Regions of Difference RD2, RD14, and
RD16
According to the literature, the regions of difference RD2 and

RD14 are present in BCG Moreau, whereas RD16 is absent,
when compared to BCG Pasteur (5). Table 1 lists the proteins

encoded by these RDs. Our analysis on the surface associated

proteome map of BCG Moreau (Figure 2 and Table 2) detected

Mpb64, encoded in RD2, and revealed the Rv3406 protein, whose

regulation is affected by the truncation of gene rv3405c, due to

deletion of RD16 (10).

Identification of M. bovis BCG Moreau
Surface-Associated Proteins From 2DE
Gels Using MALDI-TOF-TOF
The first goal of this study was to perform a proteomic
analysis of surface-associated proteins of M. bovis BCG Moreau
through 2DE gel electrophoresis and MALDI-TOF-TOF and
compare it to M. bovis BCG Pasteur. The confirmation of
the proteomic profile and the differences in protein expression
between the two strains analyzed were done by comparing
the surface proteomic maps in the pH 4–7 range through five
biological replicates. Figure 1A shows a representative map of
the surface-associated proteins of BCG Moreau. According to
the statistical analysis and overlapping of the processed gel image
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TABLE 2 | Differential surface-associated proteins between M. bovis BCG Moreau and M. bovis BCG Pasteur.

Spot no. Gene Protein identification Fold difference M/P** p-value

32* BCGM_3440 Alpha-ketoglutarate dependent sulfate ester dioxygenase 14.15 0.0017

33* 518.63 0.0021

39 mpb70 Secreted immunogenic protein Mpb70 4.10 0.1366

49* 23.74 <0.0001

50 1585.00 0.0558

51* 75.11 0.0346

52 0.38 0.2983

56* 8.99 0.0031

58 19.74 0.0709

43* mpb64 Immunogenic protein Mpt64 (lost in BCG Pasteur due to RD2) 9.66 0.0022

44* 21.67 0.0002

119 ahpC Alkyl hydroperoxide reductase C protein 1.63 0.0885

120 3.11 0.0524

121* 13.70 <0.0001

26* adoK Adenosine kinase 7.71 0.0217

14 fadA3 Probable beta-ketoacyl CoA thiolase 2.56 0.0538

24* 6.26 0.0104

145 1.09 0.8296

146* 2.47 0.0464

60* clpP2 ATP-dependent Clp protease proteolytic subunit 2 5.57 0.0302

75 1.43 0.1921

42* BCGM_0830c Fatty acid binding protein-like protein (UPF0678) 5.14 0.0043

64 echA3 Probable enoyl-CoA hydratase (crotonase) 88.56 0.4390

118* 4.95 <0.0001

38* fixB Electron transfer flavoprotein (alpha-subunit) 4.12 0.0361

133 1.25 0.2959

134 1.23 0.5248

67* ppiA Iron regulated peptidyl-prolyl cis-trans isomerase A 3.81 0.0267

68 3.04 0.1288

69 1.37 0.5389

117 0.79 0.3860

9 apa Alanine and proline rich secreted protein 0.90 0.7515

147* 2.83 0.0125

148* 3.40 0.0015

46* cfp17. garA Glycogen accumulation regulator GarA 1.76 0.0120

47 0.47 0.1294

48* 3.39 0.0160

149* TB39.8. fhaA FHA domain-containing protein 3.04 0.0311

150 2.42 0.1602

151 1.04 0.9438

152 1.29 0.4435

154* BCGM_1880c Probable reductase 2.44 0.0296

155 1.46 0.1402

124* prcB 20S Proteasome (beta subunit) 1.93 0.0229

4* dnaK Chaperone protein DnaK (Hsp70) 1.62 0.0271

21* fadA Possible acyl-CoA thiolase 0.26 0.0025

107* esxJ ESAT-6 like protein EsxJ 0.51 0.0081

74 TB18.6 Conserved hypothetical protein (UPF0098) 0.50 0.2573

87* 0.56 0.0483

89 0.76 0.0707

(Continued)
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TABLE 2 | Continued

Spot no. Gene Protein identification Fold difference M/P** p-value

5* groEL2 Chaperonin 2, GroEL2 (65 kDa antigen; Hsp65) 0.68 0.0257

66* fba Fructose-biphosphate aldolase 0.69 0.0209

164 0.48 0.3384

122* gpm1 Phosphoglycerate mutase 1 0.71 0.0310

72* ssb Single-strand binding protein 0.77 0.0467

73 0.41 0.0930

Differences in the spot intensity of BCG Moreau and Pasteur 2DE were considered by performing unpaired statistical analysis.

*p < 0.05.

**Ratio of mean pixel intensity value for the specified protein spot in BCG Moreau (M) vs. Pasteur (P).

(or virtual image), all replicates presented a reproducible profile
related to the total number of spots as well as the localization
(migration) and intensity (data not shown). A total of 173
protein spots are reported and they ranged in Mr between
19 and 97 kDa, mostly concentrated above the 31 kDa range.
Analysis of the 2DE profiles showed that, in some cases, different
spots were identified as representing the same peptide sequence
(Table S1), possibly due to the occurrence of proteolysis, different
protein isoforms, post-translational modifications (PTMs) or
the formation of complexes or heterodimers between proteins.
These events may cause differences between theoretical and
experimental Mr and pI. The occurrence of different proteins
identified in the same spot was also observed and can be
explained by the limit of resolution in the 2DE technique (47).
Among the 173 spots detected, 115 different proteins were
identified by mass spectrometry (Table S1), which were classified
according to the M. bovis BCG Moreau gene annotation and
orthologs in M. tuberculosis H37Rv and M. bovis BCG Pasteur
(accession numbers: AM412059.2, NC_000962 and AM408590.1,
respectively). Functional classification of all identified proteins
per spot, according to the TubercuList databank (http://genolist.
pasteur.fr/TubercuList/) revealed that themajor group composed
by 70 proteins are related to intermediarymetabolism/respiration
whereas 37 proteins, the second major group, are conserved
hypothetical proteins, without associated function (Figure 1B).

Bioinformatics Analyses of the Identified

Surface-Associated Proteins
In order to predict the type of secretion process, transmembrane
portion unit on the surface-associated proteins and their
comparison with the membrane and secreted proteins already
described in the literature, a combination of bioinformatic
online programs and mycobacterium genome evaluation was
used (Table S2). 2DE comparative quantification with non-
paired t-test statistical analysis allowed the identification of
31 spots differentially expressed between BCG Moreau and
Pasteur that represented 24 distinct proteins (Figure 2 and
Table 2)−17 proteins were more abundant in BCG Moreau
and 7 proteins in BCG Pasteur (Table 2). All 115 different
proteins identified by mass spectrometry were searched against
the Moonprot and Multitasking databases and we could predict
moonlighting function for 27 of them (Table 3). Moreover,
among the 27 moonlighting proteins, 5 of them were more

abundant in BCG Moreau whereas 3 protein spots were up-
regulated in BCG Pasteur (Table S3). Domain analysis on the
moonlighting predicted proteins using CDD and pFam databases
allowed the identification of two domain hits for fructose-
biphosphate aldolase (Fba) and aldehyde dehydrogenase (AldC),
thus, suggesting distinct functions (data not shown). However,
the spot corresponding to the Fba protein was found 2-fold more
expressed in BCG Pasteur than in BCGMoreau.

DISCUSSION

In this study, the surface-associated proteins from M. bovis
BCG Moreau were investigated by 2DE combined with MALDI-
TOF-TOF and bioinformatic analysis. Two-dimensional gel
electrophoresis maps in the pH range of 4–7 led to the
identification of 173 spots (Figure 1A) that could be assigned by
mass spectrometry to a total of 115 different proteins (Table S1).
This choice of pH range was based on previous analysis carried
out in the broader pH range of 3–10, which showed that the
majority of protein spots occurred in the pH range of 4–7 (data
not shown). These results complement our previous report on the
secretome of BCG strains Moreau and Pasteur (12) (Table 1).

The genome of BCG Moreau differs from BCG Pasteur,
among others, by the presence of two regions (RD2 and
RD14; 5). Several proteins encoded in these two regions
have been described as potentially immunogenic (130–133),
reinforcing the importance of performing studies to address
the protein expression in these two strains. In this context,
differentially expressed proteins present on the bacterial surface
can partially account for some differences observed in individual
response to vaccination. Among the proteins identified by mass
spectrometry, theMpb64 protein (encoded in RD2) was observed
to be expressed in M. bovis BCG Moreau. The quantification
performed by the PDQuest software indicated a very low
expression of the Mpb64 protein in BCG Pasteur proteome map,
probably due to the background observed in the area where the
protein should be located (Figure 2, spots 43 and 44).

Mpb64 is an immunodominant antigen capable of inducing
protective immunity by T cell response; however the role of
this protein in the pathogenesis of tuberculosis is not known
(134, 135). We found Mpb64 expression on the cell surface
proteome of BCG Moreau (spots 43 and 44, Figure 1A) with the
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FIGURE 1 | (A) Representative 2DE gel showing the proteomic profile of surface-associated proteins from the Brazilian vaccine strain, BCG Moreau. Molecular weight

marker is indicated to the left in kDa. All identified proteins described in Table S1 are indicated and numbered. (B) Functional classification of all the identified proteins

of the surface fraction from M. bovis BCG Moreau, cultured in Sauton medium. Categories of identified proteins grouped according to the biological function described

on the left. The number of identified proteins is shown on the right. The classifications were generated using Tuberculist (http://genolist.pasteur.fr/TubercuList/).

expected predicted signal peptide and transmembrane domains
(Table S2), suggesting that vaccination with BCG Moreau could
trigger a better cellular immune response when compared to
BCG Pasteur. With respect to RD16, this characteristic deletion
found in BCGMoreau (between genes rv3400, and rv3405c) leads
to the truncation and functional loss of a TetR transcriptional
regulator encoded by rv3405c, resulting in the constitutive
expression of the adjacent rv3406 gene (10); the resulting protein
(Rv3406) was identified in the surface proteome of BCGMoreau,
and is absent in Pasteur (Figure 2).

Considering the surface-associated proteomic profiles from
M. bovis BCG Moreau and Pasteur, differences between the
experimental and theoretical protein molecular mass and pI were

observed for 49% of the identified spots, which may be due
to post-translational modifications (PTMs), protein degradation,
the presence of isoforms and conformers of the proteins (136,
137). For example, Apa (spots 9, 147, and 148) is already
described as glycosylated on diverse threonine residues, which
could result in the observation of multiple protein species
by 2DE gel (138). In fact, the experimental molecular mass
and pI of spots 9, 147, and 148 are in disagreement to the
theoretical ones (Table S1). We observed that the ESAT-6 like
protein EsxJ and glutamine synthetase (GS) found in spots
107 and 169/170, respectively, were identified as N-formylation-
containing proteins (Table S1). Such PTM could contribute to
electrophoretic mobility shift in 2DE gels, and therefore, would
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FIGURE 2 | Differential surface-associated proteins between BCG Moreau and BCG Pasteur. Representative 2DE proteomic profiles between BCG Moreau (left) and

BCG Pasteur (right) with differential spots (intensity) are marked and identified in blue (Moreau) and red (Pasteur). Molecular weight marker indicated to the left in kDa.

account for the differences between experimental and theoretical
pI. It has been reported that N-formylated peptides may serve as
good candidates for a universal vaccine against M. tuberculosis
when administered in combination with drugs (139–141).

Overall, these PTMs could be important factors for eliciting
the immune response. It has been reported that the glycosylated
motif found in Apa protein was related to the high capacity
of BCG to stimulate an immune response in BCG-immunized
guinea pigs (142, 143). Our results indicate that the Apa
protein shows higher expression on the cell surface of BCG
Moreau compared to Pasteur (Figure 2 and Table 2). Other
important proteins identified in the BCG Moreau surface-
associated proteome were secreted antigens 85A and B (spots
37, 126, and 127 of Figure 1A). These proteins belong to
the antigen Ag-85 complex and are found in association with
the mycobacteria cell surface, constituting the major secreted
proteins observed on mycobacteria culture filtrate (12, 144, 145).
These proteins are strongly immunogenic and can trigger both
humoral and cellular immune responses in vivo (144, 146–
148). Ag85 proteins have mycolyltransferase activity, crucial
to maintain the cell wall integrity of mycobacteria (149–151).
In addition, they can bind to human fibronectin (152) and
elastin (153) present in the extracellular matrix having, therefore,
moonlighting functions. Recent studies demonstrated that Ag-
85 complex was identified as a target for mannose-binding lectin
and ficolins (154). These proteins have been extensively studied
as potential candidates for new vaccines against tuberculosis
(155, 156).

Protein fate in terms of cellular localization is an important
aspect that might be explored on surface-associated proteins
(Table S2). Non-covalently surface-associated proteins can be
secreted through different systems such as via signal peptide
(as predicted by Signal P and Lipo P software), non-classical
secretory pathway like proteins without an N-terminal signal
peptide (according to Secretome P analysis), and twin-arginine
translocation pathway (as found by Tat prediction program) in

which a twin-arginine consensus motif is located within the
signal peptide itself (29, 31, 157–159). The non-classical secretory
system was predicted for aconitase (spots 172 and 173) and
glutamine synthetase (spots 169 and 170). In M. tuberculosis,
aconitase is found in the cytosol, cell wall, and cell membrane
fractions and it has also been described as a bifunctional
protein acting as an enzyme in the presence of iron and RNA-
binding in the absence of iron (115, 160). Glutamine synthetase
(GS) presented moonlighting features of acyltransferase in M.
tuberculosis (161). Previous studies have shown that this enzyme
is secreted into the culture medium and plays a crucial role
in pathogenicity as well as in bacterial growth (162, 163). In
Lactobacillus crispatus, GS is a novel adhesive moonlighting
enzyme that associates to the cell surface at an acidic pH (119).
Further experiments must be carried out in order to show
that aconitase, glutamine synthetase and other surface-associated
proteins (Table 3) have moonlighting behavior also in M. bovis
BCGMoreau.

Bioinformatic tools have been used to predict protein
moonlighting function by primary sequence analysis and hence
domain investigations of predicted moonlighting proteins can
be pursued to propose novel functions that corroborate with in
vitro and in vivo studies (40, 42, 164, 165). Nevertheless, most
moonlighting proteins described to date have been identified
by chance (166). In general, highly conserved proteins, often
metabolic proteins/enzymes (167, 168) or molecular chaperones
(169), receptors (170), ribosomal proteins, and transmembrane
channels (171), were shown to be moonlighting proteins (172).
These findings suggest that the presence of intracellular proteins
at “unexpected” locations is not always due to experimental
artifacts such as cellular lysis. The methodology used here for
obtaining the fraction of surface-associated proteins is well
characterized (19), strengthening the fact that the intracellular
proteins identified in this studymay be performingmoonlighting
functions. In addition, the appearance of a new function for
the same protein can be considered a great advantage for
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the microorganism since it optimizes the functional repertoire
encoded by a compact genome. In this context, bioinformatic
investigation using the Moonprot/Multitask programs led to
the prediction of moonlighting functions for some of the
identified proteins, already described for other organisms/species
(Table 3). Besides, Conserved Domains Database (CDD) and
pFam were also used to infer the number of domains these
proteins could present (data not shown). Most of the identified
proteins grouped in the “intermediary metabolism” functional
category (Figure 1B), raising the question of why proteins
normally encountered intracellularly had been found surface-
associated to the mycomembrane. This could be explained
by different functions these proteins may have depending on
localization. Finally, other features such as the presence of
distinct protein surfaces or domains influencing the oligomeric
state of the protein, concentration of cellular ligands, substrates
and cofactors must also be considered to presume moonlighting
function for these kind of proteins (16, 173–175).

Interestingly, we found that fructose-biphosphate aldolase
(Fba) and the aldehyde dehydrogenase (AldC) contained two
domains hit: one representative of a canonical function in
mycobacteria and another representing a probable moonlighting
function already described in other organisms (Table 3).
In mycobacteria, the canonical domain hit for fructose-
biphosphate aldolase is FTBP_aldolase_II representative of an
enzyme that controls the condensation of dihydroxyacetone
phosphate with glyceraldehyde-3-phosphate to yield fructose-
1,6-bisphosphate (176). Nevertheless, the moonlighting domain
hit is ICL_KPHMT that represents an enzyme superfamily that
catalyzes the formation and cleavage of either P-C (proline-
cysteine) or C-C (cysteine-cysteine) bonds (data not shown).
In other organisms, as described in Table 3, the moonlighting
function of fructose- biphosphate aldolase is related to protein
binding and cell adherence. (177) confirmed experimentally
by in vitro assays that Fba from M. tuberculosis binds to
human plasminogen. This generates the proteolytic enzyme
plasmin leading to the breakdown of extracellular matrix
and basal membrane proteins, contributing to tissue injury
in tuberculosis. More recently, de la Paz Santangelo et al.
(178) reported that Fba of M. tuberculosis binds to human
plasminogen in a dose dependent manner and is important for
M. tuberculosis growth. According to our results Fba is less
expressed on the cell surface of BCG Moreau than in BCG
Pasteur (Table S3). On the other hand, the canonical domain
hit for aldehyde dehydrogenase is ALDH_F1AB_F2_RALDH1
that corresponds to NAD+-dependent retinal dehydrogenase
1 also known as aldehyde dehydrogenase family 1 member
A1 (ALDH1A1) in humans. It is a cytosolic enzyme that
catalyzes the oxidation of retinaldehyde to retinoic acid (RA).
RA is the active metabolite of vitamin A and it is required
for spermatogenesis and many other biological processes (179).
The moonlighting domain hit is PutA, a trifunctional protein
in bacteria: transcriptional regulator, proline dehydrogenase
and pyrroline-5- carboxylate dehydrogenase (data not shown).
Christgen et al. (180) discovered a membrane binding region

on the PutA domain from Escherichia coli AldC that explains
the PutA functional switch from self-regulating transcriptional
repressor to membrane binding domain. Our results indicate
that AldC is a surface-associated protein from M. bovis BCG
Moreau (spot 171 of Figure 1A) not found in the culture filtrate
of BCG Moreau (Table S2). Fba and AldC may play a role
in the immunopathology of tuberculosis, but this still needs
further investigation.

Altogether, the differences in abundance of surface-associated
proteins identified between BCG strains Moreau and Pasteur
could have an impact on vaccine efficacy. The finding that
some of these proteins have moonlighting functions opens new
possibilities for investigating the role of extracellular proteins on
the bacterial-host interface.
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