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Plasmodium vivax Merozoite Surface Protein-9 (PvMSP-9) is a malaria vaccine candidate naturally
immunogenic in humans and able to induce high antibody titers in animals when delivered as a recom-
binant protein. Recently, we identified the sequence EAAPENAEPVHENA (PvMSP9E795-A808) as the main
linear B-cell epitope in naturally exposed individuals. However, the potential of PvMSP9E795-A808 as an
immunogen in experimental animal models remained unexplored. Here we assess the immunogenicity
of PvMSP9E795-A808 using synthetic peptides. The peptides tested in BALB/c mice include two repeats of
the sequence EAAPENAEPVHENA tested alone (peptide RII), or linked to an autologous (PvMSP9 peptide
pL; pLRII) or heterologous (p2 tetanus toxin universal T cell epitope; TTRII) T cell epitope. Immune
responses were evaluated by ELISA, FLUOROSPOT, and indirect immunofluorescence. We show that all
of the peptide constructs tested were immunogenic eliciting specific IgG antibodies at different levels,
with a prevalence of IgG1 and IgG2. Animals immunized with synthetic peptides containing T cell epi-
topes (pLRII or TTRII) had more efficient antibody responses that resulted in higher antibody titers able
to recognize the native protein by immunofluorescence. Relevantly, the frequency of IFN-c secreting SFC
elicited by immunization with TTRII synthetic peptide was comparable to that reported to the PvMSP9-Nt
recombinant protein. Taken together, our study indicates that PvMSP9E795-A808 is highly immunogenic in
mice and further studies to evaluate its value as promising vaccine target are warranted. Moreover, our
study supports the critical role of CD4 T cell epitopes to enhance humoral responses induced by subunit
based vaccines.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

After more than a century of basic research on malaria, this
vector-borne disease continues to be a global health threat.
Although Plasmodium falciparum continues to cause the greatest
morbidity and lethality among the five species of Plasmodium that
infect humans, an increasing number of severe cases caused by P.
vivax have been reported. In 2016, P. vivax was responsible for
about 40% of malaria cases outside of Africa, representing 64% of
malaria cases in the Americas, above 30% in Southeast Asia and
40% in Eastern Mediterranean regions [1]. Several factors are
involved in the high transmissibility and spread of P. vivax and
include: early and continuous production of gametocytes during
the erythrocytic cycle [2,3], shorter development cycle in the vec-
tor compared to other Plasmodium spp. [4], and ability to relapse
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from long-lasting dormant liver stages (hypnozoites) [5,6]. These
biological features along with the enormous socioeconomic impact
caused by P. vivax [7], the report of severe and lethal P. vivax
malaria cases [8–10] and the emergence of chloroquine [11–13]
and primaquine resistant strains [14–16] make the development
of a safe and affordable vaccine a critical component in P. vivax
control strategies.

The identification and validation of potential vaccine targets
against P. vivax have been delayed, in part due to difficulties asso-
ciated with the absence of a continuous, long-term in vitro culture
of this parasite, but also due to limited of investment in available
tools and methods [17–19]. Regardless, peptide constructs, con-
taining B and T-cell epitopes, have been considered in strategies
for developing vaccines for P. vivax and this direction has advanced
for several known target antigens. This vaccine platform based on
the design of minimal subunits, using synthetic peptides, has the
potential to deliver precisely defined epitopes that can be pro-
duced at large-scale, high yield and relatively low cost [20,21]. Syn-
thetic peptides are also stable in the absence of proteases, do not
have contamination with biological agents, and can be produced
in a fast and reproducible manner [22]. Furthermore, peptide vac-
cines allow the conjugation of multiple epitopes in a single con-
struct representing a promising approach against genetic variants
of vaccine candidates that are involved in parasite escape mecha-
nisms [20,23] and a good strategy to develop multi-stage or
multi-specific vaccines. Unfortunately, synthetic peptides have
overall poor immunogenicity [24,25]. Because this, several alterna-
tive approaches have been used to overcome this barrier, like the
use of virus-like particles and the conjugation of B-cell linear epi-
topes to T-cell epitopes or lipid moieties [26].

T cell-independent immune responses induced in the absence
of T cell help are weaker, uneven and have impaired memory
responses in comparison to those elicited by T cell-dependent anti-
gens. T-helper cells play a crucial role in linking innate and adap-
tive immunity and they become critical components of peptide-
based vaccines [27,28]. A challenge for testing subunit vaccines
in preclinical trials is that individual epitopes could not be
recognized by the experimental animal models used [29]. Recently,
bioinformatics tools have been introduced for the successful
in silico identification of potential epitopes on vaccine candidates
against several pathogens [30–33]. However, the number of
predicted and validated epitopes within P. vivax antigens, as well
as the knowledge on protective efficacy is still limited.

Merozoite Surface Protein 9 (MSP9) is a conserved protein
among Plasmodium species infecting humans, rodents and pri-
mates [34–36], which is expressed on the merozoite surface during
schizont development and segmentation [37]. Antibodies pro-
duced against P. cynomolgi and P. knowlesi MSP9 homologs inhibit
merozoite invasion of erythrocytes [36] and the immunization
with MSP9 from P. berghei protected BALB/c mice from challenge
with homologous parasite [38]. P. vivax MSP9 (PvMSP9) is also
immunogenic in animal models [39] and naturally exposed indi-
viduals [40]. This experimental evidence supports the research
and development of a P. vivax vaccine based on MSP9. Structurally,
PvMSP9 contains a long non-repetitive conserved N-terminal
domain, with five promiscuous CD4 T cell epitopes (pE, pJ, pK,
pH and pL) [41,42] and a C-terminal domain, that contains two
blocks of tandem repeats, described as the main target of the
humoral response in adults living in endemic areas [40]. Recently,
using a combination of in silico tools we identified the sequence
EAAPENAEPVHENA (PvMSP9E795-A808) as a minimal linear B-cell
epitope. The native PvMSP9 includes five PvMSP9E795-A808 tandem
repeats, corresponding to 29% of the PvMSP9’s two blocks of
repeats. Furthermore, the potential role of PvMSP9E795-A808 in the
acquisition of protective immunity has been reported [43]. Based on
this observation, we aimed to assess the value of PvMSP9E795-A808
for the development of a subunit-based P. vivax vaccine by charac-
terizing the immunogenicity of this epitope in animal models. Here
we characterize the immune responses elicited by immunization
with peptide-based immunogens that incorporate PvMSP-9E795-A808.
Peptides were synthetized representing the B cell epitope alone
or conjugated to well-characterized CD4 T cell epitopes. Our data
add further support for the development of vaccines based on
linear synthetic-peptides and epitope mapping strategies of
P. vivax proteins.

2. Material and methods

2.1. Peptide synthesis

Three epitopes were selected to design the peptide constructs:
(a) the sequence EAAPENAEPVHENAEAAPENAEPVHENA (Peptide
RII), consists of two repeats of the identified B-cell linear epitope
PvMSP-9E795-A808 arrayed in tandem conformation [43]. (b) The
sequence ASIDSMIDEIDFYEK (PvMSP-9A443-K456, Peptide pL), a
well-defined promiscuous and naturally immunogenic CD4 T cell
epitope [42], and (c) the sequence QYIKANSKFIGITE (Peptide TT),
an epitope that has been studied for immune reactivity in 35 pub-
lication(s), tested in 52 T cell assays, 4 B cell assays and 57 MHC
ligand assays (epitope ID 52929; http://www.iedb.org/epId/
52929) and is considered a well-known epitope to peptide vaccines
in murine models, human and primates [44–46]. All peptides were
synthesized by fluorenylmethoxycarbonyl (F-moc) solid-phase
chemistry [47] (GenOne Biotechnologies, Brazil) as single peptides
(RII, pL, TT) and as hybrid peptides, containing a combination of a
B-cell epitope and a T-cell epitope (pLRII and TTRII) (Table 1). Syn-
thetic peptides containing PvMSP-9E795-A808 were flanked by cys-
teine residues at N- and C-terminal regions, which allows
spontaneous polymerization, a strategy that has been used to
enhance immunogenicity [48–50]. Analytical chromatography of
the peptide demonstrated a purity of >95% and mass spectrometric
analysis also indicated an estimated mass corresponding to the
mass of the peptides.

2.2. Immunization of mice with synthetic peptides

Female BALB/c mice of 6–8 weeks of age were obtained from
the Institute of Science and Technologies in Biomodels (ICTB)/FIO-
CRUZ. Groups of 21 mice were immunized subcutaneously (s.c)
three times at 3-week intervals (days 0, 21 and 42) at the base of
the tail with 50 mg of one of the synthetic peptides (RII, pL, TT, pLRII
and TTRII) emulsified in 150 mL of Montanide ISI 51 (SEPPIC,
France). Controls received only PBS emulsified in the same adju-
vant. Mice were bled at days 0, 11, 21, 33, 42, 63, 84 and 132,
and the sera samples were tested by enzyme-linked immunosor-
bent assay (ELISA) for antibody responses. On day 63 three mice
in each group were sacrificed, and splenocytes were harvested to
evaluate cellular immune responses using IFN-c and IL-5 Fluo-
rospot assays. Twenty-one non-immunized animals were bled and
sacrificed at each time point to serve as additional control group.

All the animal studies were performed at the animal facilities of
Oswaldo Cruz Foundation in accordance with guidelines and pro-
tocols approved by the Ethics Committee for Animal Experimenta-
tion of the Oswaldo Cruz Foundation CEUA-FIOCRUZ (Protocol N�
LW-12/14).

2.3. Recombinant PvMSP9-RIRII

The recombinant protein PvMSP9-RIRII, containing the C-
terminal blocks of tandem repetitions, was expressed as a GST
fusion protein, as described [40] and were used in Absorption
ELISA tests.

http://www.iedb.org/epId/52929
http://www.iedb.org/epId/52929


Table 1
Design of synthetic peptides used in this study. Five peptides were synthesized based on three selected epitopes. The single peptides – RII, representing two repeats of the B cell
epitope PvMSP9(E795-A808)2; Peptide pL representing the T cell epitope PvMSP9(A443-K456) identified within the N-terminal region of PvMSP9; Peptide TT, Tetanus toxin(Q830-E843)

corresponding to a well-defined CD4 T cell epitope. To induce spontaneous polymerization, the peptides used for immunization were synthesized with flanked cysteine residues.

Nomenclature Topology Amino acid sequence MW (Da)

RII cys-PvMSP9(E795-A808)2-cys CEAAPENAEPVHENAEAAPENAEPVHENAC 3143.25
pL PvMSP9(A443-K456) ASIDSMIDEIDFYEK 1775.93
TT Tetanus toxin(Q830-E843) QYIKANSKFIGITE 1611.84
pLRII cys-PvMSP9(A443-K456)PvMSP9(E795-A808)2-cys CASIDSMIDEIDFYEKEAAPENAEPVHENAEAAPENAEPVHENAC 4901.17
TTRII cys-Tetanus toxin(Q830-E843)PvMSP9(E795-A808)2-cys CQYIKANSKFIGITEEAAPENAEPVHENAEAAPENAEPVHENAC 4737.07
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2.4. Antibody assays

The presence and levels of specific antibodies against the syn-
thetic peptides in sera of mice were evaluated by Enzyme-linked
immunosorbent assay (ELISA). Briefly, 96- microwell plates (Nunc-
Maxisorb) were coated with 5 mg/mL of synthetic peptides (RII, TT,
and pL). After overnight incubation at 4 �C, the plates were washed
with PBS and blocked with PBS-0.05% Tween 20 containing 5% non-
fat dry milk (PBS-Tween-M 5%) for 1 h at 37 �C. Individual mice
serum samples at two-fold serial dilutions in PBS-Tween-M 2.5%
were added to duplicate wells, and the plates were incubated at
37 �C for 2 h. After three washes with PBS-Tween, bonded antibod-
ies were detected with peroxidase-conjugated goat anti-mouse IgG
(Southern Biotech) followed by o-phenylenediamine and hydrogen
peroxide. The absorbancewas read at 492 nm using an ELISA reader
(Spectramax 250, Molecular Devices, Sunnyvale, CA). The end-point
titers in the mice sera were determined as the highest dilution at
which immunized mice sera had optical density (OD) value three
times higher than sera from control mice (the OD values in the con-
trol mice were about 0.045, 0.053 and 0.054 for peptides RII, TT, and
pL, respectively). The determination of IgG subclass profile against
peptide RII was also performed as described above, except that the
secondary antibodies used were goat anti-mouse monoclonal anti-
bodies specific for mouse IgG1, IgG2a, IgG2b or IgG3 (Southern Bio-
tech). Moreover, to confirm the reactivity of induced antibodies
against PvMSP9, an ELISA was performed following the same
methodology above described, except that plates were coated with
2 mg/mL of recombinant protein PvMSP9-RIRII.
2.5. Absorption ELISA

The absorption ELISAs were performed as previously described
[51]. Briefly, 96-microwell plates (NUNC-Maxisorp) were coated
overnight with 5 mg/mL of the peptide RII or 2 mg/mL of PvMSP9-
RIRII recombinant protein, then washed, and blocked as described.
Sera were added to the plates at end-point titers and incubated for
two hours at 37 �C. After incubation, sera were transferred to plates
coated overnight with PvMSP9-RIRII (2 mg/mL) after appropriate
washing and blocking, and the ELISAs were performed as described.
After the read of absorbance, the OD values against PvMSP9-RIRII of
serum before and after absorption were compared.
2.6. Indirect immunofluorescence assays

The specificity of the antibody response elicited by immuniza-
tion was tested by immunofluorescence assays (IFA) using air-
dried thin films of erythrocytes infected with P. vivax schizonts
as described previously [39]. Surface expression was detected
using sera from mice immunized with synthetic peptides RII, pLRII
and TTRII and affinity-purified goat anti-mouse IgG conjugated to
fluorescein isothiocyanate (FITC) (Sigma, St. Louis). Pools of sera
from animals of each group (RII, TTRII, pLRII) collected on days
63 and 84 were tested at 1:50 dilution. DAPI (40,6-Diamidine-20-p
henylindole dihydrochloride) (SIGMA, St. Loius) was used to con-
firm the presence of DNA. Serum of an individual from Brazilian
Amazon, who presented high antibody titers against P. vivaxmero-
zoite proteins was used as positive control.

2.7. Fluorospot

The relative number of mouse antigen-specific T-cells secreting
IFN-c and IL-5 was determined by FluoroSpot (FluoroSpot kit for
mouse IFN-c/IL-5; MabTech). Briefly, Fluorospot plates were pre-
wetted with 15 mL 35% ethanol for 1 min, immediately followed by
washing with sterile water (200 mL/well). 100 mL of anti-mouse
IFN-c (AN18) and anti-mouse IL-5 (TRFK5) antibodies, both diluted
to 15 mg/mL in sterile PBS, were added to each well. After overnight
incubation at 4 �C, plates were washed with sterile PBS (200 mL/well),
and blockedwith 200 mL/well with cell culturemedium (RPMI 1640
supplemented with 10% heat-inactivated FCS, 1 mM glutamine,
100 units/mL penicillin, 100 mg/mL streptomycin and 0.5 mM
HEPES) for at least 30 min at room temperature. The blocking
medium was removed and fresh medium with or without one of
the stimulants (ConA, RII, TTRII, pLRII, pL, and TT) combined with
anti-CD28 mAb at 0.2 mg/mL. Splenocytes of immunized mice were
added to each well (250,000 cells/well) in duplicate and incubated
for 30 h at 37 �C and 5% CO2. Cells were removed by washing the
plates with PBS (200 mL/well), and 100 mL of monoclonal antibodies
anti-IFN-c (R4-6A2-BAM; 1:200) and anti-IL-5 (TRFK4-biotin;
2 mg/mL) in PBS with 0.1% bovine serum albumin (PBS/BSA) were
added to each well. Plates were incubated at room temperature
for 2 h, followed by washing as described above. Secondary detec-
tion reagents (anti-BAM-490, and SA-550) were diluted 1:200 in
PBS/BSA and 100 mL added to eachwell for 1 h at room temperature.
Plates were washed as above and 50 mL fluorescence enhancer
added to each well for 15 min. The enhancer was discarded
thoroughly, the plate underdrain removed, and the plates left to
dry protected from light. IFN-c and IL-5 secreting cellswere counted
with an Immunospot reader S6UV ultra (Cellular Technology Ltd,
Cleveland, OH). The number of IFN- c, and IL-5 secreting cells per
106 spleen cellswas expressed as themeannumber of spots induced
by antigen subtracted by the number of spots induced by PBS.

2.8. Statistical methods

GraphPad Prism version 5 (GraphPad Software, Inc, La Jolla, CA,
USA) was used for statistical analysis. Statistical difference in cat-
egorical variables between the two defined groups was determined
using Fischer exact test while Mann-Whitney U test was used to
determine differences in continuous variables. P values of �0.05
were considered statistically significant.
3. Results

3.1. Synthetic peptides containing the epitope PvMSP9E795-A808 are
immunogenic in BALB/c mice and showed enhanced activity when
linked to a T helper epitope

To evaluate the immunogenicity of the linear B-cell epitope
PvMSP9E795-A808, we determined antibody end-point titers elicited
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by immunization against peptide RII, a synthetic peptide that
includes two repeats of the PvMSP9E795-A808 epitope. Plasma sam-
ples from mice immunized with different synthetic peptides (RII,
pLRII, TTRII, pL and TT) were collected at different time points
and antibody titers determined by ELISA (Fig. 1). Firstly, we con-
firmed that epitope PvMSP9E795-A808 was immunogenic in BALB/c,
once that all groups immunized with synthetic peptides containing
the peptide RII (RII, pLRII and TTRII) presented specific IgG antibod-
ies against this peptide. Animals immunized with single peptide RII
had a detectable level of antibodies at day 42 after the first immu-
nization and reached its maximum antibody level (1:6400) on day
84. Moreover, the immunization with peptides linked to T cell epi-
topes (pLRII and TTRII) elicited earlier and higher IgG antibody
titers against peptide RII. Mice immunized with pLRII had detect-
able levels of antibodies (1:800) 33 days after the first immuniza-
tion and presented the maximum titers of antibodies (1:12,800)
at day 63. Besides, animals immunized with TTRII presented a
detectable level of antibodies (1:100) 21 days after the first immu-
nization, even before the second immunization, and also reached
its maximum level of antibodies (1:25,600) at day 63. In groups
RII, pLRII and TTRII, the maximum antibodies titers against RII
were maintained since than reached until the kinetic last time
point.

No cross-reactions were observed between antibodies specific
to peptide RII and the T cell epitopes (pL and TT), since plasma col-
lected from mice immunized with the single peptide RII, did not
develop specific antibodies against peptides pL or TT (Supplemen-
tary Fig. 1a and 1b, respectively). Mice immunized with a single T
cell epitope (pL or TT) did not elicit specific antibodies against RII
(Fig. 1). Moreover, synthetic peptides containing T cell epitopes
(pL, pLRII, TT, and TTRII) elicited low IgG specific responses against
the T cell epitopes, 32 days after the first immunization
(Supplementary Fig. 1). A specific response against peptide pL
was observed in plasma of animals immunized with the single
peptide pL or the hybrid peptide pLRII (Supplementary Fig. 1a).
In the same way, anti-peptide TT IgG antibodies were identified
in samples collected from mice immunized with the single peptide
TT or the hybrid TTRII peptides (Supplementary Fig. 1b).

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.vaccine.2018.10.
016.
Fig. 1. Endpoint anti-RII antibody titers in mice immunized with synthetic
peptides. The figure summarize the results of two different experiments and the
values represent the mean of six animals in each point of both experiments (three
animals per time point, in each experiment). Lines indicate the variation of antibody
titer along experimental kinetic in immunized groups: RII (green), pLRII (blue),
TTRII (red), pL (purple), TT (orange) and PBS (gray). All immunogens were
formulated in adjuvant Montanide ISA51. Arrows indicate the immunization times.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
3.2. IgG1 and IgG2 are the predominant isotypes against RII

To evaluate the profile of anti-RII IgG subclass induced by syn-
thetic peptides, we determined the final IgG1, IgG2a, IgG2b and
IgG3 antibody titers in plasma collected at day 63. In all studied
groups, a similar subclass profile was observed with no differences
between induced titers of IgG1, IgG2a, and IgG2b (Fig. 2).
Moreover, the absence of detectable levels of IgG3 was a common
finding in all groups. No significant changes in IgG isotype patterns
were observed in the course of the follow-up after each immuniza-
tion (Data not shown).

3.3. Anti-RII antibodies elicited by immunization with synthetic
peptides recognized the PvMSP9-RIRII recombinant protein

To confirm the specificity of anti-RII antibodies elicited by
immunization, we tested by ELISA the plasma of immunized mice
against the recombinant protein PvMSP9-RIRII that represents the
two blocks of repeats on the C-terminal region of PvMSP9. Plasma
samples collected from mice immunized with the synthetic pep-
tides constructs containing the peptide RII (RII, pLRII and TTRII)
were able to recognize the recombinant protein at 1:100 dilution
(Fig. 3). The O.D. mean values were higher in groups immunized
with pLRII or TTRII than in group immunized with RII (p = 0.038
and p = 0.031; respectively). Moreover, mice immunized with pep-
tide TT, pL or with PBS formulated in adjuvant presented similarly
low ODs than groups immunized with RII, pLRII, and TTRII
(p < 0.0001).

3.4. The anti-RII antibodies were able to recognize specifically the
MSP9 native protein

After having demonstrated that anti-RII antibodies recognized
the recombinant protein representing the two blocks of repeats
within PvMSP9, we investigated whether these antibodies recog-
nize the native protein expressed during the blood stage of the par-
asite life cycle. To accomplish this, pool of sera collected from mice
immunized with different synthetic peptides were tested for reac-
tivity using IFA, at dilution of 1:50. Plasma from mice immunized
with peptides containing the sequence PvMSP9E795-A808 (RII, pLRII
and TTRII) recognized the native MSP9 with a fluorescent pattern
Fig. 2. IgG subclass profile against peptide RII induced by immunization with
synthetic peptides. Each point represents end-point mean values of IgG1, IgG2a,
IgG2b and IgG3 antibody titers ± SEM. RII (green), pLRII (blue), TTRII (red). Samples
were collected three weeks after the last immunization (day 63) from six mice per
group. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 3. Evaluation of reactivity of anti-RII IgG against the recombinant protein
PvMSP9-RIRII. Optical densities of antibodies elicited by immunization with
synthetic peptides TTRII (red box), pLRII (blue box), RII (green box), pL (purple
box) or TT (orange box) against rPvMSP9-RIRII. The antibody responses are
significantly higher in comparison to control mice immunized with adjuvant alone
(p < 0.0001). Mice immunized with peptides containing linked T and B cell epitopes
(pLRII and TTRII) presented higher optical densities than those immunized with the
single peptide RII. Animals immunized with synthetic peptides representing T cell
epitopes (TT and pL) or PBS formulated in adjuvant were not able to recognize the
recombinant protein. Data is presented as Box and Whiskers plots with lines
representing 10–90 percentile and p values included. Each column represents the
optical densities of animals from each group of samples collected 42, 63, 84 and
132 days after the first immunization. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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consistent with surface staining. No reactivity was observed in sera
from naive mice, mice immunized with peptides pL or TT or mice
immunized with PBS formulated in adjuvant. Representative
results are shown in Fig. 4.
Fig. 4. RII-specific antibodies induced by synthetic peptides recognize the native PvMSP
the synthetic peptide (TTRII) and erythrocytes infected with P. vivax schizonts. Images w
Contrast (DIC), followed by cell DNA stained with DAPI (40 ,6-diamidino-2-phenylindole),
IgG against the parasite, and the right panels show the merged images (DAPI + FITC).
presented high response to P. vivax MSP-9 recombinant antigen was as used as positive
3.5. The promiscuous T-cell epitope TT was critical to induce IFN-c
secreting T cells

Once observed that T cell epitopes enhanced the antibody
responses, we explored the effect of these epitopes on cellular
immune responses. To determine the number of IFN-c and IL-5-
Spots Forming Cells (SFC) induced by immunization with synthetic
peptides, we used the Fluorospot. Splenocytes derived from mice
immunized with the single peptide RII and hybrid peptides (pLRII
and TTRII) were collected 3 weeks after the third immunization
(day 63) and were stimulated ex vivo using each peptide used
for immunization (pL, TT, RII, pLRII and TTRII). Mice immunized
with TTRII showed an increased number of IFN-c-SFC, when stim-
ulated with peptides TT or TTRII, compared to the number of SFC
induced by the same peptides using splenocytes collected from
mice immunized with other synthetic peptides (p = 0.024). More-
over, no significant number of IL-5 secreting cells were observed
(Fig. 5). All cells stimulated with ConA have high numbers of
IFN-c and IL-5-secreting cells (Data not showed).
4. Discussion

Synthetic peptides represent a promising approach for the
development of subunit vaccines [52,53], providing a safe and
inexpensive alternative to the conventional vaccine platforms. This
approach can be even more effective by targeting both B and T cell
epitopes known to be involved in protective efficacy aiming to
induce a balanced immune response [54–57]. However, constructs
containing linear B-cell epitopes from Plasmodium antigens have
not always met with their expected success [58–60]. Both
antibody-dependent and -independent T-cell-mediated protective
immune mechanisms are operative at different stages of the para-
site life cycle [61–65], so the ideal vaccine should combine
epitopes identified as strong inducers of both antibody and
cell-mediated immunity. In this study, we used synthetic peptides
9. Binding of RII-specific IgG using a pool of sera from BALB/c mice immunized with
ere taken at 100-fold magnification. Left panels show the Differential Interference

the fluorescein isothiocyanate (FITC) fluorescence indicating the reactivity of anti-RII
Scale bar, 10 lm length. The sera of an individual from Brazil endemic area, who
control.



Fig. 5. Detection of IFN-c and IL-5 secreting cells from mice immunized with synthetic peptides collected three weeks after the last immunization (day 63). Results are
express as the mean values of duplicate assays using three different animals from each group individually analyzed. Cells of each animal were individually stimulated with
each peptide. (a) Number of IFN-c SFC in 106 spleen cells after stimulation with peptide pL (gray bars) or pLRII (striped bar). (b) Number of IFN-c SFC in 106 spleen cells when
stimulated with peptide TT (gray bars) or TTRII (striped bar). (c) Number of IL-5 SFC in 106 spleen cells when stimulated with peptide pL (gray bars) or pLRII (striped bar). (d)
Number of IL-5 SFC in 106 spleen cells when stimulated with peptide TT (gray bars) or TTRII (striped bar). The corresponding immunized groups (RII, pLRII and TTRII) are
presented in the X-axis. The bars represent the mean number of SFC stimulated by synthetic peptides and lines indicate the respective Standard Error Mean. The SFC values
were subtracted from the SFC values obtained with the control group.
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to immunize BALB/c mice and to verify the immunogenicity of two
known epitopes described within PvMSP9, a potential vaccine
candidate.

Firstly, we observed that the B cell epitope PvMSP9E795-A808 was
immunogenic and confirmed that hybrid peptides synthesized by
linking the sequence to T cell epitopes exhibit enhanced antibody
responses. All the peptides tested that include such a sequence
(RII, pLRII, and TTRII) induced specific antibodies against RII and
the antibody levels were maintained up to three months after
the last immunization. Relevantly, both peptides containing B
and T cell epitopes, pLRII and TTRII, elicited earlier and higher
antibody titers (1:12,800 and 1:25,600, respectively) than the RII
synthetic peptide, that includes only the B cell epitope (1:6400).
The enhanced level of antibodies induced by synthetic peptides
containing a T helper epitope, pLRII, and TTRII, are in agreement
to previous studies [49,50], which demonstrated the enhancement
of a specific response induced by the insertion of a T helper epitope
and generated a specific level of antibodies similar to our study.
Moreover, although this enhanced humoral response was expected
to peptide TT (Tetanus Toxin(Q830-E843)) [44–46], we present here
the first evidence that the T cell epitope PvMSP9A443-K456 has
potential as a T helper epitope. The kinetics of the antibody
responses elicited by immunization with the synthetic peptides that
included the PvMSP9E795-A808 epitope reported here are similar to
those described for immunization with the recombinant PvMSP9
proteins. However, consistent with the lower immunogenicity of
linear peptides, higher levels of antibodies were induced by the
recombinant proteins [39].

Despite differences in total IgG levels between immunized
groups, similar IgG isotype patterns were elicited with similar
titers of IgG1, IgG2a, and IgG2b. Interestingly, the same subclass
profiles were observed when BALB/c mice were immunized with
PvMSP9 recombinant proteins, formulated in Montanide ISA51
[39]. This effect could be attributed to the adjuvant effect given
the fact that adjuvants enhance and modulate the magnitude of
adaptive immune responses to co-administered antigens, impact-
ing longevity, antigen avidity, and modulation of isotype and IgG
subclass switches [66,67]. On the other hand, based on the scarce
knowledge about the role of each IgG subclass on protection
against murine malaria, we cannot determine how effective the
induced profile could be in a protective response. To date, amongst
mouse IgG subclasses, IgG2a and IgG2b are considered to be the
most potent activators of complement and most used in passive
transfer experiments in murine infections (including malaria)
[68,69]. Besides, IgG1 is believed not to be a potent complement
activator [70]; to be poor at killing tumors [71]; but plays an
important role in controlling gastrointestinal parasites [72].

Despite early studies already demonstrating that antibodies
against recombinant MSP-9 were able to block merozoite invasion
in vitro [36] and naturally acquired antibodies correlate with expo-
sure/protection in Brazilian Amazon [40] and Southeast Asia [73],
the functionality of these induced antibodies against our synthetic
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constructs and their role on parasite recognition remained
unknown. Therefore, we first observed that the induced IgG anti-
RII were able to recognize the recombinant protein representing
the PvMSP9-RIRII. This result was consistent with our previous
study, in which we observed that specific antibodies against RII
of naturally exposed individuals corresponded to 30% of antibodies
against the PvMSP9-RIRII (Data not showed) [43]. Moreover, speci-
fic antibodies against peptide RII were also able to recognize the
native protein on the surface of merozoites and schizonts in
immunofluorescence assays. Unfortunately, we could not carry
out an inhibition assay or challenge of immunized mice to verify
the protective potential of the anti-RII antibodies. However, con-
sidering that monoclonal antibodies against PvMSP9 were able to
inhibit the invasion of erythrocytes by P. vivax merozoites [36],
that two blocks of repeats are the most immunogenic regions of
the protein [40], the ability of anti-RII antibodies to recognize the
recombinant protein PvMSP9-RIRII and the native protein reinforce
the potential of PvMSP9E795-A808 as a vaccine target for novel syn-
thetic constructions.

Interestingly, even with the enhancement in humoral responses
elicited by immunization with the synthetic peptide representing
the B cell epitope linked to T cell epitopes, only the peptide TTRII
was able to induce IFN-c secreting cells. In our point of view, this
finding could be associatedwith differences on presentation of T cell
epitopes by MHC of different models, once for efficient induction of
either B-cell or cytotoxic T cell responses, the induction of a robust T
helper cell responses is crucial [74,75]. The use of promiscuous or
universal T helper epitopes, which bind several or most MHC class
II molecules, respectively, offer a good alternative to design subunit
vaccines able to induce a robust immune response regardless of the
MHC makeup [76,77]. Unfortunately, the evident bias on MHC pre-
sentation of synthetic peptides in humans and animal models limit
several applications. For example, whereas the universal T cell epi-
tope PADRE binds many human HLA-DR molecules with high affin-
ity, they only show strong binding to H2I-Ab in mice [78]. Here,
although the epitope PvMSP9A443-K456 (peptide pL) was described
as a promiscuous T helper epitope in humans [42], this was the first
work using this as a T helper epitope in mice. Moreover, the evalu-
ation of their prediction data suggested no binding of this peptide
by mice MHC (H-2-Ib, H-2-Id, and H-2-Ed) (data not showed),
whereas peptide TT (Tetanus Toxin(Q830-E843)) was described as a
universal epitope in human and mice [79]. On the other hand, the
induction of IFN-c secreting cells by TTRII was comparable to the
number of secreting cells induced by recombinant protein PvMSP9
[39], supporting that the adequate choices of T helper epitopes could
potentiate the immunogenicity of synthetic peptides.

In conclusion, this was the first work to evaluate the immuno-
genicity of the B-cell epitope PvMSP9E795-A808 and the T helper epi-
tope PvMSP9A443-K456, using synthetic peptides as a vaccine
platform. The B cell epitope PvMSP9E795-A808 was immunogenic
in BALB/c mice, and specific antibodies to this epitope were able
to recognize the native parasite protein. Moreover, we confirmed
that a Tetanus Toxin derived T-cell epitope enhanced the humoral
immune response when conjugated to B cell epitope RII, once TTRII
elicited an earlier and higher humoral response than a single pep-
tide RII. Besides, our data suggest that epitope PvMSP9A443-K456 was
not a potential T helper in mice, disagreeing with the described
promiscuity in binding to several MHC alleles in humans. Our data
reinforces the importance of PvMSP9E795-A808 as a potential epitope
to be included in a subunit malaria vaccine against P. vivax.
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