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Cancer is a genetic disease for which traditional treatments cause harmful side

effects. After two decades of genomics technological breakthroughs, personalized

medicine is being used to improve treatment outcomes and mitigate side effects.

In mathematical modeling, it has been proposed that cancer matches an attractor

in Waddington’s epigenetic landscape. The use of Hopfield networks is an attractive

modeling approach because it requires neither previous biological knowledge about

protein-protein interactions nor kinetic parameters. In this report, Hopfield network

modeling was used to analyze bulk RNA-Seq data of paired breast tumor and control

samples from 70 patients. We characterized the control and tumor attractors with

respect to their size and potential energy and correlated the Euclidean distances between

the tumor samples and the control attractor with their corresponding clinical data. In

addition, we developed a protocol that outlines the key genes involved in tumor state

stability. We found that the tumor basin of attraction is larger than that of the control

and that tumor samples are associated with a more substantial negative energy than

control samples, which is in agreement with previous reports. Moreover, we found a

negative correlation between the Euclidean distances from tumor samples to the control

attractor and patient overall survival. The ascending order of each node’s density in

the weight matrix and the descending order of the number of patients that have the

target active only in the tumor sample were the parameters that withdrew more tumor

samples from the tumor basin of attraction with fewer gene inhibitions. The combinations

of therapeutic targets were specific to each patient. We performed an initial validation

through simulation of trastuzumab treatment effects in HER2+ breast cancer samples.

For that, we built an energy landscape composed of single-cell and bulk RNA-Seq

data from trastuzumab-treated and non-treated HER2+ samples. The trajectory from

the non-treated bulk sample toward the treated bulk sample was inferred through the

perturbation of differentially expressed genes between these samples. Among them, we

characterized key genes involved in the trastuzumab response according to the literature.

Keywords: breast cancer, Hopfield network, basin region of attraction of a minimizer, systems biology,

dynamic system
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1. INTRODUCTION

Cancer may be caused by genetic and epigenetic factors
that deregulate cellular homeostasis. Hanahan and Weinberg
(2011) classified cancer deregulated processes in terms of ten
hallmarks, which include unlimited proliferative potential, cell
death evasion, and angiogenesis, among others.

This disease was described as a pre-existing attractor in
Waddington’s epigenetic landscape in 2009 by Huang et al.
(2009). An attractor is defined as a stable cell state of
minimum energy and is associated with a cell phenotype.
Due to the stochastic behavior of gene regulation, the
attractor is surrounded by a basin of attraction resulting
from other gene expression profiles (states) that sustain the
same phenotype. The authors proposed that a cancer attractor
would be enclosed within epigenetic barriers that should

prevent its access. As a cell accumulates mutations and
gene deregulation, these epigenetic barriers are lost, and the

cancer attractor becomes accessible. This indicates that the

epigenetic landscape is not rigid and may change over time
(Ao et al., 2008; Huang et al., 2009). In this context, Ao et al.
(2008) proposed that cancer can be classified as preventable,
curable or incurable, according to its respective functional
landscape.

Cancer was also described as an intrinsic robust state of the
endogenous network (Ao et al., 2008; Su et al., 2017; Yuan
et al., 2017b,c). The endogenous network theory (ENT) is a
realistic network dynamic approach, in which the molecular-
cellular network is composed of oncogenes, tumor suppressors,
and other related agents, and covers most molecular functions.
It represents a non-linear stochastic dynamical system able
to generate multiple stable states and paths between them
(Ao et al., 2008). In this context, coarse-grained modeling
was applied using the non-linear Hill functions. The attractors
found by this strategy matched gene expression profiles of cell
phenotypes from colorectal, prostate, hepatocellular, and gastric
cancer. This approach was also applied to acute promyelocytic
leukemia and myelopoiesis (Su et al., 2017; Yuan et al.,
2017b,c).

The most used methods in gene regulatory networks (GRNs)
modeling are stochastic differential equations (SDE), ordinary
differential equations (ODEs), and Boolean networks. SDEs have
been used to identify the appropriate therapeutic approach
against cancer, following the concept of ENT (Su et al., 2017;
Yuan et al., 2017b,c). For instance, Yuan et al. (2017b) proposed
perturbations that would lead colorectal cancer phenotypes
toward the normal intestine phenotype. Either ODEs or SDEs
have been used to model the regulation of p53 by MDM2 and
MDMX (Leenders and Tuszynski, 2013), the tamoxifen-induced
apoptosis in breast cancer (Rouhimoghadam et al., 2018), to
predict the impact of combined therapies on myeloma growth (Ji
et al., 2016), and to quantify the landscape for cell differentiation
and cancer development (Li and Wang, 2013). On the other
hand, Cornelius et al. (2013) used differential equations derived
from a Boolean network to understand how a leukemia GRN
could be switched from an active cell proliferation to an active
cell death state. These methods required previous biological

knowledge about protein-protein interactions and/or kinetic
parameter rates, which may limit the network size and requires
an extensive literature search.

The Hopfield network modeling is an alternative method
that does not require kinetic parameter rates or protein-protein
interactions knowledge. It uses the gene expression profile
as input, and the GRN size is only limited by the available
computational capacity. This method is a form of a recurrent
artificial neural network and was popularized in 1982 by Hopfield
(1982). It considers symmetric and asymmetric connections and
ensures that sample states converge toward stored attractor
patterns during computational modeling.

This method has been used to elucidate cell and cancer
development. For instance, Fard et al. (2016) and Guo and
Zheng (2017) analyzed single-cell data and identified attractors in
the Waddington’s epigenetic landscape related to developmental
trajectories. In cancer-related reports, Hopfield networks have
been used to identify attractors associated with cancer subtypes
(Maetschke and Ragan, 2014) and stages (Taherian Fard and
Ragan, 2017). Moreover, Szedlak et al. (2014) have used
asymmetric Hopfield networks to test densely connected nodes
as therapeutic targets and inferred theminimumnumber of genes
necessary for treatment. Meanwhile, Cantini and Caselle (2019)
developed a methodology to identify molecular similarities to
stratify cancer patients and improve their therapies.

Stratification of patients may improve treatment outcomes
through the identification of molecular targets common
to a group of patients (He et al., 2019). For instance,
trastuzumab is a monoclonal antibody, used as adjuvant
treatment against breast and stomach cancers that overexpress
the HER2 protein (Wang et al., 2019). Also, triple-negative
breast cancer patients may present resistance to neoadjuvant
chemotherapy due to pre-existing resistant cell phenotypes (Kim
et al., 2018). Both studies were performed considering single-
cell sequencing of tumor samples aiming to identify gene
expression signatures.

Most one-size-fits-all medicine approach may cause harmful
side effects due to low selectivity that might affect both tumor
and healthy cells (Siegel et al., 2012). In contrast, personalized
medicine considers the tumor of a patient as unique, and
identifies genes differentially expressed in tumors in comparison
to the surrounding tissue (stroma), which is used as a control
(Carels et al., 2015; Conforte et al., 2019). For this reason,
personalized medicine is expected to mitigate the side effects and
improve treatment efficacy. In vitro validation of this approach
showed that simultaneous inhibition of target combinations
exhibited a more substantial disruptive effect on malignant cells
than the sum of single inhibitions (Tilli et al., 2016).

In this report, we identified differentially expressed genes
between tumors and their control paired samples from breast
cancer patients and used them in Hopfield network modeling.
After the characterization of tumor and control attractors, we
developed a protocol to identify the best target combination,
for each patient, that would minimize potential side effects and
withdraw tumor samples from their basin of attraction. For this
purpose, we prioritized gene selection according to four criteria:
density, node degree, association with cancer-related biological
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processes, and rate of gene activation in tumor samples. We also
performed a further validation of our approach by simulating
trastuzumab treatment effects. For that, we used single-cell and
bulk RNA-Seq data from three HER2+ breast cancer samples, one
treated and two untreated with trastuzumab.

To our knowledge, this is the first report that combines single-
cell and bulk RNA-Seq data, personalized treatment concepts,
andHopfield networkmodeling with the aim of disrupting tumor
sample stability.

2. MATERIALS AND METHODS

2.1. Identification and Characterization of
Differentially Expressed Genes
Bulk RNA-Seq data was obtained from The Cancer Genome
Atlas (TCGA) project housed by the Genomic Data Commons
(GDC, portal.gdc.cancer.gov), accessed in June 2019. This data
set comprises paired tumor and control (stroma) samples from
70 breast cancer patients. We used the FPKM version (Trapnell
et al., 2010) normalized by the upper quartile method (Hyndman
and Fan, 1996).

scRNA-Seq data, accession number GSE 75688, was obtained
in the NCBI Gene Expression Omnibus database, accessed in
February 2020. This data set comprises single-cell and pooled
samples (bulk RNA-Seq) of primary breast tumor tissue from
three HER2+ patients. Among them, one received adjuvant
trastuzumab treatment and had 75 RNA-Seq samples available,
while two patients did not receive any treatment and had 48 and
18 RNA-Seq samples, respectively (Chung et al., 2017).

We analyzed both RNA-Seq data sets by fold change (FC),
aiming to identify differentially expressed genes (DEGs). This
method quantifies the change between an initial and final value
as the ratio of the final value over the initial one. For the RNA-
Seq obtained from TCGA, we considered the tumor expression
data as the final value and the control expression data as
the initial value. Consequently, positive logFC values indicated
higher expression values in tumor samples, while negative logFC
values indicated higher expression values in control samples. The
logFC values of all genes were calculated individually considering
the paired samples of each patient, and then we calculated the
average of each gene among all patients. On the other hand,
for the RNA-Seq data obtained from NCBI Gene Expression
Omnibus, we considered the treated expression data as the final
value and the non-treated expression data as the initial value.
Consequently, positive logFC values indicated higher expression
values in treated samples, while negative logFC values indicated
higher expression values in non-treated samples. The logFC
values of all genes were calculated considering the bulk RNA-
Seq samples because it represents a weighted average of the
heterogeneous cells present in the sample.

For both RNA-Seq data sets, we used a p-value ≤ 0.01 and
a false discovery rate (FDR) ≤ 0.01 as a threshold to select the
DEGs. This threshold was associated with an average logFC >3
or < −3.

The DEGs found were characterized using the Gene List tool
from the Panther Classification System (pantherdb.org) with

respect to their biological process categories, following the Gene
Ontology (GO) classification (Thomas et al., 2003;Mi et al., 2010)
(Supplementary Table 1).

2.2. Clinical Data
We obtained the clinical data of each patient from the
TCGA data set in TCGA-GDC, accessed in June 2019
(Supplementary Table 2), and appended data of molecular
subtype, entropy, and overall survival. The molecular subtypes
were defined according to the classification of The Cancer
Genome Atlas Network (2012); the entropy values were obtained
from Supplementary File 5 of Conforte et al. (2019); the overall
survival (OS) of each patient were determined based on the OS
data available in Liu et al. (2018). The OS data was analyzed with
the Kaplan-Meier curve using GraphPad Prism software, where
1 is indicative of death, and 0 is indicative of censored data. The
resulting curve indicates the percentage of patients alive after the
OS time.We considered the overall survival of each patient as the
percentage of patients alive on his/her OS time.

2.3. Hopfield Network
We applied the discrete neural Hopfield network to perform our
analysis. This method implements an auto-associative network
that can recover a pattern from partial discrete information
(Hopfield, 1982). As input vectors, we used the binarized gene
expression profile of each sample. For this, we considered
the normal distributions of the logarithm of expression values
from DEGs identified for each RNA-Seq data set and each
condition (tumor/control or treated/non-treated) separately. We
used the geometric mean as the threshold to binarize the gene
state in each sample expression profile (Limpert et al., 2001)
(Supplementary Table 3). This method allows the identification
of genes with different states between samples, which is expected
fromDEGs.More importantly, it also allows for the identification
of genes with the same state between samples, which must be
considered since we selected DEGs based on the average logFC
value of each gene among all samples from each data set.

The attractors were characterized as the centroids of their
respective samples. Each centroid was composed of the average
of states for each gene among its samples. The gene state was
assigned a value of 1 for an average value >0.5, and 0 otherwise.
Since we used the samples to define each attractor, our method
for energy surface construction is parametric. Contrary to the
non-parametric method used in Taherian Fard and Ragan (2017),
the one applied in this work ensures the existence of basins of
attraction related to each attractor.

The Hopfield network analysis was performed with Neupy, a
library for neural networks in Python (www.neupy.com). Each
attractor from the analyzed data set was used in the training phase
to define its weight matrix. The weight matrix (Wa) is defined in
Equation (1), where P is the attractor’s gene expression profile, PT

is its transpose, and I is the identity matrix necessary to impose
symmetric behavior with diagonal equal to zero. SinceW may be
composed of more than one stored pattern, its value is equal to
the sum of all weight matrices (Equation 2).

Wa = (PPT)− I (1)
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W = Wa1 +Wa2 (2)

The dynamic trajectory of each sample (P(t+1), defined in
Equation 3), was predicted by following the synchronous
approach as shown by Equation (3), where W is the final weight
matrix, and P(t) is the sample gene expression profile at time
t. The sgn(x) function (Equation 4) determines the binarized
output pattern.

P(t+1) = sgn(P(t)W) (3)

sgn(x) =

{

1 : x ≥ 0

0 : x < 0
(4)

By analogy to a physical system, the discrete Hopfield network
energy (E) is calculated using the Lyapunov function, which
guarantees convergence to a low-energy attractor state (see
Equation 5) (Taherian Fard and Ragan, 2017).

E[P(s)] =
−1

2
PWPT (5)

where E[P(s)] is the energy of network state s for sample vector P
and time t.

2.4. Samples Characterization
For the RNA-Seq data set from TCGA, the Euclidean distances
(EDs) were calculated based on all network dimensions and
implemented following three strategies: (i) calculation of the EDs
between each sample and all other samples that converged to the
same attractor, whose respective average was used to infer the
sizes of the basins of attraction for the tumor and control sample
attractors; (ii) calculation of the EDs between tumor samples and
the control attractor (centroid); and (iii) calculation of the EDs
between tumor samples and the tumor attractor (centroid). These
values were correlated with the patients’ clinical data.

We set two conditions to ensure the statistical significance of
data correlations despite the data heterogeneity. First, the data of
each clinical variable (tumor stage, molecular subtype, entropy,
and overall survival) should group into at least three classes.
Second, each class should include at least three patients to infer
the average of the respective class.

The non-parametric Kruskal-Wallis test (Kruskal and Wallis,
1952) and the pairwise Wilcoxon signed-rank test (Wilcoxon,
1945) were performed to evaluate if all classes of the same clinical
variable were significantly different. The null hypothesis of the
non-parametric Kruskal-Wallis test is that all classes have the
same average ED. When the null hypothesis was rejected, a
pairwise Wilcoxon signed-rank test was performed to identify
which class significantly deviated from the average. This test
was performed for tumor stage, molecular subtype, and entropy
clinical variables. For overall survival, we performed the Pearson
correlation test. These statistical analyses were performed in R.

For the RNA-Seq data set from NCBI Gene Expression
Omnibus database, we characterized the samples using principal
component analysis (PCA) and a t-distributed stochastic
neighbor embedding analysis (t-SNE) (Maaten and Hinton,
2008). Both tests were performed in Python.

2.5. Target Identification
Each DEG found for paired tumor and control samples was
classified according to four parameters. For each parameter, the
gene priority was screened in ascending and descending order.
Parameter 1: density of each gene in the Hopfield network;
Parameter 2: number of GOs related to cancer development
associated with each of the DEGs; Parameter 3: number of
patients with the gene under consideration active (1) in their
tumor samples (biomarker); and Parameter 4: node degree of
each gene.

Parameter 1 was determined following Equation (6), where the
density (D) of node i is the sum of all weights in W for node
i divided by the number of network nodes (n). Negative values
for wij indicated different states for nodes i and j in the stored
patterns, while the opposite is true for positive values.

Di =
1

n

j=n
∑

j=1

wij (6)

The second parameter is determined by the number of GOs,
identified in the Panther Classification System as related to cancer
development, associated with each DEG. On the other hand,
parameter 3 identified the number of patients with an active DEG
in the tumor sample and inactive in it respective control sample.
In this case, we may hypothesize that genes active in many tumor
samples, and inactive in their respective control samples, may be
considered as breast cancer biomarkers.

The node degree of each gene, parameter 4, was determined
according to the human interactome, obtained from the
intactmicluster.txt file (version updated December 2017)
accessed on January 11, 2018, at ftp://ftp.ebi.ac.uk/pub/
databases/intact/current/psimitab/intact-micluster.txt. This file
presents 151,631 interactions among 15,526 human proteins
with UniProtKB accessions. The node degree of each protein
was calculated through automated counting of their edges
(Supplementary Table 4). We analyzed the node degrees of
DEGs for which we found equivalence between the Ensemble
and UniProtKB accessions (215/324), used for the RNA-Seq data
and the interactome, respectively.

As stated in algorithm 1, we tested the effect of switching
off 1–20 genes, according to priority lists, and analyzed the
resulting energy values. This experiment was performed with
the aim of identifying the number of genes that needed to be
inhibited to move tumor samples away from their tumor basin
of attraction. Our strategy followed the personalized medicine
concept, considering the paired tumor and control samples of
each patient. Moreover, to avoid potential side effects, we only
switched off genes that were active (1) in the patient’s tumor
sample and inactive (0) in the paired control sample (stroma).

The implementation of algorithm 1 is available upon request.
The algorithm considers two functions: length, which is the
vector extent, and energy, which calculates the sample-related
energy as described above. We analyzed each patient’s tumor
(patientTumorSample) and control (patientControlSample)
sample gene expression profiles and searched for genes (gene)
in the gene priority lists (listOfGenes). If a gene was active in
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Algorithm 1

1: Input: Priority list of genes for inhibition (listOfGenes)
/ Patient control sample expression profiles
(patientControlSample) / Patient tumor sample expression
profiles (patientTumorSample).

2: Output: Combination and number of gene inhibitions
recommended for each patient (inhibitedGenes, length of
inhibitedGenes).

3: procedure GENE INHIBITION(listOfGenes,
patientControlSample, patientTumorSample)

4: Energy = 0
5: attemps = 0
6: patientTreated = patientTumorSample
7: inhibitedGenes = {}
8: while (length (inhibitedGenes) < 20) and (attemps <

100) do
9: attemps += 1
10: for all gene in listOfGenes do
11: if gene = 0 in patientControlSample then
12: if gene = 1 in patientTumorSample then
13: gene = 0 in patientTreated
14: add gene to InhibitedGenes
15: if energy(patientTreated)≥ −35000 then
16: break

17: return inhibitedGenes, length(inhibitedGenes)

the patient tumor sample and inactive in its paired control, it
would be inhibited, and a new patient gene expression profile
(patientTreated) was retrieved. If the change was not sufficient to
reach an energy level equivalent to the barrier height between the
two attractors (−35,000), the algorithm would continue to the
second gene (gene) in the gene priority list (listOfGenes). When
the barrier height energy was reached, the algorithm would leave
the “for” loop, and the next patient gene expression profile would
be analyzed. This algorithm returns the number of inhibitions
indicated to move each tumor sample away from the tumor basin
of attraction.

A similar algorithm was used to test the gene target
combinations able to move tumor samples toward the control
attractor. In this case, we tested switching off 1–50 genes,
according to the priority lists. Instead of calculating the energy
of the new patient gene expression profile (patientTreated) in
line 15 of algorithm 1, we predicted its convergence toward the
tumor or control attractor. If the changes were not sufficient to
induce tumor sample convergence toward the control attractor,
then the algorithm would continue to the next gene (gene) in
the gene priority list (listOfGenes); otherwise, it would leave the
“for” loop, and the next patient gene expression profile would
be analyzed. In this case, the algorithm returns the number of
inhibitions indicated to move each tumor sample toward the
control attractor.

For trastuzumab treated and non-treated patients, we
simulated the effect of trastuzumab treatment in the non-treated
RNA-Seq sample, aiming to further validate our personalized

approach. To do this, we built an energy landscape with single-
cell and bulk RNA-Seq samples from non-treated patient 1 and
the treated patient. We could not perform this experiment for
non-treated patient 2 because it did not have enough samples to
build its basin of attraction.

The state transition from the non-treated bulk RNA-Seq
sample toward the treated bulk RNA-Seq sample was inferred
through the perturbation of genes differentially expressed
between those samples. Each DEG would receive the same state
than the one in the treated bulk RNA-Seq sample, creating a
new transitory state. The connection between all transitory states
defines the trajectory from the non-treated basin of attraction
toward the treated one. Besides, we characterized each DEG
according to their role in signaling pathways associated with
trastuzumab response (Supplementary Table 7).

We used bulk RNA-Seq samples as reference in the
state trajectory because they comprise single-cell heterogeneity
and abundance, as a weighted average of all single-cell
samples available.

3. RESULTS

3.1. Characterization of Differentially
Expressed Genes
We identified 324 DEGs among the paired tumor and control
samples. We binarized the gene expression profiles from
each patient following the normal distribution found for the
logarithms of expression values (RNA-Seq data) of all tumor and
control samples, separately, then used the geometric mean as a
threshold (Limpert et al., 2001) (Figure 1). It is important to
highlight that the results are sensitive to the chosen threshold
and the geometric mean is the best fit for our samples
(Supplementary Table 3).

From the 324 DEGs, 295 were recognized by the Panther
Classification System. The Gene List tool found 1,918 GO codes
related to biological processes, among which 111 were related
to cancer development or response. Of all DEGs, 65.4% were
classified with at least one cancer-related GO. All of these results
can be analyzed in more detail using Supplementary Table 1.

We classified the cancer-related processes into ten onco-
or tumor suppressor processes (Figure 2), from which seven
corresponded to well-described hallmarks, and three were
cancer-related pathways. The identified hallmarks were
proliferation, cell death, cell migration, metabolic process,
inflammatory response, cell growth, and angiogenesis, while
the cancer-related pathways were the MAPK, WNT, and Rho
GTPase pathways (Hanahan and Weinberg, 2011).

Note that inflammatory-related GOs could not be
differentiated into acute or chronic response, which hampers
elucidation of association with cancer formation, since it can
only be triggered by chronic inflammation (Gonzalez et al.,
2018). Furthermore, we included the regulation of mTOR
signaling in both the proliferation and cell death categories
due to its essential role in these hallmarks (Tian et al., 2019).
Lastly, the hypoxia response characterized the metabolic cancer
hallmark and is triggered by the hypoxia-inducible factor (HIF),
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FIGURE 1 | Distribution of the logarithm of expression values from control samples (A) and tumor samples (B). The red line represents the geometric mean. The

numbers “0” and “+1” are the binarized states that each gene received according to each sample expression profile.

FIGURE 2 | Number of Gene Ontology (GO) codes found for each cancer-related hallmark/pathway (purple) and number of Differentially Expressed Genes (DEGs)

classified according to each GO (blue).

which is directly related to the establishment of the “Warburg
Effect.” This metabolic rewiring occurs when tumor cells activate
ATP generation via glycolysis (Simon, 2006; Liberti and Locasale,
2016). This process is essential for cancer cell survival under
hypoxic stress. HIF transcriptionally regulates hundreds of genes
that are also related to invasion, metastasis, genetic instability,
and immune response (Yan et al., 2019).

Among the pathways that we identified, the MAPK pathway
has been characterized as a key regulator of cancer development
and is associated with several cellular processes, such as
proliferation, growth, apoptosis, and migration. It involves other
essential kinases (ERK and JNK) and proteins (RAS, Raf, and
MEK), which can be reviewed in more detail in Dhillon et al.
(2007).

The WNT pathway is divided into two main types: canonical
and non-canonical (via JNK cascade) signaling pathways. Its
function was first described in the developmental processes
of Drosophila melanogaster and has been recently associated
with cancer cell proliferation, stemness, metastasis, and immune
evasion. This pathway can be reviewed in Zhan et al.
(2017).

Finally, the Rho GTPase pathway has been associated
with remodeling of the actin cytoskeleton, which is
related to cell division and phenotype transition. It
participates in cancer cell migration, proliferation, survival,
and death. Its role in all of these signaling pathways
can be reviewed in more detail in Haga and Ridley
(2016).
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TABLE 1 | Tumor and control basin of attraction sizes according to the Euclidean

distances of all samples and samples that converged to each attractor.

ED for all

samples

ED for samples that converged to

each attractor

Tumor 8.34 8.19

Control 7.92 8.17

3.2. Attractors Analysis
The Euclidean distances (EDs) were calculated considering all
data dimensions. The EDs between all tumor and control paired
samples revealed that the tumor basin of attraction was, indeed,
larger than that of the control, when considering all samples
that converged to the expected attractor. However, the size
difference between both basins of attraction, considering samples
that converged to each attractor, depended on the second decimal
value and may not be considered as meaningful (Table 1). The
difference among ED considering all samples and ED considering
samples that converged to each attractor can be explained by the
fact that five tumor samples converged to the control attractor,
and because of that, were included in the ED measurement of
the control basin of attraction. Interestingly, these samples were
classified by (i) molecular subtypes with good prognosis (LumA
or LumB); (ii) being in the initial stages of tumor development
(stages i and iib); and (iii) most of them (A0BM, A0C3, A1EU,
and A2FF) presenting the smallest entropies among patients
(Supplementary Table 2), which is associated with a low level of
aggressiveness (Breitkreutz et al., 2012; Conforte et al., 2019).

When comparing the clinical data with the EDs between the
control attractor and the tumor samples that converged toward
the tumor attractor, we found that the averages among the
groups of tumor stages, molecular subtypes, and entropies were
not significantly different when considering the non-parametric
Kruskal-Wallis test. The result is the same when considering the
ED between the tumor attractor and the tumor samples that
converged toward the tumor attractor. Nevertheless, the Pearson
correlation test, performed for the overall survival groups,
showed a significant negative correlation with the EDs between
the control attractor and the tumor samples that converged
toward the tumor attractor (r = −0.85). A p-value = 0.001 and
a slope = −0.07, with a 95% confidence interval between −0.11
and −0.03, which indicates that the regression line slope is
different than zero. As expected, smaller distances are related
to higher overall survival. No correlation was found among the
overall survival groups considering the ED between the tumor
attractor and the tumor samples that converged toward the tumor
attractor. The Kruskal-Wallis test and the Pearson correlation test
results are shown in Figure 3.

The same energy value was found for both tumor and control
attractors (−55,000), corresponding to the local minimum of
the energy function. The potential energy analysis revealed that
tumor samples are more associated with a lower energy level and
are closer to their attractor minimum energy than the control
samples (Table 2) (for more details, see Supplementary Table 5).
This result follows a common biological trend of tumors
presenting alternative pathways that ensure tumor stability

and promote tumor resistance to chemotherapy. The energy
landscape based on those samples is presented in Figure 4.

3.3. Attractor Transitions
Hypothesizing that the genes involved in tumor state stability
are essential for tumor maintenance, it may be reasonable to
argue that the disruption of their products (mRNA, protein)
might lead to tumors moving toward an attractor associated
with active cell death. Accordingly, we searched for the best key
gene combinations for each patient by considering their gene
expression profiles that, when switched off, would minimize side
effects and move tumor samples away from the tumor basin of
attraction. This exercise provides a measure of how many key
genes should be inhibited in each tumor sample to withdraw it
from the tumor basin of attraction.

Supplementary Table 6 presents the values attributed to
each gene when considering the four prioritization parameters:
density of each gene in the Hopfield network; number of GOs
related to cancer development associated with each gene; number
of patients with the gene under consideration active (1) only
in their tumor samples (biomarker); and node degree. Each
parameter was analyzed in ascending and descending order.

Figure 5 shows that the inhibition of two targets would
be sufficient to move ∼55 tumor samples (78.6%) away from
their basin of attraction. Moreover, the parameters regarding
the number of GOs and node degree were not effective
for identifying key genes with the potential to change gene
expression patterns in the Hopfield network since their ascending
and descending orders exhibit similar behavior. On the other
hand, the biomarker and density parameters showed different
behaviors when considering their ascending and descending
orders. The descending biomarker curve moved more tumor
samples away from their basin of attraction than its respective
ascending curve, while the opposite trend was observed for the
node density parameter. These curves are similar due to their
node selection strategy.

The descending biomarker curve prioritizes genes that are
active in several tumor samples and inactive in their respective
paired control samples. In other words, these genes present
different states between tumor and control samples for most
patients. Similarly, the ascending density curve prioritizes
nodes with negative connection weights in the weight matrix.
As revealed in the methodology section, interacting nodes
with different states present a negative connection weight.
Additionally, we impose the restriction that only nodes active in
tumor samples and inactive in control samples are suitable for
inhibition. For these reasons, the descending biomarker order
and the ascending density order of prioritization matched.

According to the biomarker classification, CNTFR-alpha
presented the highest value (70), which means that it was
active in all tumor samples analyzed and inactive in all normal
samples. CNTFR-alpha has been associated with proliferation
and poor prognosis and been proposed as a biomarker of
low-grade gliomas (Lu et al., 2012; Fan et al., 2017). SGK2
and PLP1 appeared in the second position of biomarker
classification, being active in the tumor samples of 69 patients and
inactive in their respective controls. SGK2 has been associated
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FIGURE 3 | Boxplot of Euclidean distances found between the control attractor and tumor samples, considering cancer stage (A), entropy (B), and molecular

subtype (C) clinical data classifications. The p-values found in Kruskal-Wallis test are indicated in each figure. (D) Pearson correlation between the overall survival

clinical data classification and the Euclidean distances found between the control attractor and tumor samples. The correlation coefficient (r) and the p-value found are

indicated in the figure.

with hepatocarcinoma progression and bladder cancer cell
proliferation, migration, and invasion (Liu et al., 2017; Chen
et al., 2018). PLP1, although active in most tumor samples
analyzed in this work, has been recently described as consistently
downregulated in several cancer types, including breast cancer
(Li et al., 2017). We did not find any lines of evidence in the
literature that enable its association with cancer development.
Nevertheless, it is described as a cancer gene in GeneCards, and
its antibody is an effective inhibitor of cell growth in breast cancer
(www.mybiosource.com—#7̃005540).

We also tested the number of targets necessary to bring

tumor samples toward the control attractor. Figure 6 shows that
the inhibition of 50 targets is necessary to bring 18–26 tumor

samples (25.7–37.2%) to the control attractor. As stated above,
the descending biomarker curve and ascending density curve
were the most promising gene selection parameters since they
enabled movement of the largest number of tumor samples
toward the control attractor, through the inhibition of few genes.
This result indicates that it is not feasible to bring a tumor sample
back to the normal phenotype.

3.4. Simulation of Trastuzumab Treatment
Effect
The two-dimensionality reduction methods, PCA and t-SNE,
were able to separate gene expression profiles from treated
and non-treated single-cell and bulk samples according to their
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similarities. The PCA analysis is plotted in Figure 7A. This figure
shows that the PCA was able to explain the variance among the
samples with two principal components (PCs), and separated
treated and non-treated samples into two clusters. The first PC
explained 22.03% of the total variance, while the second PC
explained 8.14% of it.

The t-SNE analysis (Figure 7B) also separated the samples
into two main clusters: trastuzumab treated and non-treated
samples. Moreover, it distinguished non-treated samples of each
HER2+ patient. These results indicated that the DEG selected
for this data set not only represents the trastuzumab treatment
but also, the differences between the gene expression profile from
HER2+ patients. In addition, these results are in agreement with
previously published results (Wang et al., 2019).

TABLE 2 | Average energy, average energy distance between samples and their

respective attractor energy minimum and attractor energy minimum for tumor and

control samples.

Average energy of

samples

Average energy

distance

between samples

and attractors

Minimum (attractor)

energy

Tumor −31,338 24,188 −55,000

Control −29,426 26,100 −55,000

The energy landscape built for HER2+ treated and non-
treated samples is shown in Figure 8A. It is interesting to note
that samples from both non-treated patients shared the same
basin of attraction, even though we performed the Hopfield
training phase considering three attractors, one for each patient.
Besides, the trastuzumab treated samples composed a different
basin of attraction with a minimum energy higher than the one
found in the non-treated basin of attraction. This result indicated
that non-treated samples have a higher tumor phenotype stability
than treated samples, and agrees with the fact that trastuzumab
treatment is, indeed, an adjuvant therapy approach rather than a
healing one.

We can also observe in Figure 8 that the bulk RNA-Seq
samples (squares) may be away from their respective single-cells
(spheres). This may occur because bulk RNA-Seq is a weighted
average of all single-cells in the tumor tissue, and because of that,
influenced by single-cell relative amounts. Besides, the bulk RNA-
Seq may comprise single-cell phenotypes that were not obtained
during sequencing.

Paired samples from the same patient, before and after
trastuzumab treatment, were not available. We used samples
from three different patients, two non-treated with trastuzumab
(patients 1 and 2) and one treated (patient 3). Since samples
from patient 1 and 2 belonged to the same region of the
epigenetic landscape (see Figure 8), we hypothesized that their
corresponding treated samples would also be in the same basin
of attraction composed of samples from patient 3.

FIGURE 4 | Energy landscape built for control and tumor attractors, and samples, plotted on a three-dimensional (A) and a two-dimensional grid (B).
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FIGURE 5 | Number of tumor samples that moved away from the tumor basin of attraction, according to the number of genes inhibited for each parameter: density

(A), gene ontology (B), biomarker (C), and node degree (D). “Asc” represents the ascending order, while “Des” represents the descending order.

In this context, we tested the effects of trastuzumab treatment
in the non-treated bulk RNA-Seq from patient 1. To do this, we
built an energy landscape based on non-treated patient 1 samples
and the treated patient samples. We identified 172 differentially
expressed genes between the non-treated and treated bulk RNA-
Seq samples. All DEGs were perturbed according to the treated
gene expression profile. Those changes created new transitory
states that, when connected, formed the trajectory between both
basins of attractions (Figure 8B).

The target profile was reached after the perturbation of all 172
DEGs, and each triangle in Figure 8B represents the perturbation
of a subset with ∼30 DEGs. The trajectory found was mapped
in the energy landscape defined by the Hopfield network, and
is one among many other possibilities. This trajectory was
not optimized because we did not consider the associated
signaling pathways, which would reduce the number of DEGs to
be perturbed.

This experiment was not performed for the non-treated
samples from patient 2 because it did not have enough samples
to build its basin of attraction.

Changing 172 genes expression values is not feasible in the
medical context, if we consider each intervention individually.
However, key genes may initiate a cascade response that
involves many others. For this reason, we characterized the
DEGs concerning their respective biological processes in the
Panther Classification System. Among the 172 DEGs, 92
were characterized by the Panther Classification System with
at least one biological process (Supplementary Table 7). We
reduced this analysis considering the biological processes
involved in the trastuzumab treatment response. Among them,
we can highlight cell proliferation, transcription, apoptosis,
motility, and immune response (Herbst, 2004; Shi et al., 2014).
Through a literature search, we saw that the genes involved
in those biological processes have their role, in trastuzumab
treatment, characterized.

The STAT1 gene is involved in proliferation and transcription
biological processes. This gene plays an important role in HER2
inhibition and is activated after the trastuzumab treatment,
through interferon-gamma production by the mobilized natural
killer cells (Shi et al., 2014). This interferon-gamma production
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FIGURE 6 | Number of tumor samples that converged toward the control attractor, according to the number of genes inhibited for each parameter: gene ontology

(GO), biomarker, and node degree (ND). “Asc” represents the ascending order, while “Des” represents the descending order. The biomarker ascending curve matches

the density descending curve, and the biomarker descending curve matches the density ascending curve.

also activates the HLA-A antigen, involved in the immune
response (Chaganty et al., 2015). The MEL-18 gene (or PCGF2)
was classified in the transcription biological process. This gene
is described as essential for trastuzumab treatment since its
inhibition may result in a trastuzumab-resistant phenotype (Lee
et al., 2019).

In this context, CCR7, PIP, and GBP1 genes were classified
in the immune response biological process. CCR7 determines
a cancer stem cell phenotype through the Notch signaling
pathway, and PIP belongs to the PI3K signaling pathway.
Both signaling pathways are related to trastuzumab treatment
resistance (Pohlmann et al., 2009; Baker et al., 2014; Boyle
et al., 2017). Besides, GBP1 and IFI27 were associated with the
apoptotic biological process, and were related to breast cancer
phenotype resistant to trastuzumab treatment (von der Heyde
et al., 2015).

New therapeutic targets have been explored to overcome
trastuzumab resistance. The ITGB6 gene, associated withmotility
biological process, has been proposed as a therapeutic target
through inhibition by 264RAD antibody. Its combination with
trastuzumab treatment was able to stop tumor growth even in
trastuzumab-resistant cells (Moore et al., 2014).

The results obtained in this section propose a further
validation of our personalized approach.

4. DISCUSSION

The Hopfield network was efficient in revealing cancer attractors
related to molecular subtypes and developmental stages in
previous works (Maetschke and Ragan, 2014; Taherian Fard
and Ragan, 2017). In this report, we considered the gene
expression profile of paired tumor and control samples from

breast cancer patients to analyze both normal and tumor
attractors, infer the best target combinations able to withdraw
the tumor sample from its basin of attraction and simulate
the trastuzumab treatment effect in non-treated bulk RNA-
Seq sample.

Among our data, only five tumor samples converged to the
control attractor. These samples presented molecular subtypes
with a good prognosis, were in initial stages of cancer
development, and had low entropy values. The Shannon entropy
has been widely explored as a cancer development measure and
aggressiveness indicator. Higher entropy values are associated
with aggressive tumor phenotypes. This correlation was found
when comparing cancer and control cells, advanced and initial
stages of tumor development, aggressive cancer types and good
prognosis cancer types (Breitkreutz et al., 2012;Winterbach et al.,
2013; Banerji et al., 2015; Conforte et al., 2019).

The energy values of tumor samples were closer to the tumor
attractor minimum compared to control samples. Although this
result differs from the one published by Taherian Fard and Ragan
(2017), this behavior is expected because tumor samples have
alternative pathways that ensure their phenotypic stability (Fumi
and Martins, 2013; Taherian Fard and Ragan, 2017).

Also, the correlation between the Euclidean distances from
tumor samples to the control attractor and the patient’s overall
survival indicates that there is a higher chance of treatment

success when the gene expression profile is not yet fully

reprogrammed for cancer development. However, those results
did not hold considering the Euclidean distance from tumor

samples to the tumor attractor. This analysis also revealed that
the tumor basin of attraction is larger than that of the control
and should comprise more heterogeneous data, as indicated by
Taherian Fard and Ragan (2017).
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FIGURE 7 | Single-cell and bulk RNA-Seq data analysis by Principal Component Analysis (PCA) (A) and t-distributed stochastic neighbor embedding (t-SNE) (B).

Spheres represent single-cell samples and squares represent their respective bulk RNA-Seq samples.

The analysis of single-cell data allowed us to see the tumor
basin of attraction in more detail and, along with the results
discussed above, indicates that there may be multiple basins
of attraction related to cancer development, rather than one
large basin of attraction that comprises all cancer samples.
Cancer basins of attraction could be composed of similar
gene expression profiles. For instance, samples from the same
molecular subtype.

In this context, our results showed that non-treated patient
2 did not have enough samples to build its own basin
of attraction, but its samples were distributed in the basin

of attraction built for the non-treated patient 1. Both were
characterized as HER2+ breast cancer molecular subtype.
Moreover, the trastuzumab-treated samples composed a new
basin of attraction with higher minimum energy than the non-
treated one. This result agrees with the trastuzumab adjuvant role
in cancer therapy.

The protocol developed for the identification of potential
therapeutic targets matches the concept of personalized
medicine. Specific target combinations were derived from the
gene expression profile of each patient, with the potential to
mitigate side effects and enhance the treatment outcome.
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FIGURE 8 | (A) Energy landscape for HER2+ breast cancer samples plotted on a three-dimensional grid and a two-dimensional grid. (B) Energy landscape plotted on

a three-dimensional grid and a two-dimensional grid, with the trajectory between the non-treated bulk RNA-Seq sample from patient 1 (control 1) and the treated bulk

RNA-Seq sample (treated). Each triangle represents the perturbation of a subset with ∼30 DEGs. Spheres represent single-cell samples and squares represent their

respective bulk RNA-Seq sample.
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Among the parameters tested to indicate gene priority, the
node degree has been indicated as a key factor (Carels et al.,
2015; Tilli et al., 2016; Conforte et al., 2019). Other topological
measures of gene regulatory networks (GRNs) have also been
widely used in the identification of new therapeutic targets
(Peng and Schork, 2014; Azevedo and Moreira-Filho, 2015).
However, they could not be inferred in this work because
the Hopfield network approach does not consider protein-
protein interactions.

The best parameters, according to our results, were genes
with high number of patients that present the node active
only in tumor samples and low-density values. Both had the
largest potential for tumor sample destabilization with fewer
gene inhibitions. The difference between their effect and the
effect of its opposite priority order was small. This small effect
difference was also observed for other parameters. This may
occur because the Hopfield network can be viewed as a highly
connected network, which hampers the characterization of each
node’s impact on the network. Yet, the observations in both cases
are biologically coherent.

The Hopfield network is highly connected, but each
interaction has its own weight. Consequently, the Hopfield
network is heterogeneous, and the weighted interactions
allows the differentiation between important and non-important
connections. The biological coherence is related to higher effects
expected after inhibition of nodes that are active in most tumor
samples and inactive in their respective control samples. This
indicates that those genes have an essential role in tumor
development. For instance, PLP1 was active in most tumor
samples and inhibited in the respective control samples. Its
antibody is an effective inhibitor of cell growth in breast cancer.

The identification of therapeutic targets was further validated
through simulation of the trastuzumab treatment effect in the
non-treated bulk RNA-Seq data from patient 1. We determined
the trajectory from non-treated to treated basins of attraction for
patient 1 and identified key genes involved in the trastuzumab
treatment response.

The trastuzumab adjuvant treatment is indicated for HER2+
breast cancer patients, but there are cases of trastuzumab
treatment resistance (Han et al., 2019). In this context, the
energy landscape obtained for HER2+ samples could determine
the state space of gene expression profiles that could be
indicated for effective trastuzumab treatment. Also, the trajectory
between the treated and the non-treated basins of attraction
may indicate new potential therapeutic targets. These could
be used in combination with trastuzumab, such as the ITGB6
specific antibody 264RAD, to increase the state space of gene
expression profiles with available treatment. This approach
could be explored in the context of personalized medicine in
future studies.

The Hopfield network succeeded in modeling the basins of
attraction for both bulk and single-cell RNA-Seq. This method
is entirely based on the gene expression data and considers
the differentially expressed genes among our samples, which is
essential due to tumor heterogeneity. As an advantage, it does
not require a fully-featured network or literature search about
protein-protein interactions.

Other modeling methods have also been proposed in order
to identify appropriate therapeutic approaches against cancer.
For instance, Su et al. (2017) and Yuan et al. (2017b,c)
applied the Endogenous Network Theory (ENT) with a coarse-
grained modeling, using the non-linear Hill function. They
found attractors that matched gene expression profiles of cell
phenotypes related to colorectal, prostate, hepatocellular, and
gastric cancer (Su et al., 2017; Yuan et al., 2017b,c). In this
context, Yuan et al. (2017b) proposed that colorectal cancer
could be treated, and reach a normal intestine phenotype,
through suppression or promotion of the inflammation program,
suppression of retinoic acid signaling, and suppression of anti-
inflammation process, according to the cancer cell phenotype.
Moreover, the ENT indicates that cancer can be classified as
preventable, curable or incurable according to its respective
functional landscape.

As proposed by ENT, our results indicated the existence of
different functional landscapes for tumor samples. However, the
ENT considers the transition from cancer to the normal state
as feasible. In this research, we observed that more than 20
gene inhibitions are required to move a tumor sample from the
tumor toward the control basin of attraction. This result indicates
that recovering a tumor sample back to the control state is not
feasible, which may be explained by accumulation of genetic
mutations, alteration in genes copy-number, and other processes
that may not be regulated by drug administration (Van Bockstal
et al., 2020). Rather, we identified the key genes responsible for
attractor stability. By extension, one could argue that key genes
are essential to tumor biology and that their inhibition would lead
to cell death (Tilli et al., 2016).

Biological networks are typically asymmetrical, and several
modeling paradigms consider this asymmetry explicitly.
For instance, Kwon et al. proposed a stochastic dynamic
decomposition method to analyze the dynamics near stable
or unstable states. This modeling approach can generate the
landscape and the associated energy function, considering
the inherent asymmetry of biological networks (Kwon et al.,
2005; Yuan et al., 2017a). However, this approach is based
on stochastic differential equations, and requires parameters
related to each interaction. Those parameters are normally
defined by extensive literature search or wet-lab experiments.
Furthermore, Li and Wang showed that the potential landscape
based on differential equations is susceptible to parameter
changes. Nevertheless, stochastic differential equations may
offer several advantages, such as a global landscape, reduced
sampling space of paths between two states, and relative stability
between stable states in the presence of the system’s noise
(Tang et al., 2017). Besides, Yuan et al. (2017c) presented a
non-linear and coupled SDE system that models stable states
with relatively large basins of attraction, and showed that this
model is insensitive to interaction details at the core network
level, by performing random parameter tests. Furthermore,
Toulouse et al. (2005) suggested that the attractor robustness to
small amounts of noise on SDE models is related to the presence
of network motifs.

Asymmetric Hopfield networks do not have a general method
to obtain the energy function. Previously published works used
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symmetric Hopfield network with a non-parametric training
approach (Maetschke and Ragan, 2014; Taherian Fard and Ragan,
2017). These authors discussed that the resulting landscape is a
gross approximation of the biological reality. We improved this
aspect in our work using a parametric training approach, which
receives more biological information and limits the number
of possible basins of attraction. Consequently, our approach
better characterizes the landscape and approximates it to the
biological reality. The energy landscape obtained is data-driven
and may represent the biological reality without the noise of
estimated parameters.

Our approach combined Hopfield networks with the
application of personalized medicine, by considering a large
subset of data from real patients effectively involved in
oncogenesis. Hopfield network modeling was successful in (i)
identifying and characterizing both tumor and normal attractors;
(ii) associating tumor sample locations, in the epigenetic
landscape, with clinical data; (iii) identifying target combinations
whose inhibition would be more efficient in moving tumor
samples away from their basin of attraction; (iv) simulating the
effects of trastuzumab treatment in non-treated bulk RNA-Seq
data; and (v) inferring the trajectory between trastuzumab
treated and non-treated basins of attraction.

5. CONCLUSION

We used Hopfield network modeling to analyze cancer and
control attractors based on real patient data and associated their
locations, in the epigenetic landscape, with clinical data. Our
results indicate that the larger the Euclidean distance between
the tumor sample and the control attractor, the lower the patient
overall survival is. Besides, tumor samples’ energies imply a stable
phenotype that requires a combination of changes, specific to
tumor sample, to move them away from its basin of attraction.
We developed and applied a protocol to identify the key genes
in tumor phenotype stability. Since these key genes are essential
for sustaining tumor biology, we suggest that their combined
inhibition would be helpful in patient treatment. This protocol
followed the personalized medicine concept in its three main
aspects: considering each tumor as unique, mitigating harmful
side effects, and enhancing the treatment outcome. We further
validated our approach by simulating the trastuzumab effect in
non-treated RNA-seq data and identifying the trajectory from
the non-treated to the treated basin of attraction. The key genes
involved in the state transition were characterized according
to their biological processes and participation in trastuzumab-
related pathways.
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