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Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases 

reported to date. ZIKV was first detected in Brazil in May 2015 and cases of microcephaly 

potentially associated with ZIKV infection were identified in November 2015. Using next 

generation sequencing we generated seven Brazilian ZIKV genomes, sampled from four 

selflimited cases, one blood donor, one fatal adult case, and one newborn with microcephaly 

and congenital malformations. Phylogenetic and molecular clock analyses show a single 

introduction of ZIKV into the Americas, estimated to have occurred between May-Dec 

2013, more than 12 months prior to the detection of ZIKV in Brazil. The estimated date of 

origin coincides with an increase in air passengers to Brazil from ZIKV endemic areas, and 

with reported outbreaks in Pacific Islands. ZIKV genomes from Brazil are phylogenetically 

interspersed with those from other South American and Caribbean countries. Mapping 

mutations onto existing structural models revealed the context of viral amino acid changes 

present in the outbreak lineage; however no shared amino acid changes were found among 

the three currently available virus genomes from microcephaly cases. Municipality-level 

incidence data indicate that reports of suspected microcephaly in Brazil best correlate with 

ZIKV incidence around week 17 of pregnancy, although this correlation does not 

demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil 

provide a baseline for future studies of the evolution and molecular epidemiology in the 

Americas of this emerging virus.

Zika virus (ZIKV) is a single stranded, positive-sense RNA virus with a 10.7 kb genome 

encoding a single polyprotein that is cleaved into three structural proteins (C, prM/M, E) and 

seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (1). ZIKV 

is a member of the family Flaviviridae, genus Flavivirus, and is transmitted among humans 

by Aedes mosquito species such as A. aegypti, A. albopictus, and A. africanus. The virus 

was first isolated in 1947 from a sentinel rhesus monkey in the Zika forest in Uganda (2) and 

is classified by sequence analysis into two genotypes, African and Asian (3). In humans, 

ZIKV infection typically causes a mild and self-limiting illness known as Zika fever (4) 

accompanied by maculopapular rash, headache, conjunctivitis and myalgia. In April 2007, a 

large epidemic of Asian genotype ZIKV was reported in Yap Island and Guam, Micronesia 

(5, 6). Between 2013–2014 the Asian genotype caused epidemics reported in several Pacific 

Islands, including French Polynesia (7), New Caledonia (8), Cook Islands (9), Tahiti (10), 

and Easter Island (11).
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By May 2015, ZIKV was reported in Brazil (12) and subsequently in several countries of 

South and Central America, and the Caribbean. In Brazil nearly 30,000 cases of ZIKV 

infection had been notified by 30th Jan 2016 (supplementary materials section 1.4). 

Reported cases in Brazil indicate an epidemic peak in mid-July 2015 (Fig. 1A) and most 

Brazilian ZIKV cases (93%) were reported in Bahia state (Fig. 1B). ZIKV surveillance in 

Brazil began after the first reported Brazilian case and is conducted through the national 

Notifiable Diseases Information System (SINAN), which currently relies on passive case 

detection and reporting and therefore underestimates incidence (13). ZIKV is now 

widespread in Brazil, with autochthonous transmission and high incidence notified in 22 out 

of 27 administrative states (14). ZIKV infection during pregnancy has been hypothesized to 

cause microcephaly and congenital abnormalities (15–20). The detection of ZIKV in fetal 

brain tissue (17, 20) and amniotic fluid (21) supports the hypothesis that the virus is 

transmitted from mother-to-child (22) and the virus infects neural progenitor cells in vitro 

(23). In Brazil, between Nov 2015 and 30th Jan 2016, 4783 suspected cases of microcephaly 

were reported electronically to the RESP database (www.resp.saude.gov.br; Ministry of 

Health, Brazil; see supplementary materials section 1.4) (Fig. 1C), although most suspected 

cases are still under investigation and a substantial proportion may represent misdiagnosis 

and over-reporting (24). Using the WHO guidelines for microcephaly diagnosis provided on 

the 4th March 2016 (25), we identified a total of 1118 suspected microcephaly cases suitable 

for analysis. The relationship between total per capita ZIKV incidence (Fig. 1B) and per 

capita suspected microcephaly cases (Fig. 1C) in each state is weak and only significant 

under non-parametric correlation (p < 0.01) (fig. S1A); noise and uncertainty probably affect 

both variables. However, the relation is strengthened if suspected microcephaly cases are 

measured per pregnancy (fig. S1B). For municipalities with reported ZIKV incidence and 

cases of suspected microcephaly, we used a simple linear model to link microcephaly cases 

as a function of past ZIKV incidence (supplementary materials section 1.5). Suspected 

microcephaly cases are best predicted by ZIKV incidence during week 17 of pregnancy on 

average (95% confidence interval of mean = +/−0.11 weeks), or week 14 for suspected 

severe microcephaly cases (+/−0.08 weeks), in general agreement with individual reports of 

the timing of ZIKV symptoms in mothers of infants with microcephaly (16, 19, 21). We 

stress that these results quantify only the correlation between ZIKV and suspected 

microcephaly and does not demonstrate a causal link. Work is ongoing to establish whether 

or not ZIKV is a causal factor in microcephaly and other conditions (15–17, 23, 26).

We used phylogenetic, epidemiological, and mobility data to quantify ZIKV evolution and 

explore the introduction of the virus to the Americas. As part of ongoing surveillance by the 

Brazilian Ministry of Health, national laboratories, and other institutions, we used next 

generation sequencing to generate seven complete ZIKV coding region sequences from 

samples collected during the outbreak, including one from a deceased newborn with 

microcephaly and congenital malformations collected in Ceará and one from a fatal adult 

case with lupus and rheumatoid disease from Maranhão State (Fig. 1B). None of the 

Brazilian patients reported overseas travel (information unavailable in one case) and one 

subject was a blood donor (supplementary materials section 2). A comparison of our 

genomes with other available Brazilian strains reveals that Brazilian ZIKV isolates differ at 

multiple nucleotide sites across the 10.3kb coding region. The ZIKV genome recovered 
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from isolate ZIKSP, from São Paulo, had 32 nucleotide changes compared to the 

microcephaly case (BeH823339) and 34 to the fatal case from Maranhão (BeH818305). 

Isolates BeH819966 from Belém, BeH815744 from Paraíba, and BeH18995, from Belém 

had a maximum of 5 nucleotide changes.

Maximum likelihood analysis of complete coding regions from our and other ZIKV genome 

sequences reveals that all viruses sampled in the Americas, including those from Brazil, 

form a robust monophyletic cluster (bootstrap score = 94%) within the Asian genotype (Fig. 

2 and fig. S2) and share a common ancestor with the ZIKV strain that circulated in French 

Polynesia in November 2013 (Fig. 3). Previous analyses of outbreaks of related flaviviruses 

[e.g., (27, 28)] suggest that, to be informative, molecular epidemiological studies of the 

current ZIKV epidemic should use full or near-complete coding region sequences.

We used a phylogenetic molecular clock approach to further explore the molecular 

epidemiology of ZIKV in the Americas. A strong correlation between genetic divergence 

and sampling time within the outbreak lineage (Fig. 2, inset) shows this approach is 

appropriate provided that whole genomes are used. The estimated time-scaled phylogeny 

(Fig. 3A) again contains a well-supported clade of American ZIKV strains (denoted B; 

posterior probability, PP = 1.00) that share a common ancestor (denoted A) with the French 

Polynesia lineage (PP = 0.92). Within the American ZIKV lineage (clade B), Brazilian 

isolates are interspersed among isolates from elsewhere in the Americas. The mingling of 

ZIKV genomes from different countries reveals ZIKV movement within the Americas since 

its introduction to the continent. Two observations suggest that the common ancestor of the 

American ZIKV lineage existed in Brazil. First, Brazil was the first country in the Americas 

to detect ZIKV (29) and second, Brazilian strains are phylogenetically more diverse within 

clade B than those from elsewhere. However, these observations may reflect differences in 

surveillance intensity among countries and more data are required before we can exclude the 

scenario that ZIKV was introduced to Brazil multiple times from other locations. Although 

two of three ZIKV-associated microcephaly isolates group together in the phylogeny, there is 

no reason to posit that this lineage is associated with increased disease severity.

Estimated rates of ZIKV molecular evolution are consistent among different evolutionary 

models and vary from 0.98 × 10−3 to 1.06 × 10−3 nucleotide substitutions per site per year 

(table S3). Although this rate is high compared to whole genome rates for other flaviviruses 

[e.g., (28)], it is consistent with retrospective analyses of previous epidemics, which show 

that evolutionary rate estimates decline as the epidemic progresses (30, 31). Hence, this 

result should not be interpreted as implying that ZIKV in the Americas is unusually mutable. 

We estimate that the date of the most recent common ancestor (TMRCA) of all Brazilian 

genomes (clade B) is Aug 2013 to Apr 2014 (95% Bayesian credible intervals, BCIs; point 

estimate = mid Dec 2013; Fig. 3B). The common ancestor of the French Polynesian and 

America lineages (clade A) was dated to Dec 2012 to Sep 2013 (BCIs; point estimate = late 

May 2013; Fig. 3B). The posterior distribution for the age of clade B encompasses the 

recorded duration of the ZIKV outbreak in 3 of 5 island groups of French Polynesia (4) (Fig. 

3C). Divergence date estimates are robust among different combinations of prior 

distributions, molecular clock models, and coalescent models (supplementary materials 
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sections 4 and 5), and are more likely to shift into the past than toward the present as virus 

genomes accumulate through time (30).

To explore possible routes of entry of ZIKV in Brazil, we collated airline flight data from all 

countries with reported ZIKV outbreaks between 2012 and end of 2014. From late 2012 we 

find an increase in the number of travellers arriving in Brazil from these countries, rising 

from 3775 passengers per month in early 2013 to 5754 passengers per month a year later 

(Fig. 3C). This increase in visitors to Brazil from ZIKV-affected countries coincides with the 

period during which ZIKV is estimated to have entered the Americas (i.e., between the 

TMRCAs of clades A and B) (Fig. 3B and supplementary materials section 5). If the ZIKV 

epidemic in Brazil did indeed arise from a single introduction then the virus must have 

circulated in the country for at least 12 months prior to the first case being reported in May 

2015. ZIKV clinical symptoms may be confused with those caused by dengue and 

chikungunya viruses, two endemic and epidemic viruses that co-circulate and share 

mosquito vectors with ZIKV in Brazil (27, 32, 33). Reliable differential diagnosis is possible 

only by using improved surveillance and laboratory diagnostics, which are now being 

implemented throughout the country.

There are two published hypotheses for how ZIKV came to be introduced into Brazil, during 

(i) the 2014 World Cup soccer tournament (Jun 12th - Jul 13th) (29) or (ii) the Va’a canoe 

event held in Rio de Janeiro between 12-17 Aug 2014 (34). Alternatively, introduction could 

have occurred during (iii) the 2013 Confederations Cup soccer tournament (15th–30th Jun 

2013). Events (ii) and (iii) notably included competitors from French Polynesia. Our results 

suggest that the introduction of ZIKV to the Americas predated events (i) and (ii). Although 

the molecular clock dates are more consistent with the Confederations cup, that event ended 

before ZIKV cases were first reported in French Polynesia (4). Consequently, we believe 

that large-scale patterns in human mobility will provide more useful and testable hypotheses 

about viral introduction and emergence (33, 35, 36) than ad hoc hypotheses focused on 

specific events.

The ZIKV genome we obtained from a microcephaly case in Ceará Brazil contains eight 

amino acid changes not observed in any other complete genome in our dataset. However, 

none of these mutations are shared with either of two recently published genomes from 

microcephaly cases (16, 21). Thus, if a causal link between Asian lineage ZIKV and 

microcephaly is confirmed, it is possible that putative viral genetic determinants of disease 

will be found among the amino acid changes that occur on the ZIKV phylogeny branches 

ancestral to the French Polynesian and American ZIKV lineages (i.e., the two lineages 

associated with reports of microcephaly, Guillain-Barré syndrome and congenital 

abnormalities) (37). Phylogenetic character mapping using parsimony reveals 11 amino acid 

changes on the four internal branches (labeled with asterisks in Fig. 2; fig. S3) leading to 

these two lineages. We identified the structures of homologous proteins most closely related 

to ZIKV proteins (supplementary materials section 7) and used them to map 7 of the 11 

amino acid changes in a structural context, to five proteins: the pr-peptide region of prM 

[changes Val123→Ala123 (V123A) and S139N (S, Ser; N, Asn)], NS1 (A982V), the RNA 

helicase [NS3; N1902H and Y2086H (H, His; Y, Tyr)], the FtsJ-like methyl transferase 

domain [NS5; M2634V (M, Met)], and the thumb domain of RNA-directed RNA 
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polymerase (NS5; M3392V) (fig. S7). None of these mutations are predicted to substantially 

affect the physicochemical properties of the protein environment, except possibly Y2086H 

(in the helicase; Fig. S8), which may increase the hydrophilicity of the region. The 

remaining four amino acid changes could not be accurately mapped due to the absence of 

suitable related X-ray structures (supplementary materials section 7). Notably, none of the 

observed changes map to the E glycoprotein ectodomain, the primary target of humoral 

immune responses against flaviviruses (38, 39). Factors other than viral genetic differences 

may be important for the proposed pathogenesis of ZIKV; hypothesized factors include co-

infection with chikungunya virus (40), previous infection with dengue virus (41), or 

differences in human genetic predisposition to disease.

Besides vector-borne and mother-to-child transmission, Zika virus may also spread via 

sexual contact (42, 43) and blood transfusion (44). The evidence of ZIKV in blood donors 

raises the possibility of ZIKV transmission through transfusion and indicates that it may be 

prudent to consider the screening of blood donors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Time series and cartography of reported Zika virus and microcephaly cases in Brazil.
(A) Number of suspected cases of ZIKV per week in 5596 municipalities in Brazil. The 

epidemic peaked from 12 to 18 July 2015 (n = 2791 cases). Letters indicate months. (B) 

Total incidence of ZIKV cases per 100,000 people in each federal state. Triangles indicate 

sampling locations of the sequences reported here; circles indicate locations of other 

genomes from Brazil [municipality of Natal in Rio Grande do Norte state (16) and an 

unknown municipality in Paraiba state (21)]. Red symbols indicate ZIKV genomes isolated 

from microcephaly cases. Federal states are indicated by 2-letter codes: PA: Para, MA: 

Maranhão, CE: Ceará, RN: Rio Grande do Norte, PB: Paraíba. Per capita incidences in each 

state were calculated using high-resolution gridded human population size datasets for 

Brazil (45). (C) Incidence of suspected microcephaly cases per 100,000 people in each 

federal state. Per capita incidences for each state were calculated as described for panel (B).
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Fig. 2. Maximum likelihood phylogeny of ZIKV complete coding region sequences.
Bootstrap scores are shown next to well-supported nodes and the phylogeny was mid-point 

rooted. A fully annotated tree is provided in Fig. S2. The American ZIKV outbreak clade is 

drawn as a narrow white triangle and is shown in detail in Fig. 3. Asterisks highlight the four 

internal branches that are ancestral to the American ZIKV lineage (see main text and Fig. 

S3). Correlation between the sampling date of each sequence and the genetic distance of that 

sequence from the root of a maximum likelihood phylogeny of the Asian genotype 

(correlation coefficient R2 = 0.997). A molecular clock phylogeny of this data is shown in 
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Fig. 3. The Malaysian strain (HQ234499) sampled in 1966 is the oldest representative of the 

Asian genotype and falls on the regression line, indicating that it does not appear to be 

unusually divergent for its age. A similar analysis with the HQ234499 strain excluded is 

shown in fig. S5C.
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Fig. 3. Timescale of the introduction of ZIKV to the Americas.
(A) Molecular clock phylogeny of the ZIKV outbreak lineage estimated from complete 

coding region sequences, plus 6 sequences (KJ634273, KU312315, KU312314, KU212313, 

KU646828, and KU646827) longer than 1500nt (available data as of 7th March 2016). For 

visual clarity, three basal sequences, HQ23499 (Malaysia, 1966), EU545988 (Micronesia, 

2007) and JN860885 (Cambodia, 2010) are not displayed here (see Fig. S3). Gray horizontal 

bars represent 95% Bayesian credible intervals for divergence dates. A and B denote clades 

discussed in main text and numbers next to them denote posterior probabilities. Diamond 
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sizes represent, at each node, the posterior probability support of that node. Taxa are labeled 

with accession number, sampling location, and sampling date. Names of sequences 

generated in this study are underlined. (B) Posterior distributions of the estimated ages 

(TMRCAs) of clades A and B, estimated in BEAST software using the best-fitting 

evolutionary model (table S2). The time and duration of the three events (i-iii) discussed in 

the main text are shown. (C) Number of airline passengers from specific countries arriving 

in Brazil per month versus number of suspected cases of ZIKV in French Polynesia. The 

blue curve (left y axis) shows a polynomial fitting of the number of travelers (blue points) 

from countries with recorded ZIKV outbreaks between 2012 and 2015 (French Polynesia, 

Thailand, Indonesia, Malaysia, Cambodia, and New Caledonia) (supplementary materials 

section 6), aggregated across 20 Brazilian national airports. The purple bars represent 

weekly numbers of suspected ZIKV cases (right y axis) in French Polynesia (FP) from 30 

October 2013 to 14 February 2014 (4).
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