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Abstract
Chronic infection by the obligate intracellular pathogen Mycobacterium

 may lead to the development of leprosy. Of note, in the lepromatousleprae
clinical form of the disease, failure of the immune system to constrain
infection allows the pathogen to reproduce to very high numbers with
minimal clinical signs, favoring transmission. The bacillus can modulate
cellular metabolism to support its survival, and these changes directly
influence immune responses, leading to host tolerance, permanent
disease, and dissemination. Among the metabolic changes, upregulation of
cholesterol, phospholipids, and fatty acid biosynthesis is particularly
important, as it leads to lipid accumulation in the host cells (macrophages
and Schwann cells) in the form of lipid droplets, which are sites of
polyunsaturated fatty acid–derived lipid mediator biosynthesis that
modulate the inflammatory and immune responses. In Schwann cells,
energy metabolism is also subverted to support a lipogenic environment.
Furthermore, effects on tryptophan and iron metabolisms favor pathogen
survival with moderate tissue damage. This review discusses the
implications of metabolic changes on the course of   infection andM. leprae
host immune response and emphasizes the induction of regulatory T cells,
which may play a pivotal role in immune modulation in leprosy.
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Introduction
In recent years, the literature has provided extensive evi-
dence indicating the crosstalk between cellular metabolism and 
inflammatory/immune responses and how they may influence 
each other1–3. In parallel, the concept of disease tolerance that 
decreases immunopathology caused by pathogens or the immune 
responses against them has been proposed4. The major point  
discussed in this article is how Mycobacterium leprae host cell 
metabolism subversion contributes to bacterial persistence and 
disease tolerance in leprosy, pointing to regulatory T (Treg) 
cells as potential key players in this scenario. Leprosy consti-
tutes an excellent model for understanding the mechanisms 
of the immune system regulation that can be applied to other  
chronic inflammatory diseases in humans.

Leprosy is a chronic infectious disease that affects the skin and 
peripheral nervous system and is caused by the intracellular 
pathogen M. leprae. Peripheral nerve injury is the most severe 
symptom affecting patients with leprosy. Nerve impairment 
may become irreversible when the diagnosis is late, resulting 
in permanent disability and physical deformities, which are hall-
marks of the disease. Although leprosy is a treatable disease, 
it is still endemic in some countries, such as India and Brazil5.  
Three decades ago, with the implementation of multidrug ther-
apy (MDT) by the World Health Organization, patients were 
allowed to receive treatment free of charge and the caseload has 
dropped dramatically from 10 to 12 million in the mid-1980s6 
to the current 200,000 cases per year. However, the detection 
rate of new cases has remained constant, indicating little impact  
on leprosy transmission5.

Compared with other bacterial pathogens, M. leprae displays 
a very low genetic variability7, allowing researchers to trace 
the dissemination of the disease by the great human migratory 
movements around the world8. A recent phylogenetic study indi-
cated that the most ancient strains infecting humans are typical 
of East Asia9. M. lepromatosis, a bacterium that shares about  
87% genome homology with M. leprae10, was recently identi-
fied as the causative agent of a diffuse clinical form of leprosy 
known as “pretty leprosy”11. M. leprae was initially thought to 
be restricted to humans, but armadillos in the US12, red squir-
rels in the UK13, and non-human primates in Africa14 have been  
identified as natural reservoirs of this bacillus.

The spectrum of clinical forms of leprosy includes at one extrem-
ity the polar tuberculoid leprosy, which features low bacillary 
load, positive lepromin skin test, in vitro lymphoproliferative 
response to M. leprae antigens, and interferon gamma (IFN-γ) 
production in response to the bacillus. There are also intermedi-
ate forms of the disease, and at the other extreme of the spectrum 
is the polar lepromatous form, which features high bacillary 
load, negative skin response to lepromin, and low to undetectable 
T-cell proliferation and IFN-γ levels when blood mononu-
clear cells of these patients are cultured in the presence of  
M. leprae antigens15,16. Patients with lepromatous leprosy are 
considered the main source of M. leprae transmission, and  
their early diagnosis and treatment are mandatory in leprosy 
control programs. Despite the high bacterial burden, patients 

with lepromatous leprosy display moderate pathology and are  
a relevant model to study disease tolerance in humans.

The absence of an experimental model and the impossibility 
of the pathogen to grow in vitro have delayed the understand-
ing of leprosy pathogenesis. The studies are limited to in vitro 
assays exploring early stages of host–pathogen interaction and 
analysis of patients’ clinical specimens, such as skin, nerve, and 
blood. In this article, we describe in vitro studies that indicate  
the capacity of M. leprae to modulate the metabolism of its 
main cell targets, Schwann cells and macrophages, and how 
these changes may favor bacterial persistence with impact on 
the immune response to infection, such as the generation of 
Treg cells. Moreover, we discuss complementary in vivo stud-
ies, which with the help of powerful new technologies are  
reinforcing the idea of the potential contribution of these meta-
bolic effects to the scenario observed in lepromatous leprosy, 
where high bacterial burden associated with disease tolerance  
promotes disease perpetuation at the population level.

Mycobacterium leprae infection induces drastic 
changes in host cell metabolism
The ability of M. leprae to chemically and metabolically alter 
the cytosol environment of the host cell was first described by 
Rudolf Virchow (1821–1902) in the late nineteenth century17. 
The German physician, pathologist, and microbiologist observed 
that macrophages from skin lesions of patients with lepro-
matous leprosy had a foamy appearance, referred to as Lepra or  
Virchow cells. Later on, this phenomenon was also observed in 
Schwann cells present in nerves from patients with leprosy18.  
Initial histochemical analysis of the lipids in human leprosy 
revealed the accumulation of both fatty acids and phospholi-
pids in lepromatous lesions19. More recently, accumulation of 
oxidized phospholipids and cholesterol/cholesterol esters was 
also demonstrated20,21. In vitro studies confirmed the capacity 
of M. leprae to induce lipid accumulation in infected cells in the 
form of lipid droplets, which are storage organelles of the cell.  
This induction is triggered by Toll-like receptor 6 (TLR6) 
(for both cells) and TLR2 (essential only for macrophage  
induction)-mediated signals22,23. Lipid droplets were shown to 
migrate to bacterium-containing phagosomes and inhibition of 
this event enhances bacterial killing22–24. A similar phenomenon 
was observed in M. tuberculosis–infected macrophages, where 
infection-induced lipid accumulation is critical to the success  
of the infection and resistance against antibiotics25,26.

A shift of the infected cell to a lipogenic phenotype implies 
drastic changes in the host cell metabolism. Indeed, a glo-
bal gene expression analysis of leprosy skin lesions revealed 
higher expression of host lipid metabolism genes in lepromatous 
lesions20. In 2014, histochemical, metabolomics, and transcrip-
tion analysis confirmed the increase in exogenous lipid uptake, 
de novo biosynthetic pathways, and lipid degradation pathways in  
these lesions21. Moreover, sterol regulatory element-binding  
proteins (SREBPs) and peroxisome proliferator-activated recep-
tor gamma (PPAR-γ), master transcriptional factors involved 
in lipid metabolism regulation, were shown to be upregulated  
in M. leprae infection21,27. Also, imaging mass spectrometry of 
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skin lesions of multibacillary patients before and after MDT 
showed an upregulation of phospholipid metabolism in the  
dermis, which reverted to normal patterns after MDT28.

In the context of Schwann cells, it was also shown that  
M. leprae alters host cell energy metabolism at several points, 
which favors lipid accumulation29. A major effect is the decrease 
of the mitochondrial action potential, which generates several 
adaptive advantages to M. leprae, such as drop in beta oxida-
tion, resulting in an exacerbation of lipid accumulation in the host  
cell cytosol; reduction in the generation of reactive oxygen 
species, which is specially threatening in a lipid-rich environ-
ment; and lowering in the reducing power consumption from  
glucose oxidation. All this accumulated reducing power, which 
was previously consumed for ATP generation, is now available 
for maintenance of the glutathione-based antioxidant system  
and lipid biosynthesis in the infected cells29.

The activity of mitochondrial electron transport chain, the 
main ATP cell source, is reduced in the infected cell, and ATP  
production becomes more dependent on glycolysis, which  
generates much less ATP in comparison with oxidative phos-
phorilation. Thus, to maintain cytoplasmic ATP levels, infected  
Schwann cells show increased glucose uptake, with a con-
comitant and significant increase in the pentose phosphate  
pathway29. Glucose uptake is positively modulated by insu-
lin growth factor 1 (IGF-1) signaling, also upregulated by the 
bacillus30. Thus, M. leprae alters Schwann cell metabolism 
to allocate as much carbon and reducing power as possible to  
lipid synthesis.

Lipid droplets represent a link between energy metabolism 
and innate immune response. These organelles are sites for  
polyunsaturated fatty acid (PUFA)-derived lipid mediator  
biosynthesis31. Cyclooxigenase-2 (COX-2), responsible for the 
biosynthesis of prostaglandins, was detected in association with 
lipid droplets in M. leprae infection22,32,33. Indeed, metabonom-
ics studies using Fourier transform mass spectrometry showed 
that PUFA metabolism is upregulated during leprosy in blood  
and skin34,35. Analysis of serum samples showed an upregula-
tion of omega-3 and omega-6 PUFA metabolism and the pres-
ence of higher levels of omega-6–derived—prostaglandin  
E

2
 (PGE

2
) and lipoxin A

4
 (LXA

4
)—and omega-3 (resolvin 

D1-RvD1)-derived lipid mediators, especially in lepromatous 
patients with high bacterial load34,36. Omega-3 PUFAs such as  
eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) present direct anti-inflammatory effects through inter-
action with free fatty acid receptor 4 (FFAR4/GPR120), 
which leads to the blockage of both nuclear factor kappa B  
(NF-κB)-mediated inflammatory responses and NLRP3 inflam-
masome activation. They also favor macrophage polarization 
to alternatively activated macrophages (M2) anti-inflammatory 
phenotype and the proliferation of Treg cells (reviewed in 37,38). 
The anti-inflammatory properties of omega-3 PUFAs have  
been shown to be mediated, at least in part, by a new family of 
pro-resolving lipid mediators that include resolvins, protectins, 
and maresins39: these compounds at the same time favor Treg 
cell generation and function and inhibit T helper 1 (Th1) and  

Th17 differentiation through GPR32 and GPR32-ALX/FPR2  
receptors, respectively40.

In vitro assays showed that lipid droplet accumulation and 
the innate immune response are very closely related in  
M. leprae–infected cells. Inhibition of lipid droplet forma-
tion induces a switch from an anti-inflammatory to a pro- 
inflammatory profile22. PGE

2
 is abundantly produced by infected 

Schwann cells and macrophages, and this production is depend-
ent of lipid droplet accumulation22,23. PGE

2
 is a potent immune 

modulator that promotes Treg cell accumulation and inhibits  
Th1 and macrophage microbicidal functions41, limiting cellular 
immune responses that could control M. leprae infection. 
Also, inhibition of either PGE

2
 production or lipid droplet  

formation resulted in downmodulation of production of inter-
leukin-10 (IL-10)23, a potent anti-inflammatory mediator and  
inhibitor of Th1 response42.

M. leprae–infected macrophages present in skin lesions of  
patients with lepromatous leprosy have been shown to be good 
producers of PGE

2
 and IL-1032,43. These cells display several  

markers of M2 as explored in a recent review44. Particularly,  
IL-10 has been pointed to play a pivotal role in the permis-
sive phenotype of lepromatous macrophages by inducing highly  
phagocytic activity concomitant with the impairment of antimi-
crobial pathways allowing the pathogen to reach high numbers 
in these cells43. Probably multiple pathways are implicated 
in the induction of IL-10 in M. leprae–infected macrophages  
in vivo. As mentioned earlier, PGE

2
 induced by M. leprae 

through lipid droplet formation influences the levels of  
IL-10 production in in vitro infected cells22. The potential role 
of PGE

2
 is reinforced by evidence that it induces macrophage 

IL-10 production45 and augments its signaling and function46.  
Type I IFN and IL-27 have also been implicated in increased 
IL-10 expression in lepromatous cells47,48. Taken together, 
all of these observations indicate that M. leprae–induced  
lipid modulation has important pathophysiological consequences 
for bacterial survival and proliferation with a clear demon-
stration of the activation of disease tolerance mechanisms  
that allow the perpetuation of the infection.

Another metabolic pathway modulated by M. leprae with a 
potential strong contribution to the high bacterial burden asso-
ciated with low immunopathology observed in lepromatous 
leprosy is the tryptophan degradation pathway. Indoleamine 
2,3-dioxygenase (IDO-1) was shown to be highly expressed 
in macrophages and dendritic cells of lepromatous lesions. 
Moreover, higher activity of the enzyme was detected in the  
serum of patients with lepromatous leprosy compared with that 
of patients with the tuberculoid form49. IDO-1 catalyzes the first 
and rate-limiting step of tryptophan degradation that results in 
tryptophan depletion and generation of bioactive catabolites 
known as kynurenins. Although activation of this pathway can 
directly promote the killing of some pathogens, a major bio-
logical role of IDO-1 is the suppression of innate and adaptive 
immunity by multiple mechanisms50,51. One of them refers to the 
capacity of kynerunin to induce Treg cell differentiation by sign-
aling through the aryl hydrocarbon receptor (AhR)52. In cancer 

Page 4 of 10

F1000Research 2020, 9(F1000 Faculty Rev):70 Last updated: 31 JAN 2020



models, it was observed that IDO-1 and COX-2 activities are 
directly related, as PGE

2
 strongly induces IDO1 transcription53.

Lastly, iron (Fe) metabolism regulation may also contribute to 
the scenario of low pathogen resistance associated with dis-
ease tolerance observed in lepromatous leprosy. In comparison 
with tuberculoid lesions, M. leprae–infected macrophages in 
lepromatous lesions show abundant Fe deposits as ferritin, sug-
gesting that this essential nutrient is fully available for bacterial 
intracellular growth54. This is reinforced by the high content 
of Fe found in in vivo–grown M. leprae bacterioferritin55.  
Moreover, high intracellular Fe levels may contribute to the 
defective capacity of M. leprae–infected macrophages to 
respond to activating signals such as IFN-γ signaling56, as  
demonstrated in previous studies57,58. The high Fe levels in  
lepromatous lesions can be explained by an imbalance of the  
hepcidin/ferroportin-1 (FPN) axis detected in these patients. 
FPN is the only known Fe cellular exporter protein and its 
level is downregulated by hepcidin, an acute phase protein59. 
Patients with lepromatous leprosy show higher expression levels  
of hepcidin60 and lower levels of FPN54. Additionally, a higher 
ratio of transferrin receptor/FPN, higher levels of CD163 (a 
scavenger receptor that binds to the hemoglobin-haptoglobin 
complex), and higher levels of both light and heavy chains  
of ferritin were observed in lepromatous lesions contributing  
to Fe accumulation54.

The same study also showed higher expression levels of heme 
oxygenase (HO-1)54, suggesting extensive intracellular catabo-
lism of heme with the generation of Fe, carbon monoxide, 
and bilirubin, which exert beneficial effects on tissue damage 
control4. Mainly through the generation of carbon monoxide, 
several immunomodulatory effects have been attributed to 
HO-1, such as IL-10 induction, macrophage polarization to an  
M2-like phenotype59,61, and promotion of Treg cell differen-
tiation and proliferation to the detriment of Th1 expansion62.  
M. leprae was shown to increase IDO-1 expression and activity 
as well as CD163 expression in human monocytes/macrophages 
by IL-1063,64. The addition of hemin to the cells increased  
M. leprae viability whereas treatment with an IDO inhibitor 
showed the opposite effect54, reinforcing the idea that both heme 
and tryptophan metabolism are necessary for M. leprae sur-
vival inside human macrophages. Figure 1 summarizes the host 
cell metabolic pathways (discussed above) that are modulated  
during M. leprae infection and that culminate in the lepromatous 
form of the disease.

Microenvironments, Treg cells, and leprosy
As discussed above, effects on cellular metabolism seem to 
create a microenvironment at the site of M. leprae infection 
that promotes enhanced Treg cell differentiation and activity  
(Figure 1). Treg cells play a pivotal immunoregulatory role by 
controlling the intensity of the innate and adaptive immune 
responses in order to avoid immunopathology. In the context of 
leprosy, the generation of Treg cells may facilitate the progres-
sive reduction of the host pathogen-specific IFN-γ response and  
resistance to infection and contribute to host disease tolerance.

At the population level, previous observations suggest that  
persistent exposure to M. leprae can induce negative modulation  

of IFN-γ response and effector function against M. leprae 
that, in some individuals, will allow the bacillary load to 
increase and lead to the onset of active disease. The evaluation  
of the in vitro production of IFN-γ by blood mononuclear 
cells in response to M. leprae–specific epitopes allowed the 
observation of a progressively reduced IFN-γ in individuals  
persistently exposed to M. leprae65.

The downmodulation of T-cell response and IFN-γ produc-
tion seen in more exposed asymptomatic individuals, and in 
patients with leprosy, is clearly linked to an increase in bacil-
lary load across the spectrum of clinical forms. So a sequence 
of events, including microenvironments protected against effec-
tor mechanisms for initial survival of M. leprae in the host,  
M. leprae–triggered changes in infected cells, and tissues induc-
ing an increase in the differentiation of T cells to a Treg cell 
phenotype, changing the ratio of pathogen-specific memory  
CD4-positive, FOXP3-negative cells (T CD4+) to memory Treg 
cells, generates conditions for a chronic infection. The analy-
sis of the human T-cell repertoire in neonates and young adults 
using major histocompatibility (MHC)-peptide tetramers shows 
that, in the neonates, the ratio T CD4+:Treg cell is similar for self-
antigens and epitopes of infectious agents. However, successful 
response to infection is followed by marked increase in the  
T CD4+:Treg cell ratio and this is due mostly to the higher 
number of T CD4+. In a murine model, evolution to chronic 
infection was linked to T CD4+:Treg cell ratios lower than in the 
healed animals66. So evolution to chronic infection in leprosy 
requires conditions for the initial survival of M. leprae in the 
host, which will involve changes in the tissue microenvironment 
that will inhibit effector function against M. leprae and facilitate a  
reduction in the T CD4+:Treg cell ratio. Moreover, the  
predominance of Treg cells over T CD4+ will certainly con-
tribute to the scenario of moderate immunopathology and host 
disease tolerance associated with the high bacterial burden in  
lepromatous leprosy.

The initial characterization of the CD4+CD25+high as the subset 
with suppressor function in immune response followed by the 
discovery of forkhead box P3 (FOXP3), the lineage-specific tran-
scription factor for this T-cell subset, provided critical tools for 
investigating the role of Treg cells in autoimmune diseases and 
infections67,68. Inhibition of IFN-γ production by tumor-infiltrating  
Treg cells, in murine experimental models of melanoma and ade-
nocarcinoma, allowed activation of SREBP1 and fatty acid syn-
thesis in immunosuppressive tumor-infiltrating macrophages69.  
Helper T cells specific to cardiac myosin have been detected in 
a murine experimental model of myocardial infarction. These  
cells acquire Foxp3 (murine gene nomenclature) expression and 
pro-healing functions following homing to the myocardium,  
once more demonstrating the impact of the microenviron-
ment in the expression of regulatory function by T cells70. An 
increase in the number of FOXP3+ T cells was observed in blood  
leukocytes of patients with lepromatous leprosy when com-
pared with tuberculoid leprosy. The analysis of skin lesions also  
provided evidence of a higher frequency of FOXP3+ T cells in 
lepromatous leprosy71,72. Several studies using FOXP3 expres-
sion in blood T cells and in skin lesions in leprosy for the  
identification of Treg cells have recently been published73–79. 
However, human memory T cells with no regulatory function can  
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Figure 1. Mycobacterium leprae subversion of host cell metabolism and immunomodulation in lepromatous leprosy. Effects on lipid 
and energy (A) and on iron and tryptophan (B) metabolisms are shown separately to make the scheme clearer. (1) M. leprae binding to host 
cell surface receptors, such as CD206, CD209, and TLR2/6, leads to bacterial internalization and activation of signaling cascades that result 
in the expression and activation of SREBP and PPARγ. (2, 3) SREBP and PPARγ upregulate the expression of LDLR, CD36, SRA1, and SRB1 
bringing lipids into the cell, and of proteins involved in de novo lipid biosynthesis, resulting in intracellular lipid accumulation as lipid droplets. 
(4, 5) M. leprae induces IGF-1 production, which may be responsible for the higher glucose uptake in infected cells. (6–10) Glucose is 
shunted to the pentose pathway for the generation of the NADPH necessary for lipid synthesis and for maintenance of the glutathione-based 
antioxidant system. (11, 12) The infection also decreases the mitochondrial membrane potential, reducing the generation of ROS production. 
(13) COX-2 and PLA2 present in lipid droplets upregulate the omega-3 and omega-6 PUFA (EPA and DHA) metabolism, increasing the 
formation of anti-inflammatory/pro-resolving lipid mediators, such as resolvins, protectins, maresins, and PGE2, which is associated with IL-10 
production. (14) EPA and DHA activate GPR120 leading TGF-β production. (15, 16) M. leprae elevates IDO that degrades Tryp to kynurenines 
products. (17) Kynurenines activate AhR leading to TGF-β production. (18) M. leprae infection raises the levels of hepcidin that degrades 
the iron exporter ferroportin 1, resulting in higher levels of intracellular iron. (19, 20) The infection also upregulates the expression of CD163 
and TfR1, increasing the iron intracellular levels. (21, 22) The heme molecules are degraded by HO-1, overexpressed in lepromatous leprosy 
lesions. (23, 24) Iron is stored in the form of ferritin. (25–26) The generated CO can induce IL-10 production, which can act in a paracrine and 
autocrine way, enhancing IDO expression and activity. (C) (27–29) The tissue microenvironment enriched in anti-inflammatory/pro-resolution 
moleculesactivates FOXP3 transcription, favoring Treg cells differentiation and proliferation. (30) IL-10 potentiates Treg differentiation. (31) 
Treg cells downmodulate CD4+ T cell response, decreasing IFN-γ production and resistance to infection, allowing uncontrolled bacterial 
proliferation while promoting disease tolerance. AhR, aryl hydrocarbon receptor; ALX/FPR2, G-protein coupled formyl peptide receptor 2; 
CD, cluster of differentiation; CO, carbon monoxide; COX-2, cyclooxygenase-2; CTLA4, cytotoxic T-lymphocyte associated protein 4; DHA, 
docosahexaenoic acid; EP2 and EP4, prostaglandin E2 receptor 2 and 4; EPA, eicosapentaenoic acid; Fe, iron; FOXP3, forkhead box P3; 
GLUT4, glucose transporter 4; GPR32 and GPR120, G protein-coupled receptor 32 and 120; Hb, hemoglobin; HO-1, heme oxygenase 
1; Hp, haptoglobin; IDO, indoleamine 2,3 dioxygenase; IFN-γ, interferon-gamma; IGF-1, insulin-like growth factor 1; IL-10, interleukine-10; 
LDL, low-density lipoprotein; NADPH, nicotinamide adenine dinucleotide 2′-phosphate; PGE2, prostaglandin E2; PLA2, phospholipase A2; 
PPARγ, peroxisome proliferator-activated receptor gamma; PUFA, polyunsaturated fatty acid; ROS, reactive oxygen species; SRA1 and SRB1, 
scavenger receptor A1 and B1; SREBP, sterol regulatory element-binding protein; TcR, T-cell receptor; TfR1, transferrin receptor 1; TGFβ, 
transforming growth factor beta; TLR2/6, Toll-like receptor 2/6; Treg, regulatory T cells; Tryp, tryptophan.
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express FOXP3 transiently following activation80. Moreover, 
the investigations in leprosy, like those in other diseases and  
experimental models, need to take into account recent findings 
in the biology of Treg cells and standardized approaches for the  
characterization of Treg cell roles in leprosy81–84.

As the observed defect in T-cell responsiveness is restricted  
to M. leprae in leprosy, we can postulate the induction of mem-
ory T cells specific to M. leprae antigens with a reduction in 
the TCD4+:Treg cell ratio, in parallel with defective IFN-γ  
production and effector function against M. leprae, as the mech-
anism involved in the pathogenesis of leprosy and the differ-
ent clinical forms of the disease. Peripheral Treg cells specific 
to infectious agents, and induced during infection, have been  
previously characterized66,85,86. The investigation of these cells in 
the human immune response to M. leprae requires some additional  
steps to demonstrate the involvement of peripheral Treg cells 
specific to M. leprae antigens in leprosy. Human Treg cells are  
a heterogeneous group of cells. Transient expression of FOXP3 
occurs during activation of conventional human memory  
T cells80. So it becomes a requirement in the characteriza-
tion of these cells to demonstrate that the FOXP3 gene has the  
epigenetic modifications necessary for its stable expression 
and that these Treg cells recognize M. leprae antigens. Another 
basic question to be addressed is how the Treg cells modulate  
in vivo the immune response to M. leprae. The in vitro mechanisms 
of negative modulation of immune response by antigen-specific 
Treg cells are not necessarily those relevant to inhibit immune 
response in vivo81. Recent observations in murine experimental 
models demonstrate that removal of MHC-associated antigens  
in the antigen-presenting cells is an in vivo mechanism of  
action for inhibiting T-cell function in an antigen-specific way87. 
Would this mechanism account for M. leprae–specific activity 
of Treg cells in leprosy and the defective immunity toward this  
bacillus seen in lepromatous leprosy?

The lack of experimental models for asymptomatic infection 
with M. leprae and leprosy is a major limitation for the  
identification of metabolic changes involved in the induction of 

Treg cells in the pathogenesis of the disease and in lepromatous  
leprosy. However, supernatants from dissociated cells, obtained 
from lepromatous leprosy lesions, could be a source of media-
tors for in vitro models of Treg cell differentiation and function, 
modulating effector mechanisms against M. leprae–infected  
cells40. Moreover, mediators associated with M. leprae–infected 
macrophages, Schwann cells, and lepromatous leprosy lesions 
could be used in vitro to modulate FOXP3 expression and  
Treg cell function in CD4+ T cells22–24,34,36,88,89.

Conclusions
The data presented here suggest that modulation of host cell 
metabolism contributes to the maintenance of a functional  
program in infected macrophages and Schwann cells that suits  
M. leprae survival and proliferation, while it downregulates 
immune response against the pathogen, creating conditions for 
a chronic infection. The microenvironment generated particu-
larly in the infected tissue of lepromatous leprosy also activates 
host disease tolerance mechanisms that allow these patients to 
display moderate pathology despite the high bacterial burden. 
A better understanding of the role of Treg cells in the suppres-
sion of Th1 response can have a major impact in leprosy control 
by the generation of new potential intervention tools, particularly  
in the population of exposed individuals with asympto-
matic disease. Dissecting the metabolic pathways that favor 
Treg cell generation modulated by M. leprae infection may  
contribute to the identification of biomarkers for the early 
disease diagnosis. Most importantly, new pharmacological  
targets that block the inhibition of IFN-γ production would 
potentially reduce the number of individuals evolving to active 
disease or at least the frequency of lepromatous leprosy that  
significantly impacts leprosy transmission. In this context, non-
steroidal anti-inflammatory drugs, which are COX-2 inhibitors, 
could at the same time lower PGE

2
 levels and IDO1 expression, 

leading to Treg cell downmodulation as seen in the reversion of 
tumor immune evasion in cancer models53,90. Furthermore, these 
drugs are widely available at low cost, which is an important  
point given the lack of resources for neglected diseases.
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