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Abstract
Introduction: The recent emergence and rapid spread of Zika and Chikungunya fevers in Brazil, occurring simultaneously to a Dengue 
fever epidemic, together represent major challenges to public health authorities. This study aimed to identify and compare the 2015-
2016 spatial diffusion pattern of Zika, Chikungunya, and Dengue epidemics in Salvador-Bahia. Methods: We used two study designs 
comprising a cross-sectional-to-point pattern and an ecological analysis of lattice data. Residential addresses involving notified cases 
were geocoded. We used four spatial diffusion analysis techniques: (i) visual inspection of the sequential kernel and choropleth map, (ii) 
spatial correlogram analysis, (iii) spatial local autocorrelation (LISA) changes analysis and, (iv) nearest neighbor index (NNI) modeling. 
Results: Kernel and choropleth maps indicated that arboviruses spread to neighboring areas near the first reported cases and occupied 
these new areas, suggesting a diffusion expansion pattern. A greater case density occurred in central and western areas. In 2015 and 2016, 
the NNI best-fit model had an S-curve compatible with an expansion pattern for Zika (R2 = 0.94; 0.95), Chikungunya (R2 = 0.99; 0.98) 
and Dengue (R2 = 0.93; 0.99) epidemics, respectively. Spatial correlograms indicated a decline in spatial lag autocorrelations for the 
three diseases (expansion pattern). Significant LISA changes suggested different diffusion patterns, although a small number of changes 
were detected. Conclusions: These findings indicate diffusion expansion, a unique spatial diffusion pattern of Zika, Chikungunya, 
and Dengue epidemics in Salvador-Bahia, namely. Knowing how and where arboviruses spread in Salvador-Bahia can help improve 
subsequent specific epidemic control interventions.
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INTRODUCTION

In recent years, the emergence of arboviruses in different 
territories and countries of the Americas, including Brazil, has 
been observed1. The most recent arbovirus identified in Brazil was 
Zika fever in 2015, which triggered an epidemic of undetermined 
exanthematous disease in the northeast region2. 

The disease presented in most individuals with a mild and benign 
evolution; however, a concentration of Guillain-Barré syndrome cases 
generated hypotheses that the Zika virus infection was associated 
with neurological and autoimmune complications in Brazil, as had 
also been suspected in French Polynesia in 20133,4. Moreover, a 
considerable increase in the number of reported cases of microcephaly 
in newborns provided evidence supporting a connection between Zika 
fever and congenital neurological malformations5.

Prior to the sudden rise in Zika fever cases, Chikungunya fever 
emerged in Brazil in 20146. Along with its severe articular pain 
characteristic, severe manifestations such as neurological, cardiac, 
renal, and ocular complications have been reported to be associated 
with the disease7.
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These two arboviruses emerged amidst an endemic Dengue fever 
circulation present since 1986, involving four viral serotypes and 
considered one of the most prevalent infectious diseases. A triple 
epidemic in 2016 resulted in approximately 2 million reported cases8,9.

These arboviruses have several characteristics in common; 
transmission occurs through the same vector, namely, the Aedes 
aegypti mosquito, which is abundant throughout Brazil, and these 
arboviruses are derived from very close families that have similarities 
in signs and symptoms, making diagnosis difficult10,11. The vector 
control measures and the main strategy for disease control were 
inefficient and favored the propagation of arboviruses in Brazil12.

Given this situation, an analysis of the geographical processes of 
spatial diffusion can be used for monitoring epidemics and planning 
interventions, since it enables an understanding of how and where 
diseases propagate through space and in the course of time13. In 2014, 
Sant-Julien stated that the process of spatial diffusion is the action, or 
the result of an action of propagating a phenomenon homogeneously 
in a system, whatever the force that drives the dispersion of this 
phenomenon14. The visualization of spatial patterns in data and the 
description of these patterns aims to predict changes and uses this 
information to guide the formulation of policies15.

In the most commonly used classification, it is stated that spatial 
diffusion can occur through four phenomena. The first is expansion, 
in which the phenomenon propagates from one place to the other, 
often intensifying in the region of origin. The second phenomenon 
is relocation, when the phenomenon propagates to new localities 
but when moving, leaves the areas where it originated. The third 
is contagion, dependent on direct contact and, therefore, strongly 
influenced according to distance (individuals in nearby regions have 
a much higher probability of contact than individuals in distant 
regions). Lastly, a hierarchical phenomenon is characterized by the 
occurrence of diffusion respecting an ordered sequence of classes 
or places, as from a large metropolitan center to remote villages16.

A very limited number of studies have sought to specifically 
analyze the spatial diffusion of arboviruses, with an emphasis 
on investigating Dengue fever in the state of Bahia, Brazil17,18. 
This study aimed to identify and compare the 2015-2016 spatial 
diffusion pattern of Zika, Chikungunya, and Dengue epidemics in 
Salvador-Bahia.

METHODS

Two study designs were used, a sectional study for the point 
spatial data, and an ecologic study for the area data. The study 
area comprised the municipality of Salvador, the capital of state 
of Bahia which is the third most populous city in Brazil with an 
estimated population of 2,938,092 inhabitants in 201619 and 163 
neighborhoods (Figure 1)20.

In the data analysis, three island neighborhoods namely Ilha 
dos Frades, Ilha de Maré, and Ilha de Bom Jesus dos Passos were 
excluded, because we considered that, through discontinuity 
with the territory, the processes that act for spatial diffusion 
of arboviruses could have differed. Centro Administrativo da 
Bahia (CAB) and Aeroporto were also excluded since they are 
not residential neighborhoods, making 5 of 163 neighborhoods 
excluded from the study.

The study period covered the epidemic waves that occurred in 
the years 2015 and 2016. For Zika fever, the first wave comprised 
epidemiological weeks (EW) 15/2015 to 52/2015, and for 
Chikungunya and Dengue fever, the first wave comprised the EWs 
from 01/2015 to 52/2015. For the three arboviruses, we considered 
the second wave comprised the EWs from 01/2016 to 52/2016.

Confirmed cases were used, as notified in the Sistema de 
Informação de Agravos de Notificação-SINAN of the Brazilian 
Ministry of Health. Residential addresses for each case were 
georeferenced to generate punctual spatial data using three 
automated geocoding application programming interfaces to obtain 
a greater number of georeferenced cases: Google Maps, Bing Maps, 
and Open Street Maps.

For aggregated data, we opted for smoothed incidence rates 
(empirical Bayesian) because of the large variation of gross rates 
that would have strongly influenced the analyses. The number 
of people living in the neighborhoods of Salvador in 2015 was 
obtained from estimates according to the Brazilian Institute of 
Geography and Statistics (IBGE), based on a 2010 census, and a 
linear interpolation was performed to estimate the population for 
the year 201619,21. Cartographic digital meshes of the municipalities 
and the neighborhoods were obtained from the IBGE.

An analysis of spatial diffusion patterns was performed 
using various techniques that have been previously applied in 
other studies, namely visual inspection of the sequential kernel 
and choropleth map, spatial correlogram analysis, local spatial 
autocorrelation (LISA) changes analysis, and the nearest neighbor 
index (NNI) modeling.

For visual inspection of sequential maps, 30 choropleth maps 
and 30 kernel maps were generated with data from every three EWs 
of Zika fever. For Chikungunya and Dengue fevers, 35 thematic 
and 35 kernel maps were generated.

Kernel estimation is a method for smoothing point events 
through inserting a continuous surface over each point and requires 
a bandwidth of the region of influence. A smoothed surface is 
displayed on the territory representing the levels of case intensity22. 
Kernel maps were developed with a bandwidth of 2500 m, using 
QGIS software23.

Choropleth maps display levels of the same attribute per area 
at each time range for sequential demonstration of the distribution 
of the disease. The maps were constructed using five classes of 
incidence rates using QGIS software23.

In the modeling of the NNI, the ratio of the nearest neighbor, 
or R, is calculated by dividing the mean of the distances of the 
nearest points in a point pattern by the average of the distances of a 
random distribution of the same number of points in the same area. 
R is calculated cumulatively whenever a new case is diagnosed. 
The Rs are presented as a function of time and modeled with a set 
of regression curves to find the one that best fits the distribution. 
The results were interpreted according to Lee et al. (2014)24. Their 
approach indicates that the processes of diffusion through contagion 
and expansion are better adjusted using an inverse curve, and the 
hierarchical and relocation processes are better modeled using a 
cubic curve.
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71 FEDERACAO
72 GARCIA
73 GRACA
74 GRANJAS RURAIS/BRASIL GÁS
75 IAPI
76 IMBUÍ
77 ITACARANHA
78 ITAIGARA
79 ITAPUÃ
80 ITINGA
81 JAGUARIPE
82 JARDIM ARMAÇÃO
83 JARDIM CAJAZEIRA
84 CAB
85 JARDIM NOVA ESPERANCA
86 JARDIM SANTO INÁCIO
87 LAPINHA
88 LIBERDADE
89 LOBATO
90 LUIZ ANSELMO

NEIGHBORHOODS
1 ACUPE
2 AEROPORTO
3 ÁGUAS CLARAS
4 ALTO DA SANTA TEREZINHA
5 ALTO DAS POMBAS
6 ALTO DO CABRITO
7 ALTO DO COQUEIRINHO
8 AMARALINA
9 AREIA BRANCA
10 ARENOSO
11 ARRAIAL DO RETIRO
12 BAIRRO DA PAZ
13 BAIXA DE QUINTAS
14 BARBALHO
15 BARRA
16 BARREIRAS
17 BARRIS
18 BEIRU/TANCREDO NEVES
19 BOA VIAGEM
20 BOA VISTA DE BROTAS
21 BOA VISTA DE SÃO CAETANO
22 BOCA DA MATA
23 BOCA DO RIO
24 BOM JUA
25 BONFIM
26 BROTAS
27 NOVA SUSSUARANA
28 CABULA
29 CABULA VI
30 CAIXA DAGUA
31 CAJAZEIRA II
32 CAJAZEIRA IV
33 CAJAZEIRA V
34 CAJAZEIRA VI
35 CAJAZEIRA VII
36 CAJAZEIRA VIII
37 CAJAZEIRA X
38 CAJAZEIRA XI

91 MACAUBAS
92 MANGUEIRA
93 MARECHAL RONDON
94 MARES
95 MASSARANDUBA
96 MATA ESCURA
97 MATATÚ
98 MONTE SERRAT
99 MORADAS DA LAGOA
100 MUSSURUNGA
101 NARANDIBA
102 NAZARÉ
103 NORDESTE
104 NOVA BRASILIA
105 NOVA CONSTITUINTE
106 NOVA ESPERANÇA
107 JARDIM DAS MARGARIDAS
108 NOVO HORIZONTE
109 NOVO MAROTINHO
110 ONDINA
111 PALESTINA
112 PARIPE
113 PATAMARES

39 CALABAR
40 CALABETÃO
41 CALCADA
42 CAMINHO DAS ÁRVORES
43 CAMINHO DE AREIA
44 CAMPINAS
45 CANABRAVA
46 CANDEAL
47 CANELA
48 CAPELINHA
49 CASSANGE
50 CASTELO BRANCO
51 CENTRO
52 CENTRO HISTORICO
53 CHAPADA DO RIO VERMELHO
54 CIDADE NOVA
55 COMÉRCIO
56 COSME DE FARIAS
57 COSTA AZUL
58 COUTOS
59 CURUZU
60 DOM AVELAR
61 DORON
62 ENGENHO VELHO DA FEDERAÇÃO
63 ENGENHO VELHO DE BROTAS
64 ENGOMADEIRA
65 FAZENDA COUTOS
66 FAZENDA GRANDE
67 FAZENDA GRANDE I
68 FAZENDA GRANDE II
69 FAZENDA GRANDE III
70 FAZENDA GRANDE IV

114 PAU DA LIMA
115 PAU MIUDO
116 PERIPERI
117 PERNAMBUES
118 PERO VAZ
119 PIATÃ
120 PIRAJÁ
121 PITUAÇÚ
122 PITUBA
123 PLATAFORMA
124 PORTO SECO PIRAJA
125 PRAIA GRANDE
126 RESGATE
127 RETIRO
128 RIBEIRA
129 RIO SENA
130 RIO VERMELHO

139 SAO CRISTOVÃO
140 SAO GONÇALO DO RETIRO
141 SAO JOAO DO CABRITO
142 SAO MARCOS
143 SAO RAFAEL
144 SAO TOME DE PARIPE
145 SARAMANDAIA
146 SAUDE
147 SETE DE ABRIL
148 STELLA MARIS
149 STIEP
150 SUSSUARANA
151 TORORÓ
152 TROBOGY
153 URUGUAI
154 VALE DAS PEDRINHAS
155 VALE DOS LAGOS
156 VALERIA
157 VILA CANARIA
158 VILA LAURA
159 VILA RUI BARBOSA
160 VITORIA

131 ROMA
132 SABOEIRO
133 SANTA CRUZ
134 SANTA LUZIA
135 SANTA MONICA
136 SANTO AGOSTINHO
137 SANTO ANTONIO
138 SAO CAETANO

FIGURE 1: Location of the municipality of Salvador in the state of Bahia and its territorial division.

In our study, linear, logarithmic, inverse, quadratic, cubic, 
power, compound, S-curve, logistic, growth, and exponential 
regression curves were constructed using the “curvefit” function 
of Stata software21. These curves were compared to the annual R 
curves plotted against time so that the best fit was identified with 
the coefficient of R².

For the analysis of the spatial correlograms, the values ​​
corresponding to Moran's I (global autocorrelation indicators) 
were calculated using an adjacency matrix (determining the spatial 
autocorrelation) and plotted against the spatial lags referring to 
the distance intervals. The correlograms were developed for each 

arbovirus annually, using “R statistical software”25 in conjunction 
with QGIS software23.

The incidence of each arbovirus was considered autocorrelated 
in space using definitions proposed by Lam et al. (1996)26, in which a 
propagation by contagion model is considered when the correlogram 
shows a tendency to autocorrelation in a soft decline, pointing 
to distance as a principal factor in determining the similarity of 
incidence rates. A hierarchical diffusion is suggested when the 
trajectory decreases and then rises, forming a V-shaped curve, 
indicating that distant areas show similarity in rates and that the 
diffusion then occurs in jumps.
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To apply the technique of change in local autocorrelation, 
the Cohen and Tita (1999) study was used as a reference27. LISA 
indicators consist of the decomposition of Moran's I28.

The values ​​of a variable for a location and its neighboring areas 
provide the most basic representation of local spatial associations. 
Each Local-Neighbor (LN) pair consists of standardized levels of 
a variable in the local spatial unit L and in neighboring spatial units 
N. Each element of the pair is low (L) or high (H) relative to the 
local and neighbor value distributions in all observations27.

In a scatterplot, pairs in which both local and neighbor values ​​
are above their respective averages fall in the upper right quadrant 
(HH), or into the lower left quadrant (LL). When they differ, pairs 
fall into the HL or LH quadrant. 

For a dynamic view of the process, Cohen and Tita (1999)27 
suggested analyzing changes in local-neighbor pair levels over time, 
looking for evidence of diffusion that involves the propagation of 
high rates (or low rates) to other spatial units. The authors claimed 
that the types of pair changes in successive periods were compatible 
with a different type of diffusion, and allowed for a determination 
of the mechanisms behind the change corresponded to each type 
of diffusion.

LISA values ​​were calculated using GeoDa software29, based on 
the incidence rates of each arbovirus, with reference to periods of 
three EWs. Analyzed annually, changes in the predominant local 
autocorrelation levels determined the spatial diffusion type for 
each arbovirus.

RESULTS

The distribution curve of Zika fever cases showed two epidemic 
waves. The first occurred between EW 15 and EW 41 in 2015, with 
an epidemic peak at EW 27 (112 cases). The second less significant 
epidemic, occurred between EW 01 and EW 22 in 2016, with a 
higher concentration at EW 9 (43 cases) (Figure 2).

The distribution curve of Chikungunya fever cases shows an 
epidemic wave in 2015, with a higher case concentration between 
EW 26 and EW 38, and an epidemic peak at EW 33 (76 cases). 
Waves of lesser intensity were identified throughout 2016.

The distribution curve of Dengue fever cases shows a large 
epidemic wave that covered the entire year in 2015, with a higher 
concentration of cases between EW 14 and EW 39. During 2016, 
there was a regular level of reported cases.

The majority of reported cases involving the three arboviruses 
lacked confirmatory diagnostic criteria (undetermined), and 
diagnosis was presumably based on clinical-epidemiological 
criteria, as laboratory confirmation is usually performed at the 
beginning of epidemics to confirm autochthony.

The georeferencing of Zika fever cases in Salvador resulted in 
1,780 (93%) georeferenced addresses for the 1,914 cases confirmed 
between 2015 and 2016. These cases were organized according to 
the date of first symptoms, and 32 cases were discarded due to the 
date of first symptoms field having been incorrectly completed. In 
total, 1,748 cases were considered in the statistical analysis and, 
of these, there were 937 cases in 2015 and 811 in 2016. Of 2,120 

Chikungunya fever cases, 1,974 (93%) were georeferenced, 38 
were discarded, and we used 1,210 cases from the year 2015 and 
726 from the year 2016 in the statistical analysis. Of 9,302 cases 
of confirmed Dengue fever, 8,938 (96%) were georeferenced, 301 
discarded, and we used 5,449 cases for the year 2015, and 3,188 
for the year 2016.

Zika, Chikungunya, and Dengue fever cases were recorded in 
approximately 95% of neighborhoods analyzed in the municipality 
of Salvador. The analysis of kernel maps (Figure 3) and choropleth 
maps suggested that the spatial diffusion process of Zika fever 
occurred through expansion, as did Dengue and Chikungunya 
fevers. Some areas of the municipality, mainly in the west/southwest 
region, showed an emergence of cases that then intensified and 
reached nearby regions.

Regarding Zika fever, the northeast of the municipality also 
presented a greater concentration of cases in 2015. In Chikungunya 
and Dengue fevers, the central region was highlighted. In 2016, the 
diseases appeared to have occurred with less intensity, with a greater 
concentration of cases observed in the central region.

For Zika fever, 144 and 311 R-values ​​were generated for the 
years 2015 and 2016, respectively. For Chikungunya fever, 285 
and 303 R-values ​​were generated for the years 2015 and 2016, 
respectively. For Dengue fever, 357 and 414 R-values were 
generated for the years 2015 and 2016, respectively.

The regression curve that best fit the R curves was the 
S-curve (Figure 4), with R2 0.94;0.95 (Zika fever), R2 0.99;0.98 
(Chikungunya fever), and R2 0.93;0.99 (Dengue fever) in 2015 
and 2016, respectively; therefore, showing a process of diffusion 
through expansion.

The correlograms of the three arboviruses show a smooth 
decline in spatial autocorrelation as the distance between spatial 
lags increases (Figure 5). This decline shows that expansion 
diffusion was the dominant factor for the spread of Zika, 
Chikungunya, and Dengue fevers in the municipality of Salvador. 
That is, the municipality presented areas with high incidence rates 
and neighboring areas that had lower incidence rates, indicating 
that these diseases progressively spread from one region to their 
neighboring regions.

In the analysis of LISA changes, LISA values ​​were generated 
with reference to periods of three EWs, for each of the 160 
neighborhoods within the Salvador municipality. Analyzing 
the changes in these values, 19 of 1,280 LISA changes were 
significant for Zika fever in 2015 and 34 of 2,400 LISA changes 
were significant for Zika fever in 2016. The local autocorrelation 
changes characteristic of expansion diffusion[14] were predominant 
in 2015 and hierarchical diffusion[20] in 2016. Relocation diffusion 
was considered likely here, along with hierarchical diffusion, due 
to similarity in the characteristics of the processes that occurred 
in jumps.

For Chikungunya fever, 42 out of 2,400 LISA changes were 
significant in 2015 and 19 out of 2,080 LISA changes were significant 
in 2016. In two years, the type of spatial diffusion was mixed because 
the number of changes related to the expansion and hierarchical 
diffusion were equal in 2015[21;21], and similar in 2016[10;19].

Santana LS and Braga JU - Spatial diffusion of Zika fever epidemics in the municipality of Salvador-Bahia, Brazil.
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FIGURE 2: Distribution curves of reported cases of Zika fever, Chikungunya fever and Dengue in Salvador, 2015-2016.
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EW 15-17 EW 18-20 EW 21-23

EW 24-26 EW 27-29 EW 30-32

EW 33-35 EW 36-38 EW 39-41

EW 42-44EW 42-44

FIGURE 3: Kernel maps for analysis of the spread of Zika fever in Salvador, EW 15-44/2015 (the maps of the last EW were hidden 
due their similarities).

Santana LS and Braga JU - Spatial diffusion of Zika fever epidemics in the municipality of Salvador-Bahia, Brazil.
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FIGURE 4: Regression curves of better fit to Nearest Neighbor Index (NNI) curves of Zika fever, Chikungunya and Dengue in Salvador, 2015-2016.

Rev Soc Bras Med Trop | on line | Vol.:53:e20190563, 2020
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FIGURE 5: Spatial correlograms of Zika fever, Chikungunya and Dengue in Salvador, 2015 - 2016.

For Dengue fever in 2015, 62 out of 2,560 LISA changes were 
significant and 79 out of 2560 changes were significant in 2016. 
The number of changes characterizing the hierarchical diffusion 
process[34] surpassed the expansion[28] in 2015 but was very close 
in 2016[39;40] with diffusion mixed in this year. 

DISCUSSION

The analysis of the spatial diffusion of Zika fever, Chikungunya 
fever, and Dengue fever in Salvador demonstrated that the 
propagation of the three arboviruses occurred through expansion 
in the two years of study.

Santana LS and Braga JU - Spatial diffusion of Zika fever epidemics in the municipality of Salvador-Bahia, Brazil.
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In 2015, Zika and Chikungunya fevers broke out in Salvador 
and, as expected, due to population susceptibility and abundance of 
the main vector, Aedes aegypti, the arboviruses caused an explosive 
number of cases.

Although Dengue fever had already established in this period 
in Salvador, it showed a significant increase in notifications, which 
was observed throughout Brazil. Experts attribute this increase to 
the reemergence of the DENV1 serotype in 2013 and to a reduced 
DENV4 circulation, taking into account that the presence of the 
four serotypes of the Dengue virus in Brazil often trigger epidemics 
of the disease after alternating or replacing the predominant 
serotype30,31. The antigenic diversity of the Dengue virus is a 
contributing factor to the continuous occurrence of the disease, 
since multiple sequential infections may occur due to the lack of 
cross-immunity between virus serotypes32.

Our study demonstrated that the three diseases emerged and 
intensified in some areas of Salvador, and initially expanded to 
nearby sites through the expansion diffusion process. This finding 
is compatible with the dynamics of infectious diseases, where 
transmission is more likely to occur among individuals who are 
closely connected in space and time30.

For the year 2016, our results indicated that the three arboviruses 
had spread through expansion, although with less intensity. The 
progressive decrease in the number of new cases was consistent with 
the dynamics of the arboviruses in the second year of propagation 
because, although the number of new cases continued to intensify in 
places with greater population density, a decrease in the susceptible 
population in some areas led to a lower occurrence of diseases in 
the greater part of Salvador.

The diffusion through expansion model was identified by 
Barreto et al. (2008)17 in relation to the first Dengue epidemic in 
Salvador in 1995, during the emergency period of this arbovirus. 
Lee et al. (2004)24 identified the same pattern concerning the spatial 
diffusion of Dengue fever between 2003 and 2008 in Taiwan.

Morato et al. (2015)18 identified a different pattern in their study 
on the spatial diffusion of Dengue fever in the municipality of 
Jequié, Bahia, in 2009, where they showed that the disease epidemic 
occurred initially through expansion and later through relocation.

In addition to the identification of the spatial diffusion processes, 
analysis of kernel maps indicated that the three diseases had a 
main focus of transmission in an area that extended from the  
west/southwest region of the municipality, where administrative 
districts are concentrated, to the central region, with both regions 
having higher population density and social interaction networks. 
This area sustained a high number of cases throughout almost the 
entire study period, possibly due to the higher concentration of 
susceptible cases compared to other areas.

Areas with high population density and economic development that 
can act as transmission focuses reinforce the pattern of diffusion through 
expansion as a characteristic of communicable diseases, reaching a 
greater number of people who are interacting in close quarters15.

These areas are compatible with the epicenter of the first Dengue 
fever epidemic, also occurring in Salvador, as reported by Barreto 

et al. (2008)17. This similarity suggests that, if interventions had 
been directed to those areas of previous Dengue fever epidemics, 
the expansion of arboviruses and the recent triple epidemic could 
have been minimized.

Among the visualization methods, the kernel maps provided 
a better appreciation of the spatial diffusion than the choropleth 
maps, because they exhibited areas with a higher density of cases 
where the risk of arbovirus transmission may have been higher due 
to prevalent cases.

Choropleth maps were more difficult to interpret because of 
excessive variation in incidence rates, a phenomenon less frequent 
in large populations and more important when small numbers of 
cases are related to small populations. The color scale has been 
reported to be also very sensitive to variations, which hinders 
interpretation15,33. Apart from this, the diffusion processes were 
evaluated in conjunction with other techniques used.

Despite a high degree of subjectivity, the use of visual 
presentation methods combined with statistical techniques can 
make quantitative results easier to interpret.

Among the statistical methods used, the LISA changes analysis 
technique produced a different result for the three arboviruses 
compared to the other techniques. However, the LISA result should 
be interpreted with caution because of the small proportion of 
statistically significant changes found in our study (<3%).

The spatial correlograms presented similar configurations. The NNI 
analysis technique appeared to be the most robust method of analysis 
as it was based on a statistical approach that used daily information, 
was modeled using regression curves, and could be compared to other 
analyses previously simulated by Lee et al. (2008)24.

The main limitation of this study is that the surveillance data 
may have contained a poor diagnostic classification in reports, 
possibly due to the rapid emergence of arboviruses and similarity 
in the symptoms when defining the diagnoses according to 
clinical epidemiological criteria. Simultaneous circulation of 
the three arboviruses was a factor that may have compromised 
the investigation of some of the diseases and led to more intense 
investigation of others. Since most cases were asymptomatic, we 
considered that a substantially lower number of cases might have 
been reported. It is likely that diagnostic cross-classification errors 
occurred during the simultaneous triple epidemic, but it is difficult 
to evaluate the magnitude of such bias. It might be that the cross-
diagnosis brings the specific spatial diffusion patterns close to that 
observed for Dengue. This would obscure specific characteristics 
that might happen for Zika and Chikungunya.

Despite this limitation, the combination of statistical and visualization 
techniques appeared to allow the analysis of spatial diffusion. This 
information should allow the implementation of more effective 
control programs by directing prevention and control strategies to 
specific areas and periods, as recommended by Cliff et al. (1981)16.

Our study of the spatial diffusion of Zika, Chikungunya, and 
Dengue arboviruses in in Salvador-Bahia, in the period of triple 
epidemics between 2015 and 2016, enabled an identification of 
the propagation process of these arboviruses, indicating that the 
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diffusion pattern of the Zika fever epidemics was the same as that 
of the Dengue and Chikungunya fever epidemics. During the two 
years of study, these diseases spread through diffusion expansion. 
This knowledge on how and where arboviruses spread in Salvador 
in a triple epidemic situation provides important information for 
improving epidemiological surveillance, both in terms of monitoring 
cases and in terms of targeting interventions for disease control.
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