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Abstract

Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem

cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by

one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of

RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different

species and has been associated with the undifferentiated and differentiated states of differ-

ent cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1

(PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs

(hESCs), we first assessed the influence of the silencing of PUM1 and PUM2 on pluripo-

tency genes and found that the knockdown of Pumilio genes significantly decreased the

OCT4 and NANOG mRNA levels and reduced the amount of nuclear OCT4, which suggests

that Pumilio proteins play a role in the maintenance of pluripotency in hESCs. Furthermore,

we observed that PUM1-and-PUM2-silenced hESCs exhibited improved efficiency of in

vitro cardiomyogenic differentiation. Through an in silico analysis, we identified mRNA tar-

gets of PUM1 and PUM2 that are expressed at the early stages of cardiomyogenesis, and

further investigation will determine whether these target mRNAs are active and involved in

the progression of cardiomyogenesis. Our findings contribute to the understanding of the

role of Pumilio proteins in hESC maintenance and differentiation.

Introduction

Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass of

the blastocyst that have the potential to differentiate into cells belonging to each of the three

germ layers [1–3]. In an undifferentiated state, hESCs are characterized by the expression of

stemness factors such as OCT4 (POU5F1), SOX2 and NANOG [4]. These three transcription

factors, which are positively regulated, are responsible for the maintenance of pluripotency
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and contribute to the repression of lineage-specific genes [reviewed by 5]. The stimulation of

hESCs to undergo the differentiation process decreases the expression of genes associated with

pluripotency and initiates the expression of genes associated with the germ layer [6].

A complex network of gene expression underlies the molecular signaling that gives rise to

different organs and tissues, including the heart. Cardiomyogenic differentiation is a highly

regulated process that depends on the finely tuned regulation of gene expression [7]. The in
vitro cardiomyogenic differentiation of hESCs can be used as a model for studying cardiac

development and electrophysiology as well as for drug screening and the development of

potential cellular therapies [reviewed by 8].

RNA-binding proteins (RBPs) are proteins that contain RNA-binding domains and form

ribonucleoprotein complexes in association with RNAs (RNPs). These proteins play a critical

role in the posttranscriptional regulation of gene expression. The dynamics and functions of

these complexes depend on their composition, targets and cofactors [9]. The Pumilio-FBF

(PUF) family of RBPs is highly conserved among species and is found in plants, insects, nema-

todes and mammals [10–15]. The RNA-interaction domain of Pumilio proteins is highly con-

served [16] and comprises eight repeats, each of which has the ability to bind a single

nucleotide of a specific recognition motif in the 30 untranslated region (UTR) of a target

mRNA [17]. In humans, there are two homologs of the PUF family, PUMILIO 1 (PUM1) and

PUMILIO 2 (PUM2), which exhibit 91% identity in their RNA-binding domains [15].

The expression of PUM1 and PUM2 has been detected in hESCs and several human fetal

and adult tissues, including the ovaries and testes [11,12]. Furthermore, in mammals, the dis-

ruption of PUM1 causes defective germline phenotypes [18,19]. In rodents, Pum1 facilitates

the exit of cells from an undifferentiated state to a differentiated form by accelerating the deg-

radation of some important factors that maintain pluripotency, such as Tfcp2l1, Sox2, Tbx3,

and Esrrb [20]. In addition, many of the mRNAs associated with PUM1 belong to a relatively

small number of functional groups, which suggests the existence of an RNA regulon model

[21] in which PUM1 inhibits translation and promotes the degradation of its target mRNAs

[22]. Pumilio proteins form multiprotein complexes with other regulatory proteins, such as

DAZ-like (DAZL) [11], boule (BOL) [23], staufen (STAU) [24] and nanos (NOS) [25]. These

complexes are also involved in the maintenance of ESCs and in the regulation of the onset of

meiosis in various organisms, including humans [11,26]. PUM2 and NOS interact in a con-

served mechanism to participate in the differentiation and maintenance of germ cells [25].

Thus, the molecular mechanisms underlying the functions of Pumilio proteins and their tar-

gets might determine whether cells undergo differentiation or maintain a stemness phenotype.

Here, we investigated the roles of PUM1 and PUM2 proteins in hESCs in the maintenance

of pluripotency and during cardiomyogenic differentiation. We found that the silencing of

PUM1 and PUM2 in hESCs reduced the expression of pluripotency genes and positively influ-

enced cardiomyogenesis. Moreover, based on an in silico analysis, we selected targets of PUM1

and PUM2 from previously published polysome-bound mRNA data [27] and identified bio-

logical processes and gene networks related to Pumilio proteins that occur during the early

stages of in vitro cardiac differentiation.

Methods

Cell culture and cardiac differentiation

The NKX2-5eGFP/w HES3 hESC line [28] was generously provided by Monash University (Vic-

toria, Australia). The cell cultures were maintained on irradiated mouse embryonic fibroblasts

(iMEFs) in hESC medium consisting of Dulbecco’s modified Eagle’s medium (DMEM)/F12

supplemented with 20% KnockOut serum replacement, 1% nonessential amino acids, 1% L-
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glutamine, 1% penicillin/streptomycin, 0.1 mM β-mercaptoethanol and 10 ng/ml human

βFGF. The cells were passaged every 3 to 4 days by enzymatic dissociation using 0.25% tryp-

sin/EDTA. Cardiomyogenic differentiation assays were conducted using an embryoid body

(EB) protocol adapted from previously described methods [27,29] or a previously reported

monolayer protocol [30].

For EB cardiac differentiation, 7x105 cells/well were plated in six-well dishes containing

growth factor-reduced Matrigel1Matrix (Corning). Then, hESCs were dissociated and cul-

tured on low-attachment plates supplemented with StemPro-34 medium (composed of Stem-

Pro™-34 SFM (Gibco™) supplemented with transferrin, ascorbic acid, penicillin/streptomycin

and monothioglycerol) containing BMP4 (0.5 ng/ml) for 24 h to form EBs (Day 0, D0). On

day 1 (D1), the EBs were incubated with StemPro-34 supplemented with βFGF (5 ng/ml), acti-

vin A (6 ng/ml) and BMP4 (10 ng/ml) to induce mesoderm differentiation. On day 4 (D4), the

EBs were incubated with medium supplemented with XAV939 (10 μM/ml) and VEGF (10 ng/

ml) to induce differentiation of the cells into cardiac progenitors. On days 8 and 11, the

medium was changed to StemPro-34 containing only VEGF (10 ng/ml). On day 9, it was possi-

ble to verify the percentage of cells that were committed to cardiac differentiation based on

eGFP expression (relative to NKX2.5 expression). On day 15 (D15), we evaluated the efficiency

of the protocol through cardiac troponin T (cTnT) staining. During the differentiation period,

the EBs were maintained in a humidified incubator under hypoxic conditions (5% O2, 5%

CO2, 37˚C).

For monolayer cardiac differentiation, hESCs were dissociated from iMEF cultures, and

1.5x105 cells/well were plated into Matrigel1 hESC-qualified Matrix (Corning)-coated wells in

24-well dishes. The hESCs were maintained in hESC medium until 90–100% confluence. On

day 0, RPMI medium supplemented with B27 without insulin (RPMI+B27-insulin) and 12 μM

CHIR99021 (Stemgent) was added to the culture. After 24 h, the medium was changed to

RPMI+B27-insulin. On day 3, RPMI+B27-insulin and 10 μM XAV939 (Sigma) were added to

the monolayer cultures, and the cultures were then maintained in this medium until day 5,

when the medium was exchanged for RPMI+B27-insulin. Beginning on day 7, the cultures

were maintained in RPMI supplemented with B27 complete medium, and the medium was

changed every 3 days until day 15. On the final day (day 15), the cells were fixed with 4% para-

formaldehyde and stained for cTnT using a previously described immunofluorescence proto-

col [7]. Twelve fields were photographed at 5x magnification using an Operetta CLS High-

Content Analysis System (PerkinElmer). The areas (mm2) that showed positive staining for

DAPI, eGFP/NKX2.5 and cTnT were calculated using Harmony 4.5 software (PerkinElmer)

(S2 Fig). The contraction frequency of the monolayers was manually counted by three individ-

uals who were blinded to the study conditions for each replicate (n = 3).

Lentiviral vector production and transduction

HEK293FT cells were cultured in Petri dishes containing DMEM supplemented with 10% fetal

bovine serum, 1% L-glutamine and 1% penicillin/streptomycin for 24 h. MISSION Lentiviral

Mix and a p-LKO1 vector containing a short hairpin RNA (shRNA) targeting PUM1
(shPUM1; TRCN0000147347, clone 1–15), PUM2 (shPUM2; TRCN0000061861, clone 2–4) or

a scrambled sequence (shSc) (RNAi consortium, Broad Institute, Boston, MA) [31, 32] were

added to the cell culture in OptiMEM containing Lipofectamine 2000. After 4 h of incubation,

the medium was replaced with supplemented DMEM, as described above. After 48 and 72 h,

the medium was collected and centrifuged twice at 141,000 x g. The lentiviral pellet was resus-

pended in 1X PBS and stored at -80˚C.
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To optimize the transduction efficiency, hESCs were cultured on six-well plates, and differ-

ent dilutions of the lentiviruses were tested (S1 Fig). A dilution of 10−3 was selected for all the

experiments. After transduction, the medium was replaced, and hESCs were cultured for 24 h

to induce cardiac differentiation.

RNA extraction and quantitative RT-qPCR

RNA was extracted using an RNeasy Kit (Qiagen), and the cDNA reaction was performed

using an Improm-II Kit (Promega) according to the manufacturer’s instructions. Samples

were obtained from three replicates of undifferentiated cells and from three independent car-

diac differentiations. The cDNA amplification experiments were performed in a final volume

of 10 μl containing SYBR Select master mix (Applied Biosystems), 100 ng of the cDNA tem-

plate, and 5–10 pmol of the primers. The RT-qPCR conditions were performed using the

LightCycler system (Roche) in accordance to the manufacturer’s recommendations (Applied

Biosystems). The RT-qPCR experiments were performed in triplicate. The Cq results for each

gene were normalized based on GAPDH expression, and the relative expression of each gene

was calculated. The analyzed genes and the primer sequences are shown in Table 1.

Flow cytometry

During cardiac differentiation, the cells were immunophenotyped by flow cytometry to deter-

mine their stages of differentiation. The EBs were dissociated with 0.25% trypsin/EDTA (5

min) and resuspended in PBS/0.5% BSA. On day 3 (D3), the cells were incubated with anti-

CD56 (BD) antibody (1:12.5) for 20 min at 4˚C. On day 9 (D9), the cells were only dissociated

for eGFP detection. On day 15, for cTnT staining, the EBs were incubated with trypsin/0.25%

EDTA for 20 min, and this step was followed by inactivation with DMEM supplemented with

50% SFB and DNase I (20–30 U/ml). After dissociation, the cells were fixed with 4% formalde-

hyde (20 min), permeabilized with 0.5% Triton X-100 (25 min) and incubated with an anti-

cTnT primary antibody (Thermo Fisher Scientific) (1:100) for 30 min at room temperature

and then with an Alexa Fluor 633 secondary antibody (1:1000) (30 min). The cells were subse-

quently analyzed using a FACSCanto II (BD) flow cytometer. The data analyses were per-

formed using FlowJo software (v.10).

Table 1. Primer sets used for RT-qPCR.

Official symbol NCBI ID Primer sequence (5´–3´) Amplicon (bp)

GAPDH NM_002046.3 Forward: 5’-GGCGATGCTGGCGCTGAGTAC-3’ 149

Reverse: 5’-TGGTTCACACCCATGACGA-3’

PUM1 NM_001020658.1 Forward: 5’-AAACCTGAGAAGTTTGAATTG-3’ 351

Reverse: 5’-GCAAGACCAAAAGCAGAGTTG-3’

PUM2 NM_015317 Forward: 5’-AGGATCAGTATGGCAATTATG-3’ 389

Reverse: 5’-ATACTTTTCCAACTTGGCCAG-3’

OCT4 (POU5F1) NM_001173531.2 Forward: 5’-ATGCATTCAAACTGAGGTGCCTGC-3’ 192

Reverse: 5’-AACTTCACCTTCCCTCCAACCAGT-3’

NANOG NM_024865 Forward: 5’-ACCAGAACTGTGTTCTCTTCCACC-3’ 200

Reverse: 5’-CCATTGCTATTCTTCGGCCAGTTG-3’

Reverse: 5’-ACAGTGACTGAGCGGCTAAT-3’

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PUM1, Pumilio homolog 1; PUM2, Pumilio homolog 2 (Drosophila); OCT4 (POU5F1), Homo sapiens POU class

5 homeobox 1; NANOG, Nanog homeobox

https://doi.org/10.1371/journal.pone.0222373.t001
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Western blot analysis

The cells were washed once with 1X PBS and removed with a cell scraper. The hESCs were

then resuspended in SDS sample buffer (160 mM Tris 1 M pH 6.8, 4% SDS, 10% β-mercap-

toethanol, 24% glycerol, and 0.02% bromophenol blue). Western blot analyses were performed

with goat anti-PUM1 (1:5000, Bethyl Laboratories), rabbit anti-PUM2 (1:2500, Bethyl Labora-

tories), goat anti-OCT4 (1:500, Abcam) and mouse anti-β-actin (1:1000, Cell Signaling Tech-

nology) antibodies. Peroxidase-conjugated anti-goat IgG (1:2500 for anti-PUM1, 1:2000 for

anti-OCT4), anti-rabbit IgG (1:2500 for anti-PUM2) and anti-mouse IgG (1:2500 for anti-β-

actin) were used as secondary antibodies. HRP Chemiluminescent Substrate Reagent (Thermo

Fisher Scientific) was used for chemiluminescence signal generation. The signal was captured

with a ChemiExpress L-Pix instrument (Loccus Biotechnology), and the image was generated

using L-Pix Image software (v. 2.11.7, Loccus Biotechnology). ImageJ software (https://imagej.

nih.gov/ij/) was used for the quantitative analyses, and the gel images were quantified based on

the linear signal ranges.

Immunofluorescence

A previously described immunofluorescence protocol was followed [7]. Briefly, 48 h after the

hESCs were transduced with shSc and shPUM1-2, the cells were fixed with 4% paraformalde-

hyde, rinsed with PBS, and incubated with blocking buffer (PSA/BSA 5%) for 60 min. The

cells were subsequently incubated for 60 min at 30˚C with primary antibodies for PUM1

(1:300, Bethyl Laboratories Inc.), PUM2 (1:70, Bethyl Laboratories Inc.) or OCT4 (1:100,

Abcam), which were diluted in blocking buffer. After three washes with PBS, the cells were

incubated with an Alexa Fluor1 488 anti-goat or anti-rabbit secondary antibody for 60 min at

30˚C. DAPI staining was performed for 10 min, and the cells were then washed three times

with PBS. Images were acquired at 20x magnification using an Operetta CLS High-Content

Analysis System (PerkinElmer), and the staining intensity of each individual cell (n = 74,000)

was analyzed using Harmony 4.5 software (PerkinElmer) (S2 Fig). The experimental design

and control images of the cells incubated with secondary antibody are detailed in S3 Fig (S3A–

S3B Fig).

Analysis of mRNA targets of PUM1 and PUM2 during the early stages of in
vitro cardiomyogenesis

To analyze the mRNA targets of PUM1 and PUM2 proteins during cardiac differentiation, we

defined a set of 1,809 target genes of human Pumilio proteins (PUM1 and PUM2), based on a

published study [22] and searched for these in an RNA-seq dataset of mRNAs associated with

polysomes obtained during in vitro cardiomyogenesis [27]. A differential gene expression

(DGE) analysis was performed using the Bioconductor R package edgeR [33,34]. The compari-

sons were performed among polysome-bound mRNA fractions; specifically, the data from

cells at D1 or D4 were compared with data from cells at D0 (undifferentiated hESCs). For

these analyses, we retained only those genes with at least one count per million in at least three

samples. Based on the initial DGE results, we used a stringent analysis with a p-value threshold

of<0.05 and the log 2(fold change) (logFC). Genes with logFC> 1 were considered upregu-

lated, and genes with logFC< −1 were considered downregulated. An enrichment analysis of

the identified set of genes was performed using g:Profiler [35] (http://biit.cs.ut.ee/gprofiler/)

and the REVIGO [36] (http://revigo.irb.hr/) consortium database, and a complement analysis

was performed using STRING Consortium 2019 [37] (https://string-db.org).
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Statistical analysis

The statistical analyses were performed using GraphPad Prism 7 software. The data sets are

expressed as the means ± standard deviations. Unpaired Student’s t-test or one-way ANOVA

followed by Tukey’s post hoc test were performed when appropriate. Differences with p<0.05

were considered statistically significant.

Results

Combined knockdown of PUM1 and PUM2 affects the expression of OCT4
and NANOG in hESCs

To understand the role of PUM1 and PUM2 in hESC pluripotency, we silenced their expres-

sion using short hairpin RNAs. We produced lentiviral particles containing shRNAs that rec-

ognize PUM1 and PUM2 and a scrambled control; these lentiviruses were based on previously

published plasmids [31, 32]. The knockdown of PUM1 and PUM2 was confirmed by RT-

qPCR, and the results showed that the PUM1 and PUM2 mRNA levels were significantly

reduced in the double-silenced cells compared with the control cells (Fig 1A). In fact, the

results showed that the double-silencing protocol resulted in the efficient (92% and 90%)

silencing of the PUM1 and PUM2 genes, respectively.

We then analyzed whether the silencing of PUM1 and PUM2 altered the mRNA levels of

some pluripotency transcription factors, such as OCT4 and NANOG. Interestingly, the mRNA

levels of OCT4 and NANOG were significantly reduced in the double-silenced cells compared

with the control cells (Fig 1B). We quantified the protein contents in the double-silenced cells

Fig 1. Knockdown of PUM1 and PUM2 affects the expression of OCT4 and NANOG mRNA. (A-B) Analysis of the relative expression of PUM1 and PUM2
(A) and of NANOG and OCT4 (B) in hESCs 24 h after transduction of lentiviral vectors containing shSc and shPUM1-2 (n = 3). (C-D) Western blot analysis of

PUM1 (140 kDa), PUM2 (114 kDa) and OCT4 (40 kDa) expression in protein extracts from cells in which PUM1-2 was silenced. The β-actin (45 kDa) protein

was used as a loading control (n = 3). (E-G) The PUM1, PUM2 and OCT4 immunostaining intensity of each individual cell (n = 74,000 cells) was analyzed

using Operetta CLS and Harmony 4.5 software (Perkin Elmer); for each sample, 25 images (20X objective) in triplicate were analyzed. Representative

immunostaining images and quantified intensity of PUM1 (E), PUM2 (F) and OCT4 (G) 48 h after transduction of lentiviral vectors containing shSc and

shPUM1-2 are shown. Scale bars: 200 μm. �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001.

https://doi.org/10.1371/journal.pone.0222373.g001
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by western blot and immunofluorescence of PUM1, PUM2 and OCT4. Both techniques

showed that the amount of PUM1 and PUM2 proteins was reduced in the shPUM1-2 trans-

duced cells compared with the level found in the shSc-transduced control cells (Fig 1C and 1D

and S3C–S3E Fig). Interestingly, although the western blot analysis indicated that the amount

of OCT4 protein remained constant despite the silencing of PUM1 and PUM2, the fluores-

cence intensity of nuclear OCT4 was reduced in the double-knockdown cells (Fig 1G). How-

ever, these results do not allow us to conclude that the reduction in the intensity of OCT4 in

the nucleus is directly related to the expression of these proteins. These findings suggest that

PUM1 and PUM2 might play some role in pluripotency, and further studies will be needed to

understand the relationship between these proteins and OCT4 localization.

PUM1 and PUM2 expression patterns during in vitro cardiac

differentiation

After showing that Pumilio proteins might be involved in hESC pluripotency, we investigated

their role in a differentiation process: cardiomyogenesis. We evaluated the gene expression lev-

els of PUM1 and PUM2 throughout the process of in vitro cardiac differentiation. Initially,

hESCs were subjected to an in vitro cardiac differentiation protocol (Fig 2A), and their pro-

gression was verified by flow cytometry. On day 3, approximately 25% of the cell population

was CD56+ (mesoderm marker), which indicated that these cells were committed to meso-

dermal differentiation (Fig 2B). On D9 and D15, the evaluation of eGFP expression, which is

under the control of the NKX2.5 promoter (a cardiac progenitor marker), indicated that

approximately 20% of the cell population was committed to the cardiac lineage. On day 15, the

expression of the cardiomyocyte marker cTnT was assessed, and the results showed that 20%

of the cells expressed this marker (Fig 2B).

Fig 2. PUM1 and PUM2 expression profiles during hESC cardiomyogenesis. (A) Scheme of the EB cardiomyogenic differentiation protocol. (B) Graph

indicating the percentage of positive cells for the markers CD56, eGFP/NKX2.5 and cTnT at different time points during in vitro cardiac differentiation (n = 3).

(C) Relative expression of PUM1 and PUM2 at days 1, 4, 9 and 15 of cardiomyogenesis in relation to day 0 (total RNA) (n = 3). (D) Relative expression (RPKM

values) of PUM1 and PUM2 mRNAs associated with polysomes during in vitro cardiomyogenesis in relation to day 0 (data extracted from previously published

results [27]). (n = 3) �p<0.05.

https://doi.org/10.1371/journal.pone.0222373.g002
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Total RNA was extracted at five time points during cardiac differentiation (D0, D1, D4, D9,

D15) and subjected to RT-qPCR. The results showed that PUM1 and PUM2 mRNAs were

expressed throughout cardiomyogenesis and that the PUM1 mRNA level on day 15 was

increased compared with that on day 0 (Fig 2C). Using previously reported data from poly-

some-bound mRNAs during cardiomyogenesis [27], we verified the association of PUM
mRNAs with polysomes. Based on the fold change in the reads per kilobase million (RPKM)

values (comparing each time point in relation to D0), we found that the association of PUM1
and PUM2 mRNAs with polysomes also remained constant throughout cardiomyogenesis

(Fig 2D). These data suggest that PUM1 and PUM2 might play important roles throughout

this cellular process.

Knockdown of PUM1 and PUM2 in hESCs affects cardiomyogenesis

Because the silencing of PUM1 and PUM2 affected some pluripotency genes (Fig 1) and the

expression of PUM1 and PUM2 remained constant throughout the process of cardiomyogenic

differentiation (Fig 2) (indicating their importance throughout the process), we investigated

the influence of silencing Pumilio proteins in the cardiac differentiation process. Forty-eight

hour after hESC transduction, EB cardiac differentiation was induced. On day 9, the silenced

EBs were morphologically different from the control cells with respect to their size (Fig 3A),

although this difference was not statistically significant (Fig 3B). Under all conditions, the EBs

contracted spontaneously at D15 (S1 Video).

The analysis of the expression of differentiation markers showed that the numbers of

shPUM1-2-transduced cells expressing CD56 and eGFP were increased on D4 and D9 of car-

diomyogenesis, respectively, compared with the numbers of control cells (transduced with

shSc) (Fig 3C). The analysis of the efficiency of differentiation on D15 showed that the percent-

age of cTnT+ cells did not show a difference between the different treatments (Fig 3C). These

results demonstrated that the silencing of PUM1 and PUM2 could positively affect the differ-

entiation of mesoderm and cardiac precursors.

The dissociation of EBs, particularly at the end of the cardiac differentiation process (D15),

is a critical and challenging step. Therefore, the evaluation of eGFP+ or cTnT+ cells by flow

cytometry might underestimate the degree of differentiation and could yield variable results.

Thus, we evaluated the effect of the silencing of Pumilio proteins using a monolayer cardio-

myogenic differentiation protocol [30] (Fig 4A). Based on this protocol, we transfected hESCs

with shSc or shPUM1-2 and analyzed their efficiency of cardiac differentiation through an

analysis of eGFP/NKX2.5 expression and cTnT immunostaining at day 15. The eGFP+ and

cTnT+ stained areas in the shPUM1-2-treated cell population were significantly higher than

those found in the cells transduced with shSc, and a similar number of cells (DAPI+ area) were

obtained with both treatments (Fig 4B–4E). In addition, the frequency of contractions in the

PUM1-2-silenced cells after 15 days of differentiation was significantly higher than that in the

control cells (shSc) (Fig 4F and S2 Video). Our data suggest that the silencing of PUM1 and

PUM2 positively affects cardiomyogenesis.

Identification of mRNA targets of PUM1 and PUM2 during the early stages

of cardiac commitment

Our results suggest that PUM1 and PUM2 might play a role during the early stages of cardio-

myogenesis because PUM1-2 silencing affects the mesoderm marker (CD56) on day 3 of dif-

ferentiation (Fig 3C). Thus, we investigated the expression profile of the mRNA targets of

PUM1 and PUM2 during the early stages of in vitro cardiomyogenesis using previously pub-

lished RNAseq data of polysome-bound mRNAs obtained during in vitro cardiac
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differentiation [27]. For the DGE analysis, the expression levels of PUM1 and PUM2 mRNA

targets on cells at D1 and D4 of differentiation were compared with those at D0 (undifferenti-

ated ESCs) (S1 Table).

A gene ontology (GO) analysis of each set of PUM1 and PUM2 mRNA targets that were

upregulated in polysomes at D1 and D4 was conducted with g:Profiler [35]. The complete lists

of cellular components, biological processes, molecular functions and signaling pathways can

be found in S2 Table. We observed 69 Pumilio proteins mRNA targets upregulated at D1 in

relation to D0, and the highlighted GO terms were related to negative regulation of biological

processes, animal organ development and regulation of multicellular organismal processes (S1

and S2 Tables). In contrast, the mRNA targets of PUM1 and PUM2 identified at D4 were asso-

ciated with more than 120 biological process terms (S2 Table). To aid visualization of these

GO terms, we used REVIGO [36]. The highlighted terms are related to involvement in devel-

opment, stem cell differentiation, embryonic morphogenesis, head development and others

(Fig 5A). A more detailed analysis of the animal organ morphogenesis cluster showed terms

related to the development of various systems, including the nervous, cardiovascular and cir-

culatory systems (Fig 5A and S2 Table). We also found that these mRNAs were involved in the

Fig 3. Effect of the knockdown of PUM1 and PUM2 during EB cardiac differentiation. (A) Morphology of EBs at days 1 (D1), 4 (D4), 9 (D9) and 15 (D15)

of the cardiomyogenic differentiation of hESCs previously transduced with shSc and shPUM1-2. Scale bars: 100 μm. (B) Area of EBs after 9 days of in vitro
cardiac differentiation (the measurements were performed manually using ImageJ software) (n = 3). (C) Percentage of cells transduced with shSc and shPUM1-
2 that were positive for CD56, eGFP/NKX2.5 and cTnT during cardiomyogenesis (n = 3). �p<0.05.

https://doi.org/10.1371/journal.pone.0222373.g003
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mesodermal commitment pathway (S2 Table). The network of the interactions between the

upregulated mRNA targets of the Pumilio proteins at D4 was then generated, and the genes

involved in circulatory system development (Fig 5B, red circles), namely, EPOR, WNT5A,

Fig 4. Effect of the knockdown of PUM1 and PUM2 during monolayer cardiac differentiation. (A) Scheme of the protocol used for the

transduction and monolayer cardiomyogenic differentiation of hESCs. (B) Representative immunofluorescence images of DAPI, eGFP/

NKX2.5 and cTnT staining in the population of transduced hESCs after 15 days of monolayer cardiac differentiation. Scale bars: 500 μm.

(C-E) The DAPI+ (C), eGFP/NKX2.5+ (D) and cTnT+ (E) stained areas were determined using Operetta CLS and Analysis Software 4.5

(Perkin Elmer) through a sequence analysis of 21 images (5X objective) obtained in triplicate after 15 days of monolayer cardiac

differentiation (n = 3). (F) Number of contractions/minute during cardiac monolayer differentiation (n = 3). �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0222373.g004
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EFNA1, RHOB, HOXB3, BMP2, SMAD7, FN1, ADAMTS6, COL15A1 and COL4A2, are

highlighted. Based on the consideration that Pumilio proteins reduce translation and lead to

Fig 5. mRNA targets of PUM1 and PUM2 upregulated in the polysome during cardiomyogenesis. (A) Gene

ontology analysis of mRNA targets of PUM1 and PUM2 upregulated on day 4 of in vitro cardiomyogenesis. The figure

shows a REVIGO scatterplot of the representative clusters of GO terms obtained with g:Profiler. In the two-

dimensional graph, the log10 p-value of each GO result after REVIGO analysis is plotted on the x-axis, and the terms

are scattered based on the log size along the y-axis. The bubble color indicates the provided p-value: bluer colors

represent smaller p-values, whereas orange and red colors represent larger p-values. (B) Network analysis of mRNA

targets of PUM1 and PUM2 upregulated on day 4 of cardiomyogenesis. Functional enrichments in circulatory system

development (FDR 1.99e-05) are represented in red. Interaction Score: Highest confidence (0.900), STRING.

https://doi.org/10.1371/journal.pone.0222373.g005
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mRNA degradation [15,38,39], some mRNAs related to mesodermal commitment and circula-

tory system development might have been less repressed; these results indicated that the silenc-

ing of PUM1 and PUM2 might have improved cardiomyogenesis. Further studies will be

needed to understand whether PUM1 and PUM2 silencing upregulates mRNAs that partici-

pate in cardiomyogenesis.

Discussion

We investigated the effects of Pumilio proteins on stemness and cardiomyogenesis through

the knockdown of both human paralogs. Twenty-four hours after the silencing of PUM1 and

PUM2, hESCs showed a reduction in the mRNA levels of two genes associated with the pluri-

potency phenotype, OCT4 and NANOG. This finding indicated that PUM proteins might be

involved in the maintenance of hESC pluripotency. Our results corroborate those reported by

Uyhazi et al. (2020), who showed that the double knockout of Pum1 and Pum2 in mESCs leads

to decreases in the Oct4, Sox2 and Nanog protein levels [40]. Other studies also strongly sug-

gest that PUF proteins might mediate a widespread and ancient mechanism for repressing the

differentiation and maintaining the self-renewal of stem cells [10,15,4–44].

The evaluation of the OCT4 protein levels in the Pum1-and-Pum2-silenced cells through

western blot and immunofluorescence analyses showed distinct results: one of the analysis

showed no changes in the protein content, whereas the other indicated a reduction in the

staining intensity. This finding was also observed by Lin et al. (2018), who analyzed mouse

E6.5 Pum1-2 double-knockout embryos and found decreases in both the overall Oct4 signal

intensity by immunohistochemistry staining and the total amount of Oct4 mRNA, but amount

of total Oct4 protein was constant by western blot assays [45]. Human PUM1 and PUM2 bind

with high affinity and specificity to the Pumilio response element (PRE) with the consensus

binding site 50-UGUANAUA (where N is A, C, G or U) [46–48]. Bohn et al. (2018) identified

diverse target RNAs that are functionally regulated by human Pumilio proteins in HEK293

cells, but OCT4 and NANOG are not included among these targets and do not contain the

PRE recognition motif [49]. Thus, the silencing effect of Pumilio proteins on pluripotency

genes might occur indirectly. Furthermore, because PUM1 and PUM2 have not been

described as OCT4-binding partners [50–52], it is possible that the silencing of Pumilio pro-

teins acts indirectly by regulating some mRNAs that encode proteins responsible for the trans-

location of OCT4 out of the nucleus. After analyzing whether any mRNA targets of PUM1 and

PUM2 encode proteins that form part of the OCT4 interactome [50], we found that the follow-

ing mRNAs associate with one or both Pumilio proteins: MLLT10, RFC4, TBP, PPP1R10,

DBT, HK2,MLLT4, SMARCA2, WDR5 and RIF1. Further studies will be needed to understand

whether these elements are related to OCT4 localization and pluripotency.

By investigating the gene expression profile of PUM1 and PUM2 throughout the cardiac

differentiation process, we realized that the mRNA for both genes was constantly associated

with polysomes, which indicated that maintenance of the PUM1 and PUM2 mRNA levels is

important for cell function and cardiac differentiation processes. The importance of PUM1

and PUM2 in different types of stem cells and lineage differentiation was previously demon-

strated. The protein levels of PUM2 exhibit no changes during the differentiation of human

adipose-derived stem cells into adipocytes [53]. The mouse Pum1 and Pum2 genes show dif-

ferential expression in fetal and adult hematopoietic stem cells and progenitors [12]. The

repression of Pumilio protein expression by Rbfox1 promotes germ cell differentiation in Dro-

sophila [54].

Considering the possible role of Pumilio proteins in cardiac differentiation, we examined

the effect of their silencing on hESCs subjected to in vitro cardiomyogenesis. After the EB
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protocol, PUM1-2-silenced hESCs showed increased percentages of CD56+ cells (D3) and

eGFP+ cells (D9), even though the differences in the percentages of eGPF+ and cTnT+ cells at

D15 was not statistically significant. It is important to note that the percentage of positive cells

during the EB cardiac differentiation protocol depends on the dissociation of EBs that contain

organized cell-cell junctions, which makes the quantification of single cells by flow cytometry

difficult. Other studies have also reported difficulty in the dissociation of pluripotent stem cell

(hPSC)-derived cardiomyocytes [55].

Moreover, using the monolayer protocol, we observed that PUM1-2-silenced hESCs exhib-

ited a larger cTnT-stained area compared with the control cells. These changes indicated that

the reduction of PUM1 and PUM2 expression, even over a short period, can increase the num-

ber of cardiomyocytes generated through in vitro cardiac differentiation protocols. Therefore,

our results indicate that the knockdown of PUM1-2 improves cardiac differentiation. Lin et al.

(2018) showed that PUM1 and PUM2 double-knockout ESCs exhibit spontaneous differentia-

tion; although pluripotency factors such as OCT4, NANOG and REX1 were not affected, the

ectoderm marker Nestin was significantly reduced, and the endoderm markers GATA6 and

LAMA1 were significantly increased [45]. Uyhazi et al. (2020) showed that the knockout of

Pum2 in mESCs during spontaneous differentiation increased the mesoderm and resulted in

an earlier appearance of beating EBs compared with wild-type EBs, although these effects were

not observed in EBs in which both Pum1 and Pum2 were knocked out [41]. This difference

compared with our data might be due to fact that the previous study analyzed spontaneous dif-

ferentiation, whereas we analyzed induced differentiation toward a specific cell lineage.

A previous study found that EBs in which both Pum1 and Pum2 were knocked down

increased in size after 12 days [41]. Although our visual inspection indicated that the EBs in

our study also appeared larger, the quantification of the EB area did not reveal a significant dif-

ference. Interestingly, in vivo analyses can yield different findings. Mice in which Pum1 and/or

Pum2 are knocked out present smaller body and organ sizes than control mice, and this

decrease in dose-dependent [41, 56]. Gennarino et al. (2018) also showed that different PUM1

levels in PUM1-haploinsufficient patients can cause neurodisorders, such as ataxia, seizures

and smaller cerebellum, and these effects are dose-dependent. These researchers also analyzed

the expression of some PUM1 targets and found that AAMP, a protein involved in angiogene-

sis, appears to be elevated in patients with lower PUM1 expression [57]. However, the effects

on the heart appear to be contradictory. Lin et al. (2019) showed that the size and weight of the

hearts of Pum1-knockout mice do not differ from those of wild-type mice [56]. Another study

showed that the hearts from Pum1-knockout mice are smaller than those from wild-type mice

[41]. These size-related effects might be related to the fact that Pumilio proteins regulate

mRNAs that encode proteins involved in the regulation of the cell cycle [56, 57]. Further stud-

ies are needed to determine the effect of Pumilio on heart development and growth and the

effects of different Pumilio expression levels can affect these processes.

Based on our results, the effects of PUM1-2 silencing might occur at the beginning of the

differentiation process, which results in a larger number of cardiomyocytes at the end of the

process. Thus, in an attempt to understand the mechanism that occurs in PUM1-2-silenced

cells, we investigated the targets of PUM1 and PUM2 at the early stages of the cardiomyogenic

differentiation process and focused on the mesoderm stage.

The analysis was performed using data from mRNAs associated with polysomes obtained

during cardiomyogenesis. The enrichment of mRNAs in polysomal fractions indicated the

translation of these genes [27]. At D4 of the cardiac differentiation process, we found a group

of genes that were enriched in the polysomal fraction and contained Pumilio recognition ele-

ments. Therefore, we postulate that the expression of Pumilio-targeted mRNAs would be
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more prone to translation after the silencing of these proteins, which would promote

cardiomyogenesis.

Among the Pumilio-targeted mRNAs, we found some that exhibit a strong correlation with

the cardiac development process. For example, BMP2 was previously shown to play a crucial

role in early cardiomyogenesis by inducing NKX2.5 expression in the precardiac mesoderm

[58, 59]. The noncanonical WNT signaling protein WNT5A, which is also a target of Pumilio,

regulates cardiovascular development and functional cardiomyocyte differentiation [60]. In

mice, cell signaling orchestrated by fibronectin (FN1) plays indispensable roles in cardiovascu-

lar development [61]. The expression of erythropoietin receptor (EpoR) is not restricted to the

erythroid lineage. Mice lacking erythropoietin receptor expression suffer from ventricular

hypoplasia and exhibit a reduced number of proliferating cardiac myocytes [62]. Therefore, it

is possible that the role of the Pumilio in the control of cell differentiation is to regulate the

availability of genes associated with cell fate in the translation machinery, which results in con-

trol of the process in a time-dependent manner.

Despite this regulatory role, the mechanism underlying the effects observed in PUM1-2-

silenced hESCs needs to be investigated. The influence on cardiac differentiation might be

related to decreases in pluripotency markers or the modification of marker localization. Addi-

tionally, our study focused on cardiac commitment, but the silencing of Pumilio proteins

could potentiate differentiation toward other lineages, such as endoderm and ectoderm. The

mRNA targets identified at the initial stages of cardiomyogenesis also indicated that Pumilio

can act early during the process of differentiation, but further studies will be needed to under-

stand whether PUM1 and PUM2 silencing upregulates these mRNAs during cardiac lineage

commitment.

Our results suggest that PUM1-2 affects the expression of pluripotency genes as well as the

efficiency of the cardiac differentiation process, which corroborates the findings detailed in the

literature. Our study contributes to the understanding of the roles of Pumilio proteins in the

maintenance of pluripotency and the differentiation processes of hESCs.
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